Feat: 1E sur les complexes pour les TST_sti2d
This commit is contained in:
parent
069fd93902
commit
09d02e6d8a
Binary file not shown.
@ -11,6 +11,8 @@
|
||||
step=1,
|
||||
}
|
||||
|
||||
\setlength{\columnseprule}{0pt}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\input{exercises.tex}
|
||||
@ -19,9 +21,5 @@
|
||||
\vfill
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
|
||||
\end{document}
|
||||
|
@ -28,18 +28,38 @@
|
||||
|
||||
\begin{exercise}[subtitle={Impédence d'un circuit}, step={1}, origin={Création}, topics={Complexes}, tags={Complexes, Trigonométrie}]
|
||||
Soit 3 dipôles dont l'impédance est modélisée par les nombres complexes suivants
|
||||
% $Z_1 = 1 + j \qquad \qquad Z_2 = j \qquad \qquad Z_3 = 2 + j$
|
||||
\vspace{-0.5cm}
|
||||
\begin{multicols}{3}
|
||||
\begin{circuitikz}
|
||||
\draw (0,0) to[R, l=$Z_1$, a=$1+j$](2,0);
|
||||
\end{circuitikz}
|
||||
|
||||
\begin{circuitikz}
|
||||
\draw (0,0) to[R, l=$Z_1$, a=$1+j$](2,0)
|
||||
\draw (0,0) to[R, l=$Z_2$, a=$j$](2,0);
|
||||
\end{circuitikz}
|
||||
% \begin{circuitikz}
|
||||
% \draw (0,0) to[R, l=$Z_2$, a=$j$](2,0);
|
||||
% \end{circuitikz}
|
||||
% \begin{circuitikz}
|
||||
% \draw (0,0) to[R, l=$Z_3$, a=$2+j$](2,0);
|
||||
% \end{circuitikz}
|
||||
|
||||
\begin{circuitikz}
|
||||
\draw (0,0) to[R, l=$Z_3$, a=$2-3j$](2,0);
|
||||
\end{circuitikz}
|
||||
\end{multicols}
|
||||
\vspace{-0.5cm}
|
||||
En fonction de la façon de brancher ces dipôles, l'impédance total change. Calculer l'impédance de ces assemblages.
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item
|
||||
\begin{circuitikz}[baseline=(a.south)]
|
||||
\draw (0,0) to[R, l=$Z_3$, a=$2-3j$](2,0) to [R, l=$Z_2$, a=$j$](4,0) to[R, l=$Z_3$, a=$2-3j$](6,0);
|
||||
\end{circuitikz}
|
||||
|
||||
$Z_1 + Z_2 + Z_3 = $
|
||||
\item
|
||||
\begin{circuitikz}[baseline=(a.south)]
|
||||
\draw (0,0) -- (1,0) -- (1, 0.75) to [R, l=$Z_1$, a=$1+j$] (3,0.75) -- (3, 0) -- (4,0);
|
||||
\draw (0,0) -- (1,0) -- (1, -0.75) to [R, l=$Z_2$, a=$j$] (3,-0.75) -- (3, 0) -- (4,0);
|
||||
\end{circuitikz}
|
||||
$\dfrac{1}{Z_1} + \dfrac{1}{Z_2} = $
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{exercise}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user