From 7029b0a2abbb98abefd577e9c65360e098168ffa Mon Sep 17 00:00:00 2001 From: Bertrand Benjamin Date: Mon, 23 Nov 2020 11:02:33 +0100 Subject: [PATCH] Fix: noms des fonctions --- .../2E_racine_factoriser.pdf | Bin 54126 -> 54123 bytes TST/05_Etude_Polynomes/exercises.tex | 4 ++-- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/TST/05_Etude_Polynomes/2E_racine_factoriser.pdf b/TST/05_Etude_Polynomes/2E_racine_factoriser.pdf index c829d91055298ca7c3b3c2989a06e5ea2f9a2ff9..30fab96e4c3b63bbea0cba152a661d5f37052107 100644 GIT binary patch delta 2853 zcmV+=3)=MVrUUDy1F%U30W_0g1So&)TuG1HMi##Jui%lwSmoN606~D6*g=c{Gn4eq z?E_n)+w!QTwj_3(e?PCdiA5GSiBcPg;RB^+saW;a?|t=X96SU#_~i!IuZVDiS%8t? zg1|*nCRnh8yZ$@B|8n!s+nd*KIS&XyMhF_*ehjEajLSe{hJ+@;?J{^DzWIMTqb!Vf zGor%9YB7^xJeyNRLNfbs`wpHgl;j#FmW(i2UeibWZ^5(Q+}?b-fz`l25)gPC);xWz z(!t{K=KTj8EaBce_zg2U_%j{(7%)wdVgf#|gFkNmJJq%YJeV@-?)&FECdhNV-ab9S z=1<@1DQhg$3JaBiK}J$(*ExUZ0={q>%!#%S%oh6VGTt0kcNkMx=bUmJuH$|7VHYh{ zo8rr|`0%t{|FyYel0O!I*(a;#Xmcp;C#!vJqNO7Yi9?i0BwuGR2LTEd%qc@AmmhJ5 zynahaWh(@JK;cF@^rId5`mL_q7oeQt_8k^D8{tgBkXF1H^VK(nG`xQ@2eD?W!ymIt z%cPVb%xK4~3K^`6`~QHsC=I!ty=_7Y%V4z$32&Pb)QFo8O+OVwXu20ywyv2NjVLEz zB?57sTL~Smjt8GC2{r@tAx_kX8l{i3#K$_6MQnJP;9=z)x}hs4@=;8Y2J29qAwo<& z^cf?|(1!yG4`-%`e6@cBkVQ4=7@k3b!rT%>2+ovkez+BU@@Y`~?r&C}R3D4$p~6ZOCzWG2DheH@C)-RP3T2PjK6`RvKbT)zE({1pZQ(Vt~s_WTxxE;PyU1AFrQ6IWpU@n&b^>azmlbnv z2q;VfECxVk`syhmZCJUmv3M!5XQeygo3Zzfru3Z5mI@|c~c`@>hlu}Bk!NDn| zew$GdmSxhXU9^9%RY)^}%lrE+d>1&J$Lq3A`kd^YG20}&evFcRIv1fh{3-j}I~ZG( zZQf!k4Gh9tO$G1g0^{(vD4XgzTF1%G;{^g@43iyRpb?j4$nfTM5Gj%UdA$q(B)jiO z8?4|MUSkkZy6R*TSIgAA(o7mfsyAK>#DqD&fb7d$tTlfWvX)R-53VWz9Vn)c!IdFN zaSuw;UtQk;037h5!NRO+|`u!Wu+3W>!_KWaKe;;F}y~fPijajEmgk#LYZ_HJ| zoLThVvndH^%+Rw1J63i3hL`9@@qPUl@?Eer!7uK;#7j z>8FYKWe>K+>6nv)R9P?Ptc)7s;L@`m2QUt-+kN|D9BFB~iIB@4P+ac>SzPlt3HQ-^ zEypfuc+&_Ikoo~SIv!*97d3vG`*PYL^$34yJ9WgO`RGgHOUqg!qWg+kS_2KD7c@)< zP`qjcbZ6AilP%g(MAIh1q2Bf^&kB^qnZlvDTNOx|L>v_7fKsc#`$-fiz_rzP1)inA zhh7B|+SK2oO@D9p*#T66kXn@|c~yDWYPV}jQz9y5zv|VsGl+ksqN#W5Fb~oCc#?nT z)`f%tAZJ64I{*jyw$A{T;yT}31LB000w~$IDu!xSNv9zwZAERn2vgAdA`JA2d_#tu zcqiYG11Iia8hSF{FsdO*bcX>Dys~@;j zvW!SaJnW*UPb(WZ+QS&pmO2n!hFO2L1C&kmFZyO9eT#cgYLV{)CcA%-C$rF*J=Vs`9U%^@vXx5=~paWUeKaqMaZX4zNkol-qk zh4yNDx*N>~>8E=rplUnsPeU9VqjDtpH(DY2RNaxyQZAO)4tPFFCB%t9{(& zfv?