diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf new file mode 100644 index 0000000..1aa4e4f Binary files /dev/null and b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf differ diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex new file mode 100755 index 0000000..8e729a8 --- /dev/null +++ b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex @@ -0,0 +1,98 @@ +\documentclass[12pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Terminale Maths complémentaires + \vfill + 30 secondes par calcul + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + Résoudre l'inéquation suivante + \[ + e^{2-3x} \leq e^{5} + \] +\end{frame} + +\begin{frame}{Calcul 2} + Calculer $P(E\cap F)$ + \begin{center} + \begin{tikzpicture}[xscale=2, grow=right] + \node {.} + child {node {$F$} + child {node {$E$} + edge from parent + node[below] {0.8} + } + child {node {$\overline{E}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[below] {0.3} + } + child[missing] {} + child { node {$\overline{F}$} + child {node {$E$} + edge from parent + node[below] {0.9} + } + child {node {$\overline{E}$} + edge from parent + node[above] {0.1} + } + edge from parent + node[above] {0.7} + } ; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}{Calcul 3} + Vérifier que + \[ + F(x) = (x+1)e^{-x^2} + \frac{2}{3} + \] + est une primitive de + \[ + f(x) = (-2x^2 -2x + 1)e^{-x^2} + \] +\end{frame} + +\begin{frame}[fragile]{Calcul 4} + Déterminer la quantité suivante + \[ + \lim_{\substack{x \rightarrow 0 \\ >}} \frac{1}{x}= + \] + \begin{center} + \begin{tikzpicture}[xscale=0.8, yscale=0.5] + \tkzInit[xmin=-5,xmax=5,xstep=1, + ymin=-5,ymax=5,ystep=1] + \tkzGrid + \tkzAxeXY + \tkzFct[domain=-5:-0.1,color=red,very thick]% + {1/ \x}; + \tkzFct[domain=0.1:5,color=red,very thick]% + {1/ \x}; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document} diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf new file mode 100644 index 0000000..455919c Binary files /dev/null and b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf differ diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex new file mode 100755 index 0000000..1e96867 --- /dev/null +++ b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex @@ -0,0 +1,97 @@ +\documentclass[12pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Terminale Maths complémentaires + \vfill + 30 secondes par calcul + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + Résoudre l'inéquation suivante + \[ + e^{2-3x} \leq 1 + \] +\end{frame} + +\begin{frame}{Calcul 2} + Calculer $P(E)$ + \begin{center} + \begin{tikzpicture}[xscale=2, grow=right] + \node {.} + child {node {$F$} + child {node {$E$} + edge from parent + node[below] {0.8} + } + child {node {$\overline{E}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[below] {0.3} + } + child[missing] {} + child { node {$\overline{F}$} + child {node {$E$} + edge from parent + node[below] {0.9} + } + child {node {$\overline{E}$} + edge from parent + node[above] {0.1} + } + edge from parent + node[above] {0.7} + } ; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}{Calcul 3} + Démontrer que + \[ F(x) = (2x+1)e^{-0.5x} + 10 + \] + est une primitive de + \[ + f(x) = (-x+1.5)e^{-0.5x} + \] +\end{frame} + +\begin{frame}[fragile]{Calcul 4} + Déterminer la quantité suivante + \[ + \lim_{\substack{x \rightarrow 0 \\ <}} \frac{1}{x}= + \] + \begin{center} + \begin{tikzpicture}[xscale=0.8, yscale=0.5] + \tkzInit[xmin=-5,xmax=5,xstep=1, + ymin=-5,ymax=5,ystep=1] + \tkzGrid + \tkzAxeXY + \tkzFct[domain=-5:-0.1,color=red,very thick]% + {1/ \x}; + \tkzFct[domain=0.1:5,color=red,very thick]% + {1/ \x}; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document}