Feat: devoir pour les sti2d
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2021-02-22 14:30:07 +01:00
parent e841875134
commit 4d0005b8fe
2 changed files with 148 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,148 @@
\documentclass[a4paper, 12pt]{article}
\usepackage[francais,bloc,completemulti]{automultiplechoice}
\usepackage{etex}
\usepackage{tkz-fct}
\geometry{left=10mm,right=10mm, top=25mm}
\begin{document}
\baremeDefautS{b=1,m=0}
\element{expComplexe}{
\begin{question}{Algébrique vers exponentielle}
La forme exponentielle du nombre $z = \sqrt{3} - i$ est
\begin{reponseshoriz}
\bonne{$2e^{-\frac{\pi}{6}i}$}
\mauvaise{$e^{-\frac{\pi}{3}i}$}
\mauvaise{$3e^{\frac{\pi}{6}i}$}
\mauvaise{$2e^{\frac{\pi}{4}i}$}
\end{reponseshoriz}
\end{question}
}
\element{expComplexe}{
\begin{question}{Exponentielle vers algébrique}
La forme algébrique du nombre $z = 2e^{\frac{\pi}{3}i}$ est
\begin{reponseshoriz}
\bonne{$1 + \sqrt{3}i$}
\mauvaise{$\sqrt{3} + i$}
\mauvaise{$\sqrt{2} + \sqrt{2}i$}
\mauvaise{$\frac{1}{2} - \frac{\sqrt{3}}{2} i$}
\end{reponseshoriz}
\end{question}
}
\element{expComplexe}{
\begin{question}{Multiplication complexes}
Soit $z_A = 2e^{\frac{\pi}{2}i}$ et $z_B = 4e^{\pi i}$. Alors $z_A \times z_B$ vaut
\begin{reponseshoriz}
\bonne{$8e^{i \frac{3\pi}{2}}$}
\mauvaise{$8e^{i\pi}$}
\mauvaise{$2e^{-i^2}$}
\mauvaise{impossible}
\end{reponseshoriz}
\end{question}
}
\element{expComplexe}{
\begin{question}{Quotient complexes}
Soit $z_A = 3e^{\frac{\pi}{6}i}$ et $z_B = e^{\frac{\pi}{2}i}$. Alors $\frac{z_A}{z_B}$ vaut
\begin{reponseshoriz}
\bonne{$3e^{-i\frac{\pi}{3}}$}
\mauvaise{$3e^{i\frac{\pi}{3}}$}
\mauvaise{$3e^{-i\times0}$}
\end{reponseshoriz}
\end{question}
}
\setgroupmode{expComplexe}{withreplacement}
\element{exponentielle}{
\begin{question}{Dérivation}
Soit $f(x) = (4x - 2)e^{5x}$ alors sa dérivée est
\begin{reponseshoriz}
\bonne{$f'(x) = e^{5x}(20x-6)$}
\mauvaise{$f'(x) = (4x+2)e^{5x}$}
\mauvaise{$f'(x) = 20e^{5x}$}
\mauvaise{$f'(x) = 4 + 5e^{5x}$}
\end{reponseshoriz}
\end{question}
}
\element{exponentielle}{
\begin{question}{Primitive}
Soit $g(x) = 24e^{-6x}$ alors sa primitive est
\begin{reponseshoriz}
\bonne{$F(x) = -4e^{-6x}$}
\mauvaise{$F(x) = -144e^{-6x}$}
\mauvaise{$F(x) = \frac{1}{-6}e^{-6x}$}
\mauvaise{$F(x) = 24 - 6e^{-6x}$}
\end{reponseshoriz}
\end{question}
}
\element{exponentielle}{
\begin{question}{Calculer intégrale}
La valeur exacte de $\displaystyle \int_0^5 e^{2x} \; dx$ vaut
\begin{reponseshoriz}
\bonne{$0.5(e^{10} - 1)$}
\mauvaise{$0.5e^{5} - 0.5$}
\mauvaise{$2(e^{10} - 1)$}
\mauvaise{$2e^{10}$}
\end{reponseshoriz}
\end{question}
}
\element{exponentielle}{
\begin{question}{Vérifier une primitive}
Soit $f(x) = (3x^2 + 2x + 3)e^{3x}$. Alors une primitive de $f(x)$ est
\begin{reponseshoriz}
\bonne{$F(x) = (x^2 + 1)e^{3x} + 100$}
\mauvaise{$F(x) = (9x + 6)e^{3x}$}
\mauvaise{$F(x) = (x^2+2)e^{3x}$}
\end{reponseshoriz}
\end{question}
}
\setgroupmode{exponentielle}{withreplacement}
\exemplaire{2}{
\noindent{\bf QCM \hfill DS 6}
\begin{minipage}{.4\linewidth}
\centering\Large\bf DS 6 - Tsti2d \\ 25/02/2021
%\normalsize Durée : 10 minutes.
\end{minipage}
\begin{minipage}{.6\linewidth}
\champnom{%
\fbox{
\begin{minipage}{0.8\linewidth}
Nom, prénom, classe:
\vspace*{.5cm}\dotfill
\vspace*{1mm}
\end{minipage}
}
}
\AMCcodeGridInt[h]{etu}{2}
\end{minipage}
\begin{center}\em
Aucun document n'est autorisé.
L'usage de la calculatrice est interdit.
\end{center}
%%% fin de l'en-tête
\restituegroupe[4]{expComplexe}
\restituegroupe[4]{exponentielle}
%\AMCaddpagesto{2}
}
\end{document}