From 04b6545631b030b0d05793fb8cc7960d1db81289 Mon Sep 17 00:00:00 2001 From: Bertrand Benjamin Date: Thu, 8 Apr 2021 12:12:13 +0200 Subject: [PATCH] Feat: sujet dS8 pour les TST_sti2d --- TST_sti2d/DS/DS_21_07_08/01_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/02_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/03_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/04_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/05_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/06_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/07_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/08_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/09_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/10_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/11_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/12_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/13_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/14_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/15_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/16_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/17_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/18_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/19_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/20_210408_DS8.tex | 136 +++++++++++++++ TST_sti2d/DS/DS_21_07_08/all_210408_DS8.pdf | Bin 0 -> 199390 bytes .../DS/DS_21_07_08/corr_01_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_02_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_03_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_04_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_05_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_06_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_07_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_08_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_09_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_10_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_11_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_12_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_13_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_14_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_15_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_16_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_17_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_18_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_19_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_20_210408_DS8.tex | 136 +++++++++++++++ .../DS/DS_21_07_08/corr_all_210408_DS8.pdf | Bin 0 -> 268157 bytes TST_sti2d/DS/DS_21_07_08/tpl_210408_DS8.tex | 165 ++++++++++++++++++ 43 files changed, 5605 insertions(+) create mode 100644 TST_sti2d/DS/DS_21_07_08/01_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/02_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/03_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/04_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/05_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/06_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/07_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/08_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/09_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/10_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/11_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/12_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/13_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/14_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/15_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/16_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/17_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/18_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/19_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/20_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/all_210408_DS8.pdf create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_01_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_02_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_03_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_04_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_05_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_06_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_07_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_08_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_09_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_10_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_11_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_12_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_13_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_14_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_15_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_16_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_17_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_18_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_19_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_20_210408_DS8.tex create mode 100644 TST_sti2d/DS/DS_21_07_08/corr_all_210408_DS8.pdf create mode 100644 TST_sti2d/DS/DS_21_07_08/tpl_210408_DS8.tex diff --git a/TST_sti2d/DS/DS_21_07_08/01_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/01_210408_DS8.tex new file mode 100644 index 0000000..d3733db --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/01_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill BAHBAH Zakaria} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 4x^2 + 72x + 160\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{8x^2 + 72x + 160}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 8x^2 + 72x + 160$ + \begin{enumerate} + \item Démontrer que $x=- 4$ et $x=- 5$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 4) = 0\] + \[N(- 5) = 0\] + \item \[ + N(x) = 8(x - - 4)(x - - 5) + \] + \item + \[ + f'(x) = \frac{8(x - - 4)(x - - 5)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{2 + 8 i}{-9 + 3 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 10 \sqrt{3} - 10 i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 7 + 7 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{1}{15} - \frac{13 i}{15}$ + \item $z_2 = 20 e^{- \frac{i \pi}{6}}$ + \item $z_3 = 14 e^{\frac{i \pi}{3}}$ + \item $z_4 = 280 e^{\frac{i \pi}{6}} = 140 \sqrt{3} + 140 i = 243.0 + 140.0 i$ + \item $z_5 = \frac{10}{7} e^{- \frac{i \pi}{2}} = - \frac{10 i}{7} = - 1.43 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-17$~\degres C et les place dans une pièce à $16$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-3$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 16]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 16$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-17$~\degres C et que, au bout de $15$~min, elle est de $-3$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -33$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.04$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $13$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/02_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/02_210408_DS8.tex new file mode 100644 index 0000000..a5751e2 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/02_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill BENALI Ilyas} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 2.5x^2 + - 95x + 450\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{5x^2 + - 95x + 450}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 5x^2 - 95x + 450$ + \begin{enumerate} + \item Démontrer que $x=9$ et $x=10$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(9) = 0\] + \[N(10) = 0\] + \item \[ + N(x) = 5(x - 9)(x - 10) + \] + \item + \[ + f'(x) = \frac{5(x - 9)(x - 10)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{10 + 5 i}{-3 + 10 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = - 5 \sqrt{3} + 5 i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 8 \sqrt{2} - 8 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{20}{109} - \frac{115 i}{109}$ + \item $z_2 = 10 e^{\frac{5 i \pi}{6}}$ + \item $z_3 = 16 e^{- \frac{3 i \pi}{4}}$ + \item $z_4 = 160 e^{\frac{i \pi}{12}} = 40 \sqrt{2} + 40 \sqrt{6} + i \left(- 40 \sqrt{2} + 40 \sqrt{6}\right) = 155.0 + 41.4 i$ + \item $z_5 = \frac{5}{8} e^{\frac{19 i \pi}{12}} = - \frac{5 \sqrt{2}}{32} + \frac{5 \sqrt{6}}{32} + i \left(- \frac{5 \sqrt{6}}{32} - \frac{5 \sqrt{2}}{32}\right) = 0.162 - 0.604 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-17$~\degres C et les place dans une pièce à $17$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-1$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 17]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 17$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-17$~\degres C et que, au bout de $15$~min, elle est de $-1$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -34$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.04$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $14$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/03_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/03_210408_DS8.tex new file mode 100644 index 0000000..cabaf2d --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/03_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill BERNADAT Noah} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3.5x^2 + - 21x + - 196\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{7x^2 + - 21x + - 196}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 7x^2 - 21x - 196$ + \begin{enumerate} + \item Démontrer que $x=- 4$ et $x=7$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 4) = 0\] + \[N(7) = 0\] + \item \[ + N(x) = 7(x - - 4)(x - 7) + \] + \item + \[ + f'(x) = \frac{7(x - - 4)(x - 7)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{8 + 9 i}{-9 + 5 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = - 8 \sqrt{3} + 8 i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = -5 - 5 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{27}{106} - \frac{121 i}{106}$ + \item $z_2 = 16 e^{\frac{5 i \pi}{6}}$ + \item $z_3 = 10 e^{- \frac{2 i \pi}{3}}$ + \item $z_4 = 160 e^{\frac{i \pi}{6}} = 80 \sqrt{3} + 80 i = 139.0 + 80.0 i$ + \item $z_5 = \frac{8}{5} e^{\frac{3 i \pi}{2}} = - \frac{8 i}{5} = - 1.6 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-15$~\degres C et les place dans une pièce à $22$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-1$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 22]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 22$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-15$~\degres C et que, au bout de $15$~min, elle est de $-1$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -37$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.03$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $19$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/04_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/04_210408_DS8.tex new file mode 100644 index 0000000..747506d --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/04_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill BUDIN Nathan} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3.5x^2 + - 84x + 140\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{7x^2 + - 84x + 140}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 7x^2 - 84x + 140$ + \begin{enumerate} + \item Démontrer que $x=10$ et $x=2$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(10) = 0\] + \[N(2) = 0\] + \item \[ + N(x) = 7(x - 10)(x - 2) + \] + \item + \[ + f'(x) = \frac{7(x - 10)(x - 2)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{8 + 8 i}{-7 + 4 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 7 \sqrt{3} - 7 i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 2 \sqrt{3} + 2 i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{24}{65} - \frac{88 i}{65}$ + \item $z_2 = 14 e^{- \frac{i \pi}{6}}$ + \item $z_3 = 4 e^{\frac{5 i \pi}{6}}$ + \item $z_4 = 56 e^{\frac{2 i \pi}{3}} = -28 + 28 \sqrt{3} i = -28.0 + 48.5 i$ + \item $z_5 = \frac{7}{2} e^{- i \pi} = - \frac{7}{2} = -3.5$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-19$~\degres C et les place dans une pièce à $23$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $3$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 23]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 23$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-19$~\degres C et que, au bout de $15$~min, elle est de $3$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -42$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.05$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $20$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/05_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/05_210408_DS8.tex new file mode 100644 index 0000000..28263c9 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/05_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill CHION Léa} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 5x^2 + 130x + 300\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{10x^2 + 130x + 300}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 10x^2 + 130x + 