87 lines
1.8 KiB
TeX
87 lines
1.8 KiB
TeX
|
\documentclass[12pt]{classPres}
|
||
|
\usepackage{tkz-fct}
|
||
|
|
||
|
\author{}
|
||
|
\title{}
|
||
|
\date{}
|
||
|
|
||
|
\begin{document}
|
||
|
\begin{frame}{Questions flashs}
|
||
|
\begin{center}
|
||
|
\vfill
|
||
|
Terminale Maths complémentaires
|
||
|
\vfill
|
||
|
30 secondes par calcul
|
||
|
\vfill
|
||
|
\tiny \jobname
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 1}
|
||
|
Calculer la quantité suivante
|
||
|
\[
|
||
|
\int_0^{10} 3x^2 + 4x - 1 \; dx =
|
||
|
\]
|
||
|
Tableau des primitives
|
||
|
\begin{center}
|
||
|
\begin{tabular}{|m{4cm}|m{4cm}|}
|
||
|
\hline
|
||
|
\rowcolor{highlightbg}
|
||
|
Fonction $f$ & Primitives $F$ \\
|
||
|
\hline
|
||
|
$a$ & $ax$ \\
|
||
|
\hline
|
||
|
$x$ & $\frac{1}{2}x^2$ \\
|
||
|
\hline
|
||
|
$x^2$ & $\frac{1}{3}x^3$ \\
|
||
|
\hline
|
||
|
$x^3$ & $\frac{1}{4}x^4$\\
|
||
|
\hline
|
||
|
$x^n$ & $\frac{1}{n+1}x^{n+1}$\\
|
||
|
\hline
|
||
|
$\frac{1}{x^2}$ & $\frac{-1}{x}$\\
|
||
|
\hline
|
||
|
\end{tabular}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 2}
|
||
|
Dériver la fonction suivante
|
||
|
\[
|
||
|
f(x) = (5x - 1)e^{x} =
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Calcul 3}
|
||
|
Tracer le tableau de signe de
|
||
|
\[
|
||
|
f(x) = (-x + 1) e^{-2x}
|
||
|
\]
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}[fragile]{Calcul 4}
|
||
|
Déterminer la quantité suivante
|
||
|
\[
|
||
|
\lim_{x \rightarrow +\infty} -2x^2 + 4x + 1 =
|
||
|
\]
|
||
|
\begin{center}
|
||
|
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||
|
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||
|
ymin=-5,ymax=5,ystep=1]
|
||
|
\tkzGrid
|
||
|
\tkzAxeXY
|
||
|
\tkzFct[domain=-5:5,color=red,very thick]%
|
||
|
{-2*\x**2 + 4*\x + 1};
|
||
|
\end{tikzpicture}
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
\begin{frame}{Fin}
|
||
|
\begin{center}
|
||
|
On retourne son papier.
|
||
|
\end{center}
|
||
|
\end{frame}
|
||
|
|
||
|
|
||
|
\end{document}
|