Feat: QF pour les sti2d
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
1ee12a026a
commit
de6f6cd4e7
BIN
TST_sti2d/Questions_Flash/P3/QF_21_01_04-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P3/QF_21_01_04-1.pdf
Normal file
Binary file not shown.
50
TST_sti2d/Questions_Flash/P3/QF_21_01_04-1.tex
Executable file
50
TST_sti2d/Questions_Flash/P3/QF_21_01_04-1.tex
Executable file
@ -0,0 +1,50 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
Calculer la primitive de
|
||||
\[
|
||||
f(x) = 8x^3 - 6x^2 + 1
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit $f(x) = 4e^{2x}$ et une primitive $F(x) = 2e^{2x}$. Calculer la quantité suivante
|
||||
\[
|
||||
\int_{1}^{2} 4e^{2x} \; dx =
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Dériver la fonction suivante
|
||||
\[
|
||||
f(x) = (2x+1)e^x
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P3/QF_21_01_04-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P3/QF_21_01_04-2.pdf
Normal file
Binary file not shown.
52
TST_sti2d/Questions_Flash/P3/QF_21_01_04-2.tex
Executable file
52
TST_sti2d/Questions_Flash/P3/QF_21_01_04-2.tex
Executable file
@ -0,0 +1,52 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
Calculer la primitive de
|
||||
\[
|
||||
f(x) = -0.4x^3 + 6x^2 + \cos(x)
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit $f(x) = 0.1e^{-0.1x}$ et une primitive $F(x) = -e^{-0.1x}$.
|
||||
|
||||
Calculer la quantité suivante
|
||||
\[
|
||||
\int_{0}^{10} 0.1e^{-0.1x} \; dx =
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Dériver la fonction suivante
|
||||
\[
|
||||
f(x) = x^2\times e^x
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user