300$ + \begin{enumerate} + \item Démontrer que $x=- 10$ et $x=- 3$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 10) = 0\] + \[N(- 3) = 0\] + \item \[ + N(x) = 10(x - - 10)(x - - 3) + \] + \item + \[ + f'(x) = \frac{10(x - - 10)(x - - 3)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{8 + 10 i}{-3 + 2 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = - \sqrt{2} - \sqrt{2} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 10 \sqrt{2} + 10 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{4}{13} - \frac{46 i}{13}$ + \item $z_2 = 2 e^{- \frac{3 i \pi}{4}}$ + \item $z_3 = 20 e^{\frac{3 i \pi}{4}}$ + \item $z_4 = 40 e^{0} = 40 = 40.0$ + \item $z_5 = \frac{1}{10} e^{- \frac{3 i \pi}{2}} = \frac{i}{10} = 0.1 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-20$~\degres C et les place dans une pièce à $24$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-3$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 24]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 24$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-20$~\degres C et que, au bout de $15$~min, elle est de $-3$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -44$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.03$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $21$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/06_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/06_210408_DS8.tex new file mode 100644 index 0000000..d58ccd3 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/06_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill CLAIN Avinash} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3.5x^2 + - 42x + - 280\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{7x^2 + - 42x + - 280}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 7x^2 - 42x - 280$ + \begin{enumerate} + \item Démontrer que $x=10$ et $x=- 4$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(10) = 0\] + \[N(- 4) = 0\] + \item \[ + N(x) = 7(x - 10)(x - - 4) + \] + \item + \[ + f'(x) = \frac{7(x - 10)(x - - 4)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{3 + 8 i}{-10 + 5 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 1 + \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = -3 + 3 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{2}{25} - \frac{19 i}{25}$ + \item $z_2 = 2 e^{\frac{i \pi}{3}}$ + \item $z_3 = 6 e^{\frac{2 i \pi}{3}}$ + \item $z_4 = 12 e^{i \pi} = -12 = -12.0$ + \item $z_5 = \frac{1}{3} e^{- \frac{i \pi}{3}} = \frac{1}{6} - \frac{\sqrt{3} i}{6} = 0.167 - 0.289 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-20$~\degres C et les place dans une pièce à $17$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $4$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 17]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 17$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-20$~\degres C et que, au bout de $15$~min, elle est de $4$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -37$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.07$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $14$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/07_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/07_210408_DS8.tex new file mode 100644 index 0000000..04a5e00 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/07_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill COUBAT Alexis} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 5x^2 + 70x + 60\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{10x^2 + 70x + 60}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 10x^2 + 70x + 60$ + \begin{enumerate} + \item Démontrer que $x=- 6$ et $x=- 1$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 6) = 0\] + \[N(- 1) = 0\] + \item \[ + N(x) = 10(x - - 6)(x - - 1) + \] + \item + \[ + f'(x) = \frac{10(x - - 6)(x - - 1)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{3 + 5 i}{-4 + 5 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 5 + 5 \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 4 \sqrt{3} - 4 i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{13}{41} - \frac{35 i}{41}$ + \item $z_2 = 10 e^{\frac{i \pi}{3}}$ + \item $z_3 = 8 e^{- \frac{5 i \pi}{6}}$ + \item $z_4 = 80 e^{- \frac{i \pi}{2}} = - 80 i = - 80.0 i$ + \item $z_5 = \frac{5}{4} e^{\frac{7 i \pi}{6}} = - \frac{5 \sqrt{3}}{8} - \frac{5 i}{8} = -1.08 - 0.625 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-20$~\degres C et les place dans une pièce à $21$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $4$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 21]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 21$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-20$~\degres C et que, au bout de $15$~min, elle est de $4$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -41$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.06$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $18$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/08_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/08_210408_DS8.tex new file mode 100644 index 0000000..d939261 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/08_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill EVRARD Jules} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 5x^2 + 0x + - 360\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{10x^2 + 0x + - 360}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 10x^2 - 360$ + \begin{enumerate} + \item Démontrer que $x=6$ et $x=- 6$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(6) = 0\] + \[N(- 6) = 0\] + \item \[ + N(x) = 10(x - 6)(x - - 6) + \] + \item + \[ + f'(x) = \frac{10(x - 6)(x - - 6)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{10 + 8 i}{-5 + 7 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 9 \sqrt{2} - 9 \sqrt{2} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 7 \sqrt{3} + 7 i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{3}{37} - \frac{55 i}{37}$ + \item $z_2 = 18 e^{- \frac{i \pi}{4}}$ + \item $z_3 = 14 e^{\frac{i \pi}{6}}$ + \item $z_4 = 252 e^{- \frac{i \pi}{12}} = 63 \sqrt{2} + 63 \sqrt{6} + i \left(- 63 \sqrt{6} + 63 \sqrt{2}\right) = 243.0 - 65.2 i$ + \item $z_5 = \frac{9}{7} e^{- \frac{5 i \pi}{12}} = - \frac{9 \sqrt{2}}{28} + \frac{9 \sqrt{6}}{28} + i \left(- \frac{9 \sqrt{6}}{28} - \frac{9 \sqrt{2}}{28}\right) = 0.333 - 1.24 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-15$~\degres C et les place dans une pièce à $17$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-1$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 