Feat: Cours sur les tests bayésiens
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
cec47c0073
commit
71b42ec995
BIN
Complementaire/02_Inference_Baysienne/2B_vocabulaire.pdf
Normal file
BIN
Complementaire/02_Inference_Baysienne/2B_vocabulaire.pdf
Normal file
Binary file not shown.
73
Complementaire/02_Inference_Baysienne/2B_vocabulaire.tex
Normal file
73
Complementaire/02_Inference_Baysienne/2B_vocabulaire.tex
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
\documentclass[a4paper,10pt]{article}
|
||||||
|
\usepackage{myXsim}
|
||||||
|
|
||||||
|
\author{Benjamin Bertrand}
|
||||||
|
\title{Probabilités conditionnelles - Cours}
|
||||||
|
\date{Mars 2021}
|
||||||
|
|
||||||
|
\pagestyle{empty}
|
||||||
|
|
||||||
|
\begin{document}
|
||||||
|
|
||||||
|
\maketitle
|
||||||
|
|
||||||
|
\setcounter{section}{1}
|
||||||
|
\section{Tests Bayésiens}
|
||||||
|
|
||||||
|
Un test bayésien permet d'affiner la vraisemblablité d'hypothèses. La vraisemblablité sont modélisées par des probabilités.
|
||||||
|
|
||||||
|
On part d'un \textbf{a priori} (notre évaluation de la vraisemblablité des hypothèses avant le test). Puis nous faisons le test ce qui permet d'ajuster la vraisemblablité des hypothèses. Nous obtenons un \textbf{a posteriori}.
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\includegraphics[scale=1]{./fig/test_baysien}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\subsection*{Test médical}
|
||||||
|
|
||||||
|
Étudions l'intérêt d'un test médical. Pour faire simple, on considèrera que l'on est soit \textbf{malade} soit pas malade et que le test donne deux résultats possibles \textbf{positif} ou négatif. On notera alors
|
||||||
|
\[
|
||||||
|
A = \left\{ \mbox{Malade} \right\} \qquad \qquad B = \left\{ \mbox{Test positif} \right\}
|
||||||
|
\]
|
||||||
|
\paragraph{Paramètres du test:}
|
||||||
|
\begin{itemize}
|
||||||
|
\item \textbf{Sensibilité}: la probabilité que le test soit positif sachant que l'on est malade
|
||||||
|
\[
|
||||||
|
P_A(B) = 0.9
|
||||||
|
\]
|
||||||
|
\item \textbf{Spécificité}: la probabilité que le test soit négatif sachant que l'on est pas malade
|
||||||
|
\[
|
||||||
|
P_{\overline{A}}(\overline{B}) = 0.99
|
||||||
|
\]
|
||||||
|
\end{itemize}
|
||||||
|
\paragraph{A priori:} on estime que 1\% de la population est malade. On appelle cela la \textbf{la prévalence} d'un maladie. On peut noter
|
||||||
|
\[
|
||||||
|
P(A) = 1\% = 0.01
|
||||||
|
\]
|
||||||
|
J'ai donc une chance sur 100 d'avoir cette maladie.
|
||||||
|
\paragraph{Mise en situation:} On fait un test qui est positif. Comment réévaluer la probabilité d'être malade? C'est à dire connaître
|
||||||
|
\[
|
||||||
|
P_B(A) = ?
|
||||||
|
\]
|
||||||
|
|
||||||
|
Imaginons une population de 1000 individus. En respectant les proportions, on peut construire le tableau des effectifs:
|
||||||
|
|
||||||
|
\begin{center}
|
||||||
|
\begin{tabular}{|*{4}{p{3cm}|}}
|
||||||
|
\hline
|
||||||
|
& Test positif ($B$) & Test négatif ($\overline{B}$) & Total \\
|
||||||
|
\hline
|
||||||
|
Malade ($A$) & & & \\
|
||||||
|
\hline
|
||||||
|
Pas malade ($\overline{A}$) & & & \\
|
||||||
|
\hline
|
||||||
|
Total & & & 1000 \\
|
||||||
|
\hline
|
||||||
|
\end{tabular}
|
||||||
|
\end{center}
|
||||||
|
|
||||||
|
\afaire{Compléter le tableau et calculer la probabilité cherchée}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
\end{document}
|
BIN
Complementaire/02_Inference_Baysienne/fig/test_baysien.png
Normal file
BIN
Complementaire/02_Inference_Baysienne/fig/test_baysien.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 6.6 KiB |
305
Complementaire/02_Inference_Baysienne/fig/test_baysien.svg
Normal file
305
Complementaire/02_Inference_Baysienne/fig/test_baysien.svg
Normal file
@ -0,0 +1,305 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="210mm"
|
||||||
|
height="297mm"
|
||||||
|
viewBox="0 0 210 297"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="1.0.2 (e86c870879, 2021-01-15)"
|
||||||
|
sodipodi:docname="test_baysien.svg">
|
||||||
|
<defs
|
||||||
|
id="defs2">
|
||||||
|
<marker
|
||||||
|
style="overflow:visible;"
|
||||||
|
id="Arrow1Lend"
|
||||||
|
refX="0.0"
|
||||||
|
refY="0.0"
|
||||||
|
orient="auto"
|
||||||
|
inkscape:stockid="Arrow1Lend"
|
||||||
|
inkscape:isstock="true">
|
||||||
|
<path
|
||||||
|
transform="scale(0.8) rotate(180) translate(12.5,0)"
|
||||||
|
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||||
|
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||||
