Feat: QF pour les complémentaires
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
be0a5c1dcb
commit
b48f7813b3
BIN
Complementaire/Questions_Flashs/P4/QF_21_03_29-1.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P4/QF_21_03_29-1.pdf
Normal file
Binary file not shown.
65
Complementaire/Questions_Flashs/P4/QF_21_03_29-1.tex
Executable file
65
Complementaire/Questions_Flashs/P4/QF_21_03_29-1.tex
Executable file
@ -0,0 +1,65 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Déterminer la primitive de
|
||||
\[
|
||||
f(x) = \frac{1}{x^2} + 5x + x^4
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Dériver la fonction suivante
|
||||
\[
|
||||
f(x) = e^{5x + 1}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Tracer le tableau de signe de
|
||||
\[
|
||||
f(x) = (4 - 2x) e^{-6x}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x \rightarrow -\infty} -2x^2 + 4x + 1 =
|
||||
\]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain=-5:5,color=red,very thick]%
|
||||
{-2*\x**2 + 4*\x + 1};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
Complementaire/Questions_Flashs/P4/QF_21_03_29-2.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P4/QF_21_03_29-2.pdf
Normal file
Binary file not shown.
65
Complementaire/Questions_Flashs/P4/QF_21_03_29-2.tex
Executable file
65
Complementaire/Questions_Flashs/P4/QF_21_03_29-2.tex
Executable file
@ -0,0 +1,65 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
Déterminer la primitive de
|
||||
\[
|
||||
f(x) = \frac{-2}{x^2} + \frac{1}{2}x + x^{9}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Dériver la fonction suivante
|
||||
\[
|
||||
f(x) = e^{-x^2}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Tracer le tableau de signe de
|
||||
\[
|
||||
f(x) = \frac{e^{2x}}{x+1}
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
Déterminer la quantité suivante
|
||||
\[
|
||||
\lim_{x \rightarrow +\infty} \frac{1}{x} =
|
||||
\]
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\tkzFct[domain=-5:5,color=red,very thick]%
|
||||
{1/x};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user