17]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 17$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-15$~\degres C et que, au bout de $15$~min, elle est de $-1$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -32$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.04$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $14$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/09_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/09_210408_DS8.tex new file mode 100644 index 0000000..31ce9a1 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/09_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill HADJRAS Mohcine} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3x^2 + 78x + 240\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{6x^2 + 78x + 240}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 6x^2 + 78x + 240$ + \begin{enumerate} + \item Démontrer que $x=- 5$ et $x=- 8$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 5) = 0\] + \[N(- 8) = 0\] + \item \[ + N(x) = 6(x - - 5)(x - - 8) + \] + \item + \[ + f'(x) = \frac{6(x - - 5)(x - - 8)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{10 + 5 i}{-6 + 4 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 1 + \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = -7 - 7 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{10}{13} - \frac{35 i}{26}$ + \item $z_2 = 2 e^{\frac{i \pi}{3}}$ + \item $z_3 = 14 e^{- \frac{2 i \pi}{3}}$ + \item $z_4 = 28 e^{- \frac{i \pi}{3}} = 14 - 14 \sqrt{3} i = 14.0 - 24.3 i$ + \item $z_5 = \frac{1}{7} e^{i \pi} = - \frac{1}{7} = -0.143$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-18$~\degres C et les place dans une pièce à $25$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $4$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 25]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 25$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-18$~\degres C et que, au bout de $15$~min, elle est de $4$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -43$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.05$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $22$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/10_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/10_210408_DS8.tex new file mode 100644 index 0000000..31686df --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/10_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill HENRIST Maxime} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 4.5x^2 + - 27x + - 36\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{9x^2 + - 27x + - 36}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 9x^2 - 27x - 36$ + \begin{enumerate} + \item Démontrer que $x=4$ et $x=- 1$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(4) = 0\] + \[N(- 1) = 0\] + \item \[ + N(x) = 9(x - 4)(x - - 1) + \] + \item + \[ + f'(x) = \frac{9(x - 4)(x - - 1)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{6 + 5 i}{-6 + 5 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 8 \sqrt{3} - 8 i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 5 - 5 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{11}{61} - \frac{60 i}{61}$ + \item $z_2 = 16 e^{- \frac{i \pi}{6}}$ + \item $z_3 = 10 e^{- \frac{i \pi}{3}}$ + \item $z_4 = 160 e^{- \frac{i \pi}{2}} = - 160 i = - 160.0 i$ + \item $z_5 = \frac{8}{5} e^{\frac{i \pi}{6}} = \frac{4 \sqrt{3}}{5} + \frac{4 i}{5} = 1.39 + 0.8 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-16$~\degres C et les place dans une pièce à $23$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $0$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 23]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 23$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-16$~\degres C et que, au bout de $15$~min, elle est de $0$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -39$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.04$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $20$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/11_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/11_210408_DS8.tex new file mode 100644 index 0000000..61a8951 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/11_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill HUMBERT Rayan} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 2.5x^2 + - 25x + - 180\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{5x^2 + - 25x + - 180}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 5x^2 - 25x - 180$ + \begin{enumerate} + \item Démontrer que $x=- 4$ et $x=9$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 4) = 0\] + \[N(9) = 0\] + \item \[ + N(x) = 5(x - - 4)(x - 9) + \] + \item + \[ + f'(x) = \frac{5(x - - 4)(x - 9)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{8 + 3 i}{-6 + 6 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = -4 - 4 \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 8 \sqrt{3} + 8 i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{5}{12} - \frac{11 i}{12}$ + \item $z_2 = 8 e^{- \frac{2 i \pi}{3}}$ + \item $z_3 = 16 e^{\frac{i \pi}{6}}$ + \item $z_4 = 128 e^{- \frac{i \pi}{2}} = - 128 i = - 128.0 i$ + \item $z_5 = \frac{1}{2} e^{- \frac{5 i \pi}{6}} = - \frac{\sqrt{3}}{4} - \frac{i}{4} = -0.433 - 0.25 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-20$~\degres C et les place dans une pièce à $25$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-3$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 25]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 25$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-20$~\degres C et que, au bout de $15$~min, elle est de $-3$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -45$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.03$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $22$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/12_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/12_210408_DS8.tex new file mode 100644 index 0000000..be5619f --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/12_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill KILINC Suleyman} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3.5x^2 + 21x + - 490\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{7x^2 + 21x + - 490}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 7x^2 + 21x - 490$ + \begin{enumerate} + \item Démontrer que $x=- 10$ et $x=7$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 10) = 0\] + \[N(7) = 0\] + \item \[ + N(x) = 7(x - - 10)(x - 7) + \] + \item + \[ + f'(x) = \frac{7(x - - 10)(x - 7)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{5 + 7 i}{-6 + 4 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 1 - \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 8 \sqrt{2} + 8 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{1}{26} - \frac{31 i}{26}$ + \item $z_2 = 2 e^{- \frac{i \pi}{3}}$ + \item $z_3 = 16 e^{\frac{3 i \pi}{4}}$ + \item $z_4 = 32 e^{\frac{5 i \pi}{12}} = - 8 \sqrt{2} + 8 \sqrt{6} + i \left(8 \sqrt{2} + 8 \sqrt{6}\right) = 8.28 + 30.9 i$ + \item $z_5 = \frac{1}{8} e^{- \frac{13 i \pi}{12}} = - \frac{\sqrt{6}}{32} - \frac{\sqrt{2}}{32} + i \left(- \frac{\sqrt{2}}{32} + \frac{\sqrt{6}}{32}\right) = -0.121 + 0.0323 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-19$~\degres C et les place dans une pièce à $15$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-2$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 15]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 15$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-19$~\degres C et que, au bout de $15$~min, elle est de $-2$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -34$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.05$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $12$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/13_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/13_210408_DS8.tex new file mode 100644 index 0000000..c9e0d3f --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/13_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill M'BAREK HASNAOUI Bilal} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 5x^2 + - 40x + - 450\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{10x^2 + - 40x + - 450}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 10x^2 - 40x - 450$ + \begin{enumerate} + \item Démontrer que $x=9$ et $x=- 5$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(9) = 0\] + \[N(- 5) = 0\] + \item \[ + N(x) = 10(x - 9)(x - - 5) + \] + \item + \[ + f'(x) = \frac{10(x - 9)(x - - 5)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{2 + 4 i}{-5 + 7 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 7 + 7 \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 7 \sqrt{2} + 7 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{9}{37} - \frac{17 i}{37}$ + \item $z_2 = 14 e^{\frac{i \pi}{3}}$ + \item $z_3 = 14 e^{\frac{i \pi}{4}}$ + \item $z_4 = 196 e^{\frac{7 i \pi}{12}} = - 49 \sqrt{6} + 49 \sqrt{2} + i \left(49 \sqrt{2} + 49 \sqrt{6}\right) = -50.7 + 189.0 i$ + \item $z_5 = 1 e^{\frac{i \pi}{12}} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} + i \left(- \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}\right) = 0.966 + 0.259 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-15$~\degres C et les place dans une pièce à $25$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $0$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 25]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 25$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-15$~\degres C et que, au bout de $15$~min, elle est de $0$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -40$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.03$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $22$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/14_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/14_210408_DS8.tex new file mode 100644 index 0000000..870ac75 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/14_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill MERCIER Almandin} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 2.5x^2 + - 50x + 120\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{5x^2 + - 50x + 120}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 5x^2 - 50x + 120$ + \begin{enumerate} + \item Démontrer que $x=6$ et $x=4$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(6) = 0\] + \[N(4) = 0\] + \item \[ + N(x) = 5(x - 6)(x - 4) + \] + \item + \[ + f'(x) = \frac{5(x - 6)(x - 4)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{10 + 10 i}{-2 + 3 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = - 7 \sqrt{2} - 7 \sqrt{2} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 9 \sqrt{2} + 9 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{10}{13} - \frac{50 i}{13}$ + \item $z_2 = 14 e^{- \frac{3 i \pi}{4}}$ + \item $z_3 = 18 e^{\frac{3 i \pi}{4}}$ + \item $z_4 = 252 e^{0} = 252 = 252.0$ + \item $z_5 = \frac{7}{9} e^{- \frac{3 i \pi}{2}} = \frac{7 i}{9} = 0.778 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-16$~\degres C et les place dans une pièce à $22$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $3$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 22]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 22$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-16$~\degres C et que, au bout de $15$~min, elle est de $3$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -38$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.05$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $19$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/15_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/15_210408_DS8.tex new file mode 100644 index 0000000..738238e --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/15_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill MOUFAQ Amine} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 5x^2 + 0x + - 810\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{10x^2 + 0x + - 810}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 10x^2 - 810$ + \begin{enumerate} + \item Démontrer que $x=- 9$ et $x=9$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(- 9) = 0\] + \[N(9) = 0\] + \item \[ + N(x) = 10(x - - 9)(x - 9) + \] + \item + \[ + f'(x) = \frac{10(x - - 9)(x - 9)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{8 + 4 i}{-3 + 5 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = - 2 \sqrt{2} + 2 \sqrt{2} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 6 + 6 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{2}{17} - \frac{26 i}{17}$ + \item $z_2 = 4 e^{\frac{3 i \pi}{4}}$ + \item $z_3 = 12 e^{\frac{i \pi}{3}}$ + \item $z_4 = 48 e^{\frac{13 i \pi}{12}} = - 12 \sqrt{6} - 12 \sqrt{2} + i \left(- 12 \sqrt{6} + 12 \sqrt{2}\right) = -46.4 - 12.4 i$ + \item $z_5 = \frac{1}{3} e^{\frac{5 i \pi}{12}} = - \frac{\sqrt{2}}{12} + \frac{\sqrt{6}}{12} + i \left(\frac{\sqrt{2}}{12} + \frac{\sqrt{6}}{12}\right) = 0.0863 + 0.322 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-15$~\degres C et les place dans une pièce à $20$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-3$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 