|
id="path979" />
|
||||||
|
</marker>
|
||||||
|
<rect
|
||||||
|
x="39.900009"
|
||||||
|
y="49.821077"
|
||||||
|
width="27.87704"
|
||||||
|
height="24.134419"
|
||||||
|
id="rect923" />
|
||||||
|
<marker
|
||||||
|
style="overflow:visible"
|
||||||
|
id="Arrow1Lend-6"
|
||||||
|
refX="0"
|
||||||
|
refY="0"
|
||||||
|
orient="auto"
|
||||||
|
inkscape:stockid="Arrow1Lend"
|
||||||
|
inkscape:isstock="true">
|
||||||
|
<path
|
||||||
|
transform="matrix(-0.8,0,0,-0.8,-10,0)"
|
||||||
|
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||||
|
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||||
|
id="path979-2" />
|
||||||
|
</marker>
|
||||||
|
</defs>
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.4"
|
||||||
|
inkscape:cx="153.1464"
|
||||||
|
inkscape:cy="278.23514"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
inkscape:document-rotation="0"
|
||||||
|
showgrid="false"
|
||||||
|
inkscape:object-paths="true"
|
||||||
|
inkscape:snap-intersection-paths="true"
|
||||||
|
inkscape:snap-bbox="true"
|
||||||
|
inkscape:window-width="1340"
|
||||||
|
inkscape:window-height="1076"
|
||||||
|
inkscape:window-x="1080"
|
||||||
|
inkscape:window-y="376"
|
||||||
|
inkscape:window-maximized="0" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Calque 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1">
|
||||||
|
<g
|
||||||
|
id="g1419"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<g
|
||||||
|
id="g883">
|
||||||
|
<g
|
||||||
|
id="g879">
|
||||||
|
<rect
|
||||||
|
style="fill:#000000;fill-opacity:0.234171;stroke:#000000;stroke-width:0.417872;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="rect833"
|
||||||
|
width="8.3132381"
|
||||||
|
height="34.067429"
|
||||||
|
x="22.23222"
|
||||||
|
y="43.372341" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<rect
|
||||||
|
style="fill:#000000;fill-opacity:0.234171;stroke:#000000;stroke-width:0.417872;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="rect837"
|
||||||
|
width="8.3132372"
|
||||||
|
height="12.185174"
|
||||||
|
x="22.23222"
|
||||||
|
y="65.254593" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="26.389872"
|
||||||
|
y="55.583401"
|
||||||
|
id="text841"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan839"
|
||||||
|
x="26.389872"
|
||||||
|
y="55.583401"
|
||||||
|
style="stroke-width:0.264583">A</tspan></text>
|
||||||
|
<g
|
||||||
|
id="g872"
|
||||||
|
transform="translate(0.3939051)">
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="26.006714"
|
||||||
|
y="73.993782"
|
||||||
|
id="text841-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan839-6"
|
||||||
|
x="26.006714"
|
||||||
|
y="73.993782"
|
||||||
|
style="stroke-width:0.264583">A</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 24.570321,70.208155 h 2.758438"
|
||||||
|
id="path867" />
|
||||||
|
</g>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="26.57074"
|
||||||
|
y="82.621117"
|
||||||
|
id="text876"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan874"
|
||||||
|
x="26.57074"
|
||||||
|
y="82.621117"
|
||||||
|
style="stroke-width:0.264583">A priori</tspan></text>
|
||||||
|
<g
|
||||||
|
id="g895"
|
||||||
|
transform="translate(56.576346)">
|
||||||
|
<g
|
||||||
|
id="g893">
|
||||||
|
<rect
|
||||||
|
style="fill:#000000;fill-opacity:0.234171;stroke:#000000;stroke-width:0.417872;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="rect891"
|
||||||
|
width="8.3132381"
|
||||||
|
height="34.067429"
|
||||||
|
x="22.23222"
|
||||||
|
y="43.372341" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<rect
|
||||||
|
style="fill:#000000;fill-opacity:0.234171;stroke:#000000;stroke-width:0.417872;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="rect897"
|
||||||
|
width="8.3132401"
|
||||||
|
height="22.903248"
|
||||||
|
x="78.808563"
|
||||||
|
y="54.536518" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="82.966217"
|
||||||
|
y="50.354069"
|
||||||
|
id="text901"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan899"
|
||||||
|
x="82.966217"
|
||||||
|
y="50.354069"
|
||||||
|
style="stroke-width:0.264583">A</tspan></text>
|
||||||
|
<g
|
||||||
|
id="g919"
|
||||||
|
transform="translate(0,-4.4344654)">
|
||||||
|
<g
|
||||||
|
id="g909"
|
||||||
|
transform="translate(56.970251)">
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="26.006714"
|
||||||
|
y="73.993782"
|
||||||
|
id="text905"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan903"
|
||||||