=ZAENtp93`dfvdLBtn=WzMpvJF%_%qD@CLyw*_Ju4tjK|_r^H`AQ5oMh;mcfw6 z^yHmh@R>tmunWK}-}l=zA02;v?b~^O2ArB$EmfPoelGnW)leR0R$f@JYjGvRu`jzt^8JL5%XtH(<3B zYwWzkTsi14R}MyX<{F2&Z1hnTRapm6BWXk@;vSLvM|VenH>E0u7_Waf?bSe}5p6pm zwqtV)z40G=^cDdur~$Uk_VGU3TkZ9?SLIgM4cL`NfZ|;0OR}op9|6V~#ZcvqlS9pJ zpwa|OCIwrk#&&u*lTl@9hY@E)us0YL0;c8mT72&*Yb-eo-eBJmwC*(!+YP6ugf!O< zM?Jhj=_5I9P^ku*r;>lLKsM;*n6X{*^r~+sijD(B*&3t>3^e3yWIF*+g&HwEmwR!p z%(2FX!0fBik_=&*UIq}n#M#gJFQ<@!IlQwyj7`-ZhWl32d+0N;Df~L!Zf9>t4BSp% zO9k#_`TFccj&6j9vQS_>0)=&PdW&tcyN~<$z2|N$MiD=rQ9gfok3K|&s(0C~zW-^! z%j^T{QEK2(h&D(uG6w8rOMBXuG3`i>dm1P@)+sPjnDc_b$#i!?M#oz+;@zelwb%X z7(&U_|C54I6lMwKrQiPpofPhhv+ECWvnw()F)=VQGB_(RF()uECn*XqO>bmGVRU66 zC`39kFfuSPF)}kTF)%VRIJ1YtOb$adMKMM=Gej^pFf&FmLNGK#G)6)&GB`spH$^c* zLpe4+AUrfhF-ABuL@+imGe$8&Ff>CnMnW($I72WuMKMA{IX06P(m8)OPJ>YpMd3S6 zL@{)ih5}iU%RZrZ9~e zQ&Lp+nUm?;x0$_qLl(OAhNVOxC6PipuyE1u5h=s|^&OS6fkobZ$E18<(R<%jlKj1D z)L_zLWxv;=4)us*7kht5pn@&zAc+(j(1XTbf6Pm=td8E z(T9EvU=TwX#t23+hH*@wgfjLqi#g0=0h?IFk|qEAf6G>S_O94X!MkdY74Mq8JbBmc z?asS_103QA$2h?$&Tx(kT;dAX_VFY8deA=>s3+J8Wo~41baInT(-;XcHwq;sMNdWw DuH8GQ delta 2853 zcmV+=3)=MSrUUM#1F%U30XLIT#3_GVTW{M&7Jm1y;3I{NCUd_OC>Gc@DK;q3-PUh$ zA83hol**DLiQe?z_Y801ki(lq$pN;=10{1boH^I;d~+BaJO()U=?2%Yh;V~hfRW&W zz(rFgSg?b;{yV?^bn~yn8`4n&8Z?Gnf-qI0iG zKYgpGtg%olEK~*t8A+vG=bV2F_`+#0C)z$RTj;-+@#e6)!0Vsfx@KZDqMU%0 z2*h=6C3Ltt9(}ST*bLBzI8h&Jls?W9AL~#SvEgNchm~{ahOV5*M=?bjtV3~z2r>20 zXN)XE9}XxyoS7o>)e?U|7S*I2Qy}cnaalfGS*zv>7~+gwDugy=LKGsRM*|A%M_2vOwp1k_$HE9Tq~ zP?!W*41mn^)l+opdP+e|7DROwR2&ne#PkIfNT0%8y8=dZw((!{V&oesrIb#CgHuZV zJfk8k%cM`cXkUM;kY)sz_xD@)E^s)H*JYjbIoUg7wn=t#S#^KLVHq}eCj+33o3k1X%COf=9BQDF3;mzwHQX>2FdKmyncHfaU zSiv#8#vr0})yXEVmZ^EAnKX)2Z@dDiSK*ibe~g*-8Z&D*W}Pw-jxh_rF;@X| zX3=}krX-*-L(ev8HG*Cu*cYHFSYT-$@xf=M;K)XgOa`&~c6L}Wo(0(o6!&2{&j?wFy^YF}hq=SDAv{wYk@JSI3#iKn$0yx3Ele_ub zL%szMxge>@PC8p0OG%{!X)DR4U@v@9=+lD69eNH;N0C`VTtNUCMv<|pDKeo{+ECEd za{$YgDO8%2B7-Om!&SNh!K6!(rJIcp+4Uh>9A+Zi?pFI~rozK&yLlxJt&K~wN+g8m zTv~r8WA)p16&HR^b8c)#WVqcd?8aI<6bk33n`IFs9>G3%Xd4rJVL-zAvF%6zkrxc4 zpC;m$J=hkfV@?iIWxbfQGHQr}OV4^7z&NmO_w9>uq^0R5LN0qialI2{an0i-+(+-V z9J{FDO(RS|>IdlPc#Pd&)c9%c%V~$y6QqCb)Des3qc4dsEo+I0?kj3(4K#>e&@df9 z@v0Hfol!