20]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 20$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-15$~\degres C et que, au bout de $15$~min, elle est de $-3$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -35$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.03$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $17$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/16_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/16_210408_DS8.tex new file mode 100644 index 0000000..9027713 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/16_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill NARDINI Kakary} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3x^2 + - 18x + - 108\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{6x^2 + - 18x + - 108}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 6x^2 - 18x - 108$ + \begin{enumerate} + \item Démontrer que $x=6$ et $x=- 3$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(6) = 0\] + \[N(- 3) = 0\] + \item \[ + N(x) = 6(x - 6)(x - - 3) + \] + \item + \[ + f'(x) = \frac{6(x - 6)(x - - 3)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{9 + 6 i}{-3 + 6 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = -4 - 4 \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 9 \sqrt{2} + 9 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{1}{5} - \frac{8 i}{5}$ + \item $z_2 = 8 e^{- \frac{2 i \pi}{3}}$ + \item $z_3 = 18 e^{\frac{i \pi}{4}}$ + \item $z_4 = 144 e^{- \frac{5 i \pi}{12}} = - 36 \sqrt{2} + 36 \sqrt{6} + i \left(- 36 \sqrt{6} - 36 \sqrt{2}\right) = 37.3 - 139.0 i$ + \item $z_5 = \frac{4}{9} e^{- \frac{11 i \pi}{12}} = - \frac{\sqrt{6}}{9} - \frac{\sqrt{2}}{9} + i \left(- \frac{\sqrt{6}}{9} + \frac{\sqrt{2}}{9}\right) = -0.429 - 0.115 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-18$~\degres C et les place dans une pièce à $17$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $2$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 17]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 17$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-18$~\degres C et que, au bout de $15$~min, elle est de $2$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -35$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.06$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $14$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/17_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/17_210408_DS8.tex new file mode 100644 index 0000000..5f07d55 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/17_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill ONAL Yakub} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 5x^2 + - 40x + - 450\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{10x^2 + - 40x + - 450}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 10x^2 - 40x - 450$ + \begin{enumerate} + \item Démontrer que $x=9$ et $x=- 5$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(9) = 0\] + \[N(- 5) = 0\] + \item \[ + N(x) = 10(x - 9)(x - - 5) + \] + \item + \[ + f'(x) = \frac{10(x - 9)(x - - 5)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{5 + 2 i}{-10 + 2 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 6 - 6 \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 10 \sqrt{3} + 10 i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{23}{52} - \frac{15 i}{52}$ + \item $z_2 = 12 e^{- \frac{i \pi}{3}}$ + \item $z_3 = 20 e^{\frac{i \pi}{6}}$ + \item $z_4 = 240 e^{- \frac{i \pi}{6}} = 120 \sqrt{3} - 120 i = 208.0 - 120.0 i$ + \item $z_5 = \frac{3}{5} e^{- \frac{i \pi}{2}} = - \frac{3 i}{5} = - 0.6 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-18$~\degres C et les place dans une pièce à $19$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-2$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 19]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 19$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-18$~\degres C et que, au bout de $15$~min, elle est de $-2$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -37$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.04$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $16$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/18_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/18_210408_DS8.tex new file mode 100644 index 0000000..aab89a8 --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/18_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill RADOUAA Saleh} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 3x^2 + - 54x + 108\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{6x^2 + - 54x + 108}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 6x^2 - 54x + 108$ + \begin{enumerate} + \item Démontrer que $x=3$ et $x=6$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(3) = 0\] + \[N(6) = 0\] + \item \[ + N(x) = 6(x - 3)(x - 6) + \] + \item + \[ + f'(x) = \frac{6(x - 3)(x - 6)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{7 + 9 i}{-3 + 7 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = -6 + 6 \sqrt{3} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 10 + 10 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{21}{29} - \frac{38 i}{29}$ + \item $z_2 = 12 e^{\frac{2 i \pi}{3}}$ + \item $z_3 = 20 e^{\frac{i \pi}{3}}$ + \item $z_4 = 240 e^{i \pi} = -240 = -240.0$ + \item $z_5 = \frac{3}{5} e^{\frac{i \pi}{3}} = \frac{3}{10} + \frac{3 \sqrt{3} i}{10} = 0.3 + 0.52 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-20$~\degres C et les place dans une pièce à $16$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $4$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 16]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 16$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-20$~\degres C et que, au bout de $15$~min, elle est de $4$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -36$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.07$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $13$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/19_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/19_210408_DS8.tex new file mode 100644 index 0000000..75d5d9c --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/19_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill TAVERNIER Joanny} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 4.5x^2 + - 144x + 567\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{9x^2 + - 144x + 567}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 9x^2 - 144x + 567$ + \begin{enumerate} + \item Démontrer que $x=9$ et $x=7$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(9) = 