|
x="26.006714"
|
||||||
|
y="73.993782"
|
||||||
|
style="stroke-width:0.264583">A</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||||
|
d="m 24.570321,70.208155 h 2.758438"
|
||||||
|
id="path907" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="83.147087"
|
||||||
|
y="82.621117"
|
||||||
|
id="text913"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan911"
|
||||||
|
x="83.147087"
|
||||||
|
y="82.621117"
|
||||||
|
style="stroke-width:0.264583">A posteriori</tspan></text>
|
||||||
|
<g
|
||||||
|
id="g972"
|
||||||
|
transform="translate(1.2071857)">
|
||||||
|
<g
|
||||||
|
id="g889"
|
||||||
|
transform="translate(13.502299)">
|
||||||
|
<g
|
||||||
|
id="g887">
|
||||||
|
<rect
|
||||||
|
style="fill:#000000;fill-opacity:0.234171;stroke:#000000;stroke-width:0.417872;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||||
|
id="rect885"
|
||||||
|
width="35.470623"
|
||||||
|
height="34.067432"
|
||||||
|
x="22.23222"
|
||||||
|
y="43.372341" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
id="text921"
|
||||||
|
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;white-space:pre;shape-inside:url(#rect923)"
|
||||||
|
transform="translate(-0.3969422,5.2971823)"><tspan
|
||||||
|
x="49.67065"
|
||||||
|
y="53.565817"><tspan>Test
|
||||||
|
</tspan></tspan><tspan
|
||||||
|
x="45.502432"
|
||||||
|
y="58.857481"><tspan>Baysien</tspan></tspan></text>
|
||||||
|
</g>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:2.82222px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="19.368959"
|
||||||
|
y="77.328163"
|
||||||
|
id="text929"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan927"
|
||||||
|
x="19.368959"
|
||||||
|
y="77.328163"
|
||||||
|
style="font-size:2.82222px;stroke-width:0.264583">0%</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:2.82222px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="17.573378"
|
||||||
|
y="45.393833"
|
||||||
|
id="text933"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan931"
|
||||||
|
x="17.573378"
|
||||||
|
y="45.393833"
|
||||||
|
style="font-size:2.82222px;stroke-width:0.264583">100%</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:2.82222px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="89.76564"
|
||||||
|
y="77.328163"
|
||||||
|
id="text929-7"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan927-5"
|
||||||
|
x="89.76564"
|
||||||
|
y="77.328163"
|
||||||
|
style="font-size:2.82222px;stroke-width:0.264583">0%</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-size:2.82222px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
||||||
|
x="91.437202"
|
||||||
|
y="45.393833"
|
||||||
|
id="text933-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan931-5"
|
||||||
|
x="91.437202"
|
||||||
|
y="45.393833"
|
||||||
|
style="font-size:2.82222px;stroke-width:0.264583">100%</tspan></text>
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||||
|
d="m 30.545458,60.406057 h 6.396246"
|
||||||
|
id="path974" />
|
||||||
|
<path
|
||||||
|
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend-6)"
|
||||||
|
d="m 72.412327,60.11168 h 6.396246"
|
||||||
|
id="path974-9" />
|
||||||
|
</g>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 11 KiB |
@ -2,7 +2,7 @@ Inférence Bayésienne
|
|||||||
####################
|
####################
|
||||||
|
|
||||||
:date: 2021-03-15
|
:date: 2021-03-15
|
||||||
:modified: 2021-03-15
|
:modified: 2021-03-16
|
||||||
:authors: Benjamin Bertrand
|
:authors: Benjamin Bertrand
|
||||||
:tags: Probabilité, Bayes
|
:tags: Probabilité, Bayes
|
||||||
:category: Complementaire
|
:category: Complementaire
|
||||||
@ -36,7 +36,11 @@ En groupe, justification des valeurs avancées dans le document. Explications po
|
|||||||
|
|
||||||
Conclusion sur l'utilité d'un test comme outils pour affiner un a priori.
|
Conclusion sur l'utilité d'un test comme outils pour affiner un a priori.
|
||||||
|
|
||||||
Bilan: Reprise d'un exemple traité et vocabulaire associé aux tests
|
Bilan: Reprise d'un exemple traité et vocabulaire associé aux tests. On reprendra le schéma des tests pour représenter la mise à jour de la vraisemblance.
|
||||||
|
|
||||||
|
.. image:: ./2B_vocabulaire.pdf
|
||||||
|
:height: 200px
|
||||||
|
:alt: Vocabulaire autour des tests
|
||||||
|
|
||||||
Étape 3: Application aux tests ADN
|
Étape 3: Application aux tests ADN
|
||||||
==================================
|
==================================
|
||||||
|
Loading…
Reference in New Issue
Block a user