Feat: QF pour les complémentaires
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
0e73df7d84
commit
144bff9c90
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_17-1.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_17-1.pdf
Normal file
Binary file not shown.
74
Complementaire/Questions_Flashs/P5/QF_21_05_17-1.tex
Executable file
74
Complementaire/Questions_Flashs/P5/QF_21_05_17-1.tex
Executable file
@ -0,0 +1,74 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Résoudre l'inéquation suivante
|
||||
\[
|
||||
e^{2x+1} = 10
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Calculer la quantité suivante
|
||||
\[
|
||||
\int_3^6 t \; \dt =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{\substack{x \rightarrow 1 \\ >}} \frac{1}{x}=
|
||||
\]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain=-5:-1.1,color=red,very thick]%
|
||||
{1/((1-\x)*(1+\x))};
|
||||
\tkzFct[domain=-0.9:0.9,color=red,very thick]%
|
||||
{1/((1-\x)*(1+\x))};
|
||||
\tkzFct[domain=1.1:5,color=red,very thick]%
|
||||
{1/((1-\x)*(1+\x))};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
\vfill
|
||||
\textbf{Vrai ou faux}
|
||||
\vfill
|
||||
|
||||
$\dfrac{-1}{3}$ est une solution de l'équation
|
||||
\[
|
||||
\ln(4x) = \ln(x-1)
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_17-2.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P5/QF_21_05_17-2.pdf
Normal file
Binary file not shown.
78
Complementaire/Questions_Flashs/P5/QF_21_05_17-2.tex
Executable file
78
Complementaire/Questions_Flashs/P5/QF_21_05_17-2.tex
Executable file
@ -0,0 +1,78 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Résoudre l'inéquation suivante
|
||||
\[
|
||||
\ln(2x+1) = 12
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Calculer la quantité suivante
|
||||
\[
|
||||
\int_3^6 2t^2 + \frac{1}{2}t \; \dt =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{\substack{x \rightarrow -1 \\ >}} \frac{1}{x}=
|
||||
\]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain=-5:-1.1,color=red,very thick]%
|
||||
{\x/((1-\x)*(1+\x))};
|
||||
\tkzFct[domain=-0.9:0.9,color=red,very thick]%
|
||||
{\x/((1-\x)*(1+\x))};
|
||||
\tkzFct[domain=1.1:5,color=red,very thick]%
|
||||
{\x/((1-\x)*(1+\x))};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
\vfill
|
||||
\textbf{Trouver la bonne forme}
|
||||
\vfill
|
||||
|
||||
La fonction $f(x) = \ln(6x+1) + \ln(6x - 2) - 2\ln2$ est égale à
|
||||
|
||||
\begin{itemize}
|
||||
\item $\ln(9x^2 - 1)$
|
||||
\item $\ln(36x^2 - 1)$
|
||||
\item $\ln(12x - 4)$
|
||||
\end{itemize}
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user