0\] + \[N(7) = 0\] + \item \[ + N(x) = 9(x - 9)(x - 7) + \] + \item + \[ + f'(x) = \frac{9(x - 9)(x - 7)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{10 + 6 i}{-4 + 5 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = - 8 \sqrt{3} + 8 i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = 5 - 5 \sqrt{3} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = - \frac{10}{41} - \frac{74 i}{41}$ + \item $z_2 = 16 e^{\frac{5 i \pi}{6}}$ + \item $z_3 = 10 e^{- \frac{i \pi}{3}}$ + \item $z_4 = 160 e^{\frac{i \pi}{2}} = 160 i = 160.0 i$ + \item $z_5 = \frac{8}{5} e^{\frac{7 i \pi}{6}} = - \frac{4 \sqrt{3}}{5} - \frac{4 i}{5} = -1.39 - 0.8 i$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-19$~\degres C et les place dans une pièce à $21$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $-4$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 21]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 21$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-19$~\degres C et que, au bout de $15$~min, elle est de $-4$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -40$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.03$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $18$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/20_210408_DS8.tex b/TST_sti2d/DS/DS_21_07_08/20_210408_DS8.tex new file mode 100644 index 0000000..53d713b --- /dev/null +++ b/TST_sti2d/DS/DS_21_07_08/20_210408_DS8.tex @@ -0,0 +1,136 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} + +% Title Page +\title{DS8 \hfill ZAHORE Zahiri} +\tribe{TST sti2d} +\date{\hfillÀ render pour le vendredi 9 avril à 10h au plus tard} + +\xsimsetup{ + solution/print = false +} + +\begin{document} +\maketitle + +\begin{exercise}[subtitle={Étude de fonction}] + On considère la fonction $f$ définie sur $\intOF{0}{+\infty}$ par $ f(x) = 4.5x^2 + - 54x + - 63\ln(x)$ + \begin{enumerate} + \item Démontrer que la dérivée de $f$ est $f'(x) = \frac{9x^2 + - 54x + - 63}{x}$. + \item Étude du numérateur de $f'(x)$: $N(x) = 9x^2 - 54x - 63$ + \begin{enumerate} + \item Démontrer que $x=7$ et $x=- 1$ sont deux racines de $N(x)$.. + \item Proposer une forme factorisée de $N(x)$. + \item Proposer une forme factorisée de $f'(x)$. + \end{enumerate} + \item Étudier le signe de $f'$ et en déduire les variations de $f$. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item pas de correction disponible + \item + \begin{enumerate} + \item \[N(7) = 0\] + \[N(- 1) = 0\] + \item \[ + N(x) = 9(x - 7)(x - - 1) + \] + \item + \[ + f'(x) = \frac{9(x - 7)(x - - 1)}{x} + \] + \end{enumerate} + \item Pas de correction disponible + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Complexes}] + \begin{enumerate} + \item Mettre le nombre complexe suivant sous forme algébrique $z_1 = \dfrac{7 + 4 i}{-4 + 8 i} $ + \item Mettre le complexe suivante sous forme exponentielle $z_2 = 4 \sqrt{2} + 4 \sqrt{2} i$ + \item Mettre le complexe suivante sous forme exponentielle $z_3 = - 4 \sqrt{2} - 4 \sqrt{2} i$ + \item Calculer le produit $z_4=z_2\times z_3$ donner le résultat sous forme exponentielle puis algébrique. + \item Calculer le quotient $z_5=\frac{z_2}{z_3}$ donner le résultat sous forme exponentielle puis algébrique. + \end{enumerate} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item $z_1 = \frac{1}{20} - \frac{9 i}{10}$ + \item $z_2 = 8 e^{\frac{i \pi}{4}}$ + \item $z_3 = 8 e^{- \frac{3 i \pi}{4}}$ + \item $z_4 = 64 e^{- \frac{i \pi}{2}} = - 64 i = - 64.0 i$ + \item $z_5 = 1 e^{i \pi} = -1 = -1.0$ + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Sortie du congélateur}] + Marie a invité quelques amis pour le thé. Elle souhaite leur proposer ses macarons maison. + + Elle les sort de son congélateur à $-18$~\degres C et les place dans une pièce à $21$~\degres C. + + Au bout de 15 minutes, la température des macarons est de $4$~\degres C. + + \bigskip + + \textbf{Premier modèle} + + \medskip + + On suppose que la vitesse de décongélation est constante : chaque minute la hausse de + température des macarons est la même. + + Estimer dans ce cadre la température au bout de $30$~minutes, puis au bout de $45$~minutes. + + Cette modélisation est-elle pertinente? + + \bigskip + + \textbf{Deuxième modèle} + + \medskip + + On suppose maintenant que la vitesse de décongélation est proportionnelle à la différence + de température entre les macarons et l'air ambiant (il s'agit de la loi de Newton). + + On désigne par $\theta$ la température des macarons à l'instant $t$, et par $\theta'$ la vitesse de décongélation. + + L'unité de temps est la minute et l'unité de température le degré Celsius. + + \smallskip + + On négligera la diminution de température de la pièce et on admettra donc qu'il existe un + nombre réel $a$ tel que, pour $t$ positif : + + \[\theta'(t) = a [\theta(t) - 21]\quad (E)\] + + \medskip + + \begin{enumerate} + \item Vérifier que l'équation $(E)$ a pour solutions $\theta(t) = K e^{at} + 21$ où $K$ est un nombre réel. + + Donner alors, en fonction de $a$, l'ensemble des solutions de $(E)$. + \end{enumerate} + On rappelle que la température des macarons à l'instant $t = 0$ est égale à $-18$~\degres C et que, au bout de $15$~min, elle est de $4$~\degres C. + \begin{enumerate} + \setcounter{enumi}{1} + \item En utilisant la condition à $t=0$ démontrer que $K = -39$. + \item En utilisant la condition à $t=15$ démontrer que $a \approx -0.06$. + \item En déduire l'expression de la solution de l'équation différentielle puis étudier ses variations. + \item La température idéale de dégustation des macarons étant de $18$~\degres C, Marie estime que + celle-ci sera atteinte au bout de $30$~min. A-t-elle raison ? Justifier la réponse. + + Sinon, combien de temps faudra-t-il attendre ? +\end{enumerate} +\end{exercise} + + + +\end{document} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "master" +%%% End: diff --git a/TST_sti2d/DS/DS_21_07_08/all_210408_DS8.pdf b/TST_sti2d/DS/DS_21_07_08/all_210408_DS8.pdf new file mode 100644 index 0000000000000000000000000000000000000000..404867965e23894476d366a468f11aa46e73649f GIT binary patch literal 199390 zcmd43Wo%u|mY{8BX7({d95ctv%#Jx`W@cuHnVFd#GegV}Gcz+Yjg$Aj_ug;1HQgh9 zEscMas!H3-YuDMbw4d{=MJ6XC@|l5_1%~X`%+CcFR%QS_z*^4?hKmb^PRh{A*uezA z$^`hw4-B1%sfB}~9e_^6Lf64i$WY(fzz~Lq2gcsP&QRA9#$|~~i5^Hm5L^qC8&psq z$}lH7eMEWCu-F&~tPlxY%p!zTiBO4eooRkluA40D6A~0W+LUkZ8JHjm zKO%k1erLhT@NelTx!M>4=u~C(%nbD%VCWPb^&I}}h*;ZMeq{DB{<(qyhE7gNSe5o8 zRYMtFOG5x9os+H|or9$fosEH!nXct$VKzNEc2_!kYezeM!;hQ)*rxi&FUjc|8_GCZ z>V4ef-*LpPjI4!B^&J4LY#+%ez|aW@Si1l;=sy-L94xeqY^(rwW(Hbz4lNiu1;f9B z+5>){pP;pcwVk4kuD;=)rH!$Xjh(R`K!Z+B*Wu$7t>}adolNx&6+{KJJ`VBk-QU-K ztb|=0L=_!APWc~e5o;@lkLkzJv#p$iU8~`?szxP=H z?2Lc!vjf;!{@!N>u(SU?X8>^gKI`8x8Q1_EzaN7?@mT;Ie{LJ_@hQ{E*;(r=8ae

