Feat: QF pour les sti2d

This commit is contained in:
Bertrand Benjamin 2021-01-09 09:29:31 +01:00
parent aa834d254f
commit 7c05fad2fa
4 changed files with 102 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,50 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Calculer la primitive de
\[
f(x) = \frac{1}{x^2} - 2x + 1
\]
\end{frame}
\begin{frame}{Calcul 2}
Soit $f(x) = e^{-x^2}$ et une primitive $F(x) = 2xe^{-x^2}$. Calculer la quantité suivante
\[
\int_{0}^{2} e^{-x^2} \; dx =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
Dériver la fonction suivante
\[
f(x) = \cos(x)e^{2x}
\]
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,52 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Calculer la primitive de
\[
f(x) = \frac{1}{x^2} - 3x^2 + x^9
\]
\end{frame}
\begin{frame}{Calcul 2}
Soit $f(x) = e^{x^2 + x}$\\
une primitive $F(x) = (2x + 1)e^{x^2 + x}$\\
Calculer la quantité suivante
\[
\int_{0}^{2} e^{x^2-x} \; dx =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
Dériver la fonction suivante
\[
f(x) = (x+1)e^{-4x}
\]
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}