diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf
new file mode 100644
index 0000000..1aa4e4f
Binary files /dev/null and b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.pdf differ
diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex
new file mode 100755
index 0000000..8e729a8
--- /dev/null
+++ b/Complementaire/Questions_Flashs/P5/QF_21_05_03-1.tex
@@ -0,0 +1,98 @@
+\documentclass[12pt]{classPres}
+\usepackage{tkz-fct}
+
+\author{}
+\title{}
+\date{}
+
+\begin{document}
+\begin{frame}{Questions flashs}
+    \begin{center}
+        \vfill
+        Terminale Maths complémentaires
+        \vfill
+        30 secondes par calcul
+        \vfill
+        \tiny \jobname
+    \end{center}
+\end{frame}
+
+\begin{frame}{Calcul 1}
+    Résoudre l'inéquation suivante
+    \[
+        e^{2-3x} \leq e^{5}
+    \]
+\end{frame}
+
+\begin{frame}{Calcul 2}
+    Calculer $P(E\cap F)$
+    \begin{center}
+        \begin{tikzpicture}[xscale=2, grow=right]
+            \node {.} 
+            child {node {$F$}
+                child {node {$E$} 
+                    edge from parent
+                    node[below] {0.8}
+                }
+                child {node {$\overline{E}$}
+                    edge from parent
+                    node[above] {0.2}
+                } 
+                edge from parent
+                node[below] {0.3}
+            }
+            child[missing] {}
+            child { node {$\overline{F}$}
+                child {node {$E$}
+                    edge from parent
+                    node[below] {0.9}
+                }
+                child {node {$\overline{E}$}
+                    edge from parent
+                    node[above] {0.1}
+                } 
+                edge from parent
+                node[above] {0.7}
+            } ;
+        \end{tikzpicture}
+    \end{center}
+\end{frame}
+
+\begin{frame}{Calcul 3}
+    Vérifier que 
+    \[ 
+        F(x) = (x+1)e^{-x^2} + \frac{2}{3}
+    \]
+    est une primitive de 
+    \[
+        f(x) = (-2x^2 -2x + 1)e^{-x^2}
+    \]
+\end{frame}
+
+\begin{frame}[fragile]{Calcul 4}
+    Déterminer la quantité suivante
+    \[
+        \lim_{\substack{x \rightarrow 0 \\ >}} \frac{1}{x}= 
+    \]
+    \begin{center}
+    \begin{tikzpicture}[xscale=0.8, yscale=0.5]
+        \tkzInit[xmin=-5,xmax=5,xstep=1,
+        ymin=-5,ymax=5,ystep=1]
+        \tkzGrid
+        \tkzAxeXY
+        \tkzFct[domain=-5:-0.1,color=red,very thick]%
+        {1/ \x};
+        \tkzFct[domain=0.1:5,color=red,very thick]%
+        {1/ \x};
+    \end{tikzpicture}
+    \end{center}
+\end{frame}
+
+\begin{frame}{Fin}
+    \begin{center}
+        On retourne son papier.
+    \end{center}
+\end{frame}
+
+
+\end{document}
diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf
new file mode 100644
index 0000000..455919c
Binary files /dev/null and b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.pdf differ
diff --git a/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex
new file mode 100755
index 0000000..1e96867
--- /dev/null
+++ b/Complementaire/Questions_Flashs/P5/QF_21_05_03-2.tex
@@ -0,0 +1,97 @@
+\documentclass[12pt]{classPres}
+\usepackage{tkz-fct}
+
+\author{}
+\title{}
+\date{}
+
+\begin{document}
+\begin{frame}{Questions flashs}
+    \begin{center}
+        \vfill
+        Terminale Maths complémentaires
+        \vfill
+        30 secondes par calcul
+        \vfill
+        \tiny \jobname
+    \end{center}
+\end{frame}
+
+\begin{frame}{Calcul 1}
+    Résoudre l'inéquation suivante
+    \[
+        e^{2-3x} \leq 1
+    \]
+\end{frame}
+
+\begin{frame}{Calcul 2}
+    Calculer $P(E)$
+    \begin{center}
+        \begin{tikzpicture}[xscale=2, grow=right]
+            \node {.} 
+            child {node {$F$}
+                child {node {$E$} 
+                    edge from parent
+                    node[below] {0.8}
+                }
+                child {node {$\overline{E}$}
+                    edge from parent
+                    node[above] {0.2}
+                } 
+                edge from parent
+                node[below] {0.3}
+            }
+            child[missing] {}
+            child { node {$\overline{F}$}
+                child {node {$E$}
+                    edge from parent
+                    node[below] {0.9}
+                }
+                child {node {$\overline{E}$}
+                    edge from parent
+                    node[above] {0.1}
+                } 
+                edge from parent
+                node[above] {0.7}
+            } ;
+        \end{tikzpicture}
+    \end{center}
+\end{frame}
+
+\begin{frame}{Calcul 3}
+    Démontrer que 
+    \[ F(x) = (2x+1)e^{-0.5x} + 10
+    \]
+    est une primitive de 
+    \[
+        f(x) = (-x+1.5)e^{-0.5x}
+    \]
+\end{frame}
+
+\begin{frame}[fragile]{Calcul 4}
+    Déterminer la quantité suivante
+    \[
+        \lim_{\substack{x \rightarrow 0 \\ <}} \frac{1}{x}= 
+    \]
+    \begin{center}
+    \begin{tikzpicture}[xscale=0.8, yscale=0.5]
+        \tkzInit[xmin=-5,xmax=5,xstep=1,
+        ymin=-5,ymax=5,ystep=1]
+        \tkzGrid
+        \tkzAxeXY
+        \tkzFct[domain=-5:-0.1,color=red,very thick]%
+        {1/ \x};
+        \tkzFct[domain=0.1:5,color=red,very thick]%
+        {1/ \x};
+    \end{tikzpicture}
+    \end{center}
+\end{frame}
+
+\begin{frame}{Fin}
+    \begin{center}
+        On retourne son papier.
+    \end{center}
+\end{frame}
+
+
+\end{document}