$iwrEQcO`8aZdfT%+D^M0^3Ww%yRUl;&aZsECO05F#CsCjP*H(Wk@GJ#B z_9~Fjrv4Uf`g^y}4xkEz)T%tmtIE4pyIoV75>YApRj;m{LHsKfO}$%(d5qS_lRSU7 zE+h;9IU91^0XWFFeFm@;*ZJNW5GSk@K*`2cF;ufkIt@W-D{9+Cn1a?$2a)Pbl)5NChg)ewTRseZ5z-EKa|i$mh17`vPGD*ID$zFzh& z*H)F=L$w>Zpi$hmW;Z6+DH~!KgmUSgs-Ku0J63Z@i`H%OVt-tWxMLi*YC&WmU9Mv%g7*EU0}UOAh0)_|!ZWDP-k$-dCRR(;rmr7MKS(u{huOHPyW9_oyt&^d zpQ2S3dm7=TaHfuzZaM)O>Szg*T?E@N`RZQc&9p=ixsLovDFqe%!s-i0E0BR(S=tSHja{uV=2=Jy<1rUFXo8cg`hTv?+ z<`{b8KlbP?0$5N3Y@6-VeYUsS>u+z$t*#reD~$lfxzv|rRlh$1j4_I#${Qz#n%zL9 z36@L>woZ-h^l&Dl%F+%a&WK=dFe(I0%k8!J-c#0Cau~e9z9VSeYaq58PEQGGt{skg zc!SbMa@wF$4Kz z<@N#hC^hgf#MqjUj)8mG(w?_vR6Ek+o)(IZbqb6Wu7|SPu~6kryMm9~=TEzj_E7-~ zE4=2uo1YY!sg9(++HrbT%(j%Lt`tg~Qog>FXN9N~WIkuKUL@=K(rx3J9+A867&$4$ z5J)kElB@qW1)~c{%*t!Oe*tx{?(DPZ4{@^yF*h+XG&40YlVQUf2r)M?GBh(aFtdci zOb$acGeI&#Ml?Y=H8e0cH$yozH$z4;IXOi*GB-FhF*PziAUrcOK{7)|G(kBvG%zd`D2j-^7qIs(_O8(_m^fo> z;tCwO0w=D+xB;Cxb{*#Ty@Mz3$(?-pq(m4|d@jK`o{&Uh;b#>d}A%_HloJBzCZi zG6JN~h$f`bj22|DhgP&9i*|G%hfd_tg#x z+Q*OVtD=7)jwka9Wo~41baEkOVQmU!Ze(v_Y6^37VRCeMa%E-;H8VCcFbX9lMNdWw DOORLi diff --git a/TST/05_Etude_Polynomes/exercises.tex b/TST/05_Etude_Polynomes/exercises.tex index 312ace2..6dda83d 100644 --- a/TST/05_Etude_Polynomes/exercises.tex +++ b/TST/05_Etude_Polynomes/exercises.tex @@ -132,7 +132,7 @@ h(x) = x^2 + 2x - 15 \] \begin{enumerate} - \item Tracer la représentation graphique de $f$. Conjecturer (lire sur le graphique) les valeurs des 2 racines. + \item Tracer la représentation graphique de $h$. Conjecturer (lire sur le graphique) les valeurs des 2 racines. \item Démontrer que les valeurs trouvées à la questions précédentes sont bien des racines de $h(x)$. \item Déterminer la forme factorisée de $h(x)$ \item En déduire, sans utiliser le graphique, le tableau de signe de $h(x)$. @@ -155,7 +155,7 @@ \end{enumerate} \item On veut factoriser puis étudier le signe de $g(x) = 0.1x^3 - 0.2x^2 - 0.5x + 0.6$. \begin{enumerate} - \item Tracer la courbe représentative de $f$ et trouver les racines de $g$ + \item Tracer la courbe représentative de $g$ et trouver les racines de $g$ \item Proposer une factorisation de $g$ en se basant sur les racines. \item Démontrer que cette factorisation est juste par un calcul. \item Étudier le signe de $g(x)$.