diff --git a/TST_sti2d/Questions_Flash/P4/QF_21_03_22-2.pdf b/TST_sti2d/Questions_Flash/P4/QF_21_03_22-2.pdf new file mode 100644 index 0000000..215f453 Binary files /dev/null and b/TST_sti2d/Questions_Flash/P4/QF_21_03_22-2.pdf differ diff --git a/TST_sti2d/Questions_Flash/P4/QF_21_03_22-2.tex b/TST_sti2d/Questions_Flash/P4/QF_21_03_22-2.tex new file mode 100755 index 0000000..a58ce1e --- /dev/null +++ b/TST_sti2d/Questions_Flash/P4/QF_21_03_22-2.tex @@ -0,0 +1,51 @@ +\documentclass[14pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Terminale ST \\ Spé sti2d + \vfill + 30 secondes par calcul + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 1} + Résoudre l'équation différentielle + \[ + y' + 2y = 0 + \] +\end{frame} + +\begin{frame}{Calcul 2} + Soit $f(x) = K e^{4x} - 12$. + + On suppose que $f(1) = 2 $. + + Retrouver la valeur de $K$. + + \vfill +\end{frame} + +\begin{frame}{Calcul 3} + Soit $z_1 = 3e^{i\frac{\pi}{2}}$ + + Déterminer la forme algébrique de $z_1$. + \vfill +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document}