2K-tR^XC96oELhW=gu}3PFay|EWc#>PS94Xl>FEubz>ByC-Uwa9 z4;F+lm9e`NzwLA9uY1-P=MEz1DKBMj&h6$$hh><&q)Jd^%|XJXBvMXUkr7v)vbPt*Mb8O<4KEN6 zDSyF0mzF+0#dy*tiwM+(k;v$%j2w;SbyAe+l{WcMQ4tNxNC!e3t(NYp44uI<#tv7z zjye>?1F84!X>)mRHn#FIJ8X8YDNy^8#KUqo8)7{dwNh=y8MdmPy{s>fF?eWve%*I> zITrnl^WOIm8GSL3+RIE$Qq6YWi?TyAxj^r1CG-C%$ z66DANY9uGfg_`M^tiY<)0=_@yK~146+E?{%^mc__iE(iTDH%OE zdv3MUqDL>VlvPo>j{!>P`)n|+X(ptz?BrS6+hC1N6ueD*!s6ADg2J)*<65xJlvnTB zJK(})G^#U>x%)IiF_PI=kYtJWpya(C+>Il1l@&F}@7O6st~kqH9|Jp>9B(&AXlwDs=hr%vM{H3$H8eO=ENHjX|YJxZSkZ9h7Q zA`S_bhWl~J`=Td4p15b!Mn+5A0L`S_N(LeqIWh|aBT>u`A%iThBY=e}gHl}&!lS^> zf&>P81z#^YY|tjT><-VHS>YuUP9k9i=@qU^2paO{6T2=tl3(q*5}h%~_K+g%#BCwB zi~NFXNXHk1fSw$e`L;&FO>{ADU%_+$wEDLCq3Ri8ff^~XAaowr7mY4WJCmj^#xOKE ziKx5oNmm$7IW{TP8SLQ~7yPfJLzFHRgEqq8g)1i2yI-*Zz|(%fUDN}W<3^L}%kWNl z9Vc>Wl_Kmt0#Tu1+O)ZITeHMu&I0Tgim4Kdi+mR%Co!`I0HsL+j^$Wnp#q>(@dEl} ztRBV|#$q`niVF{{EvW~2P`HWW>}=N0Q{bvY^dT5AnG3YxYkBV$QRa}RZl&bGRNZmA zwroMxFnwaK=&V1L7tk|AS~jc*a-$alvTkk$c}eTlXA(rgI=r?+TO&-=qeSi zwsPXzXel2V5~P5$Hy*&U$ze)(CigH|uBpaw&K3i;kX;9yQaA@&9bf7)2@638n4iPfe8CD)pC}9# ze6)pdp;%_9I`^{DwUaMo%`6E5YPRt7sT#;VfrMC%s?r80l;N^cTb&|IA+`*kL|s_n zzWcPr8;@iI5-qn-=pv;t1VtP#*U0?33VZ-|QvQ4g;USFrZ+1A^;3C|7GWsH9;NX;1 zQs%#cWz5BBEQ!sSt8&0iU~hkg!ux_x^(g>lDLsGZtqE>YvsRIu@O?EN)=wWZ_8BQJ z2Z4N#lVik~d~M^xvy+05b*}Tu;K`y`{vH~-=ZSy1;bp&qd8^XiQa9+`Za&-rr3^P} zPvP@U)sGwND=2~lX=%smnS%r#MDCwXC+E9Y?TQF}$KB#F4hkE&z`Jst#YXVaf!~o&wipf|^gp{vJNQxy!|4 z5$^y@I)b-(`CuGyt+=N0(($NkcS{lnwln!W$XY38}uLTbr@Q1RL)B!@0 zQ-p@*CC$^Z0d_|SifHnp2FQUc_re4K8%>d_BY(cr*jJB>eH_2?Ou7I@AbR+vvatCM z>TwZKXMEAkW6C9Du4sk6B;sV5IDNk;K)TJd^dR#lU z&>h$&+G8>{f8;Z(h3)HQWPQJ z@xf$L(4&k7o}~4YqFS=lV<^RaWUxy(Fr{yu9^b&Yg;sz;WBf8SF`cV}BfkKh5B{>n zjPjcxCEz;SNGE}Z_^FWHMP-BQ-LZ(DswxAIe)?GGSgvizamXvKg$|luFnCzGnO0TD=BHEfJ3~Sh z^?Cbs%wOPJ$1RK2>X4=j+oOc?UAm3xm_z5A0WCm0T!+Vlf&O+?n!N%<_EbK*o(cD< zO+Lkb5E~0_3pB z`E(g;+W`v&J9ZNx{O<4vd{7iAHoBfOft`<@@P`mT=ni*A6vD*(Y(@aKUp8^tExLlK9`KASB4ag$jYen`Ps3UWa>e*y7XL<=?#8; zJ6OVH(;#C>N1W+?`&FJNa%f0_oaow4c^j?CXRHO{MPw~0MK45P{E$1CF)XR~t4br@ zC(F_ecw>tvT*NfkWDu_4btqo_HJ;ig%A(fnj;f_C1cobx%xehcB>z^qrwV%XcHU2D z6ClB#m`NK&nC_)PM>m4PpPVd}SWW?`&~*CvCt|8MwG_*zc+6ycF-npN4z2&KM+%J| zLkag~=I>bh@8F zX<${A6jYnoX}^qQ=@4^0ZY?0J&a)eG1>`VIF2;`z7XaG1_EY?|99vtCbGhF8%4TLe zI3UK%Nrp577cJT>&!v@;Q+_ywwJO^;uFOI|UKmX_!Gp0F_;IC;EL`_)F*hqhBNF3o zwcYAjPKVjf!XF^rpRQhpQ&x^3j&*F4wsDGVO>;uLtX>*4Q~Pq-_3o8Yjy%dIahFC0 zHYf=xzv0SGQOCBniT5O5kHDJZb91I2IXtH5u<`=zRsFh65yo(jH8%Aiqb%uaN}5KW zzKf-u;!*@?mt#}pRUXQ5q8SZ4^o!rGR4>NgWSBYD07*Zel_imh0LX4jT81<%@j)*H zt;^!g`qbAyRnTesTKhBbh+-rlc{z{pd}5=JxA!cfgizEE?}Cu085jKNY>Ko2*VSX9nZ9mMwIVOiHr)ahq!X%AOysbx?fWJ11DVBg%5#nOA8)*i+Ul0 zsJ7eNi&I=kXxLGV5quABB!GCP4fr6OA%cJf&Q0{a_V5lL?QbmaR2;~;aLt=;8t!}N zcvsF9VYBd^nfv@3$*N|fD9NTN=Q;Ysn|EYQc?&1v5@0Kw_?Grt=ot%|pT}G024pygIx8I^wApG`8V47VU zrvbrwD?2{*BC*pED|V?UFACx^Qu;0S{ctFYQnFTD&{~^QyBcYZ4{HfDnjoN&7Od6+ zWMrgLeSMZoNmQx%yW#=Ntp`&ln5@(%x1YcHKC*JkIcsI|&WLuVz$@;4QCR~E7F|MX zcE15lSHP$j&N)~){*0$U88E6t^g0=lva6u>{w?ZI<04Yw5_KCIi)8+Q9JrH ztTo%Gn6kdW8lk2Y1jpKtUD0ahc=%I1XB|-fV@%V>#wlsna+#(s5ClfT+(vC}_Q-c} z2%P2IaW7cBNEoUr5iJH4x`5JUx*V+&FO4lQty*tL1-W84Qg7 z4m18I*^1b|vlVtzAg~JzwErX@hTkv$f3u$dA-KZ$--Rm-AN1n?6}rN}_)q-72w-6R zo2h(c$iVnFF!=y13`~Dh7)F+l#lImI2ByCQd_-bk`ey)!kHtR&umKpD{|>>o0oV{C0THnxIAT^>R|UKG%=plP8zD2Ks5-Py2t?`QFH zJ)O~y=?L_UFii?Q+~i^;BSTI6D!2UirM z{A$w&{p$zy8uydv59-2L*yLCg;;|Ve%7s=f7Vl5FS|nOiQ*n_g)cI)DDzZ;yNmY0? zr#Xd^_qVB2C=dM2a&_iGHLWdKs5}}hBeQF-?aKtOjkm*|UIDFEGqp}CKc0*C;wN~{ zj_b3sYy567lyBK|u@&mJjV6hm=!@%kN&9;&+UaVvm zEetW+O04&GM-_!ujN550yA`ZOlJjaSOY1s_N z5ZjmtrGT%Vd7JBW;!RjJNNdnlrF0>WeJ*PddO~8rJj+R_D_0zmbGC(g8|R;svD!Ea8yIR$*m`N1$&dEeL#|99kztbOk@Qi z)mG=)#(ViptncMXN=)Qf0|&eK$`|NI8@$1M^jy!^NskAOY!610U9bdh$Z?qcQtlliDr9UJ z_FZUtpsUHyZLSv`xrlH`%t*yPzXtstzORajAX!3r8x35*9S&Dr=>|~A7$=B{R2RyO z;R?e@3*Vopd#QEEsF=D`hOi`dp)a=aK`S{jP?Q_DfjrKzxNY*9CZSrQ1N;^9ifBra zHt-xFW^o1#zRWC$5W|FyQAjo<_p=P^iup@V6xad;%G5BNVEuMZwng zf6sfih{XMbH>)|0VDD#Kw(TV$Kxt7JZ~SYlKCm%4$oX*NGXc(8kq1~nyk7PRWQ%4E z0-)2#l4x$n+q|$(jfut5K#15p^pRd92(c-no+vaBtDfjY(PA*ZzsTpC%`sOPiKj{i zR(M_5yTb@fyx95S&RsdsH2&fny90!%PISZ+%o1!+b-e1{*n|)v%-RFQQ$@Bu=z_D33Fy(Rluw93%(s(mIXiRuIzHLk$$s1mO7(>5; zMLKvaW1=+n4CjSCKFE)!h7`TjppbMgn2Dh7B#F-l!=FNwQC-_d^fQD?__aLB@9OIx zkqTu@k)SG(W88+xB1zaMiXjJ6X-veC{TH5V`=C7!`ou#eC(m=+@NfWOOoDe5l@&BFvK6P2OI``zphYADpG>0M!p4vxLn9m9^7i=Zz|!rFNUjlby1rHa1@77BgRjK_KcuzNwp+t{Ep<3}m-J0IBh zkr5qHpsM&q2K2f@ZS^Q|Y>8a|+-D{coN;kx*mK3WmMyy-v*mW+cOGAa+&_4d9!;Rz|o3u(8gxx^D;9z+u!Cu=?@`|ckf<44Jj^J9f|EPCwgB9?X@cjdmDla2U~ z=L1w{^?{bLCRz%Htn7^_c;=iYNNOIu#%hZ=X$_xw$r)}2BHFu92xvJQCuzSd|GW>N zxy{VjXNqM2N>~9ne|Gf9rfSpI~;~eD>p9p3*eY&Hj!MhpL{*O!u^~s zmo#^w^7Q1nmwobinKJgW1+2QQs#1H)2{~niP*Fo0cKR0z?=7(>mW6j?r5`&sN@-UB zt#MWZ^QY(Rlb^J@hie)}o`Bn^2Fq4FvozW#FA50v9d zD<{vfLoD}`k;`qi`Z;Fl1P3M`OcChLd1ymN*0`H^Wd8>8U%qf2Ji2lC{FrZN2MaSf zTBddN+{8pCVspULImIfrcpltZHd4r{qtf%n!~n5H>>+yZ3%O~G%s9P0GRN5mtI0Z==Vyaf9hLz6yaGYg$ z7fg#5x$Q)D9l$)F?24{Xux~~%$Tp0RzX3HhP2}<~5#dY;ntF2wc!mgILo(#Q0lJavVKAScGeQZDp5zDD(wV_wyUMHVS{cx*Xz8w5YU~D|z6m(HcS=MN$$aJN!TCU>OX6wnb&ZdA9DiexEo0ms+t^knBj*lKAhTaJvgImTioRB_%okEAGb zM40i#C07wv8;+trmv^LL24|+8HeN}b(`_v)qm01T{ubXqnb%t)lcWu0bOmY%BT3JG zo8x8d@hScE3*&b>a`YtCPH0o6*QbDsx`Z2(86h$)I0uo``3T2;@#T%`p`?(?{et1d zUDL%~AnkoDWas5OI5Ca%&mS}Hd4h(xBVjtI? zFPoE#Hw=L$cv8H}ax_luM&))GXGIPsossOGjj_%G0jx$@1vizmjpYS?s9WC?JwU_L z43(iNa+eH~_CY)uZv+S>w;V-V&zq^FH6H&VGQ=N5ChmjCV4mm=@h-y};d!P$tqMux z!~G^Q#fu$Fryd_fhNA{^ZL2qs3Xy)*@r0ff<58Y8o3w0KRV{vUi6<6dn~$~GWlZ!hmVdOJk1TjTL%$i7O3uTL5!4;u^=$&Kdt+o4c0b}9anq!qzv zxk_rsEN0f}r*CU{jm=6S_j@Nr<+}~95f4(b-DE?jR>2X*Az~jureQc1;P*(Tg{OUG zQ#+;mR4w^B^asdnw!8APUWp_-lZqht7C#6>cvKE;oS0j>oZuZkaP(NZ$s6}vm#``s zyPrFq>3xuK9*#4e5J+eHZ)LbKl7;e>3L$YGL%eQLl*4hmuoXspE3eB&U(99K=Qr;R zn|C}jbm7;PAXP*DkeEV*Qcur~{nC*JV~a+pMW^R5YTHD*;mPH)#(}%&uMlnfB#h0j zk|jxk43>6X>Upu#2CV^6`MJ-H0M2PF#qnej;*`U~gk=GhrXP=UZrh#CWUy&nJ|r3| zGaa#8sN{M^p-zTjoJa2{JY%#i%+J^Yfv(oyF?BlXuUcDaCeDxZ)@g%EuG&9a`}HcO zqBXbQfXGmVF8RqhoZTWI3}FgjRHJp5_`lX#HH<0GgWWfLV~I1Zah|npu6mgh5TK|Y zefW)HP8mHFzcCp(U{5Wy0fC+g7JuEhN=JKQ=}|}-1&1=eCjl=^Nlp;}1}|WFhyl?k zgESI7pXIRD2j)>ec(vsy???d{r?F7U7mOnoW~v=A=a!YGbL0&{&0oACsZj6@Ex52X1@m**Aw zp8=2$k>Xzf-_dv*gqD32lx$S*#0(MK8PH{KlPap?S+Bu z?*PAn4BP*m_`>!f4EjjYe?-qQe?25%WUx_79*zr*E)FKUMY zI5gIg-T(Dg!!u@8DQ?QeXqyJkAE$O!OY3!33oUa+>SAX=w8>jI0C$x9H;~a}HuRHr zy7=+36Gceq`Mx(fO&E|a7m=T@ceU3WVAj`^PN|PH?{HH`%`%FhSBy$|F%I6qeycexlJH1i;CXQ2(lO#Clnt7OdRj(;B7!Rlxb%} zYFh(V6XZ*rw0#M(ujTS>3Bq!RUI1QXc=f!?D?N!_i)kg|ZDI4kUFUBBM%Fv}Lx4&D zHvy&s_(OpCW}WKU-lPZOe)8B_Hmv>J>iPuwF9GId<6i=drmj>P=N|z^`$K?1`7OY7 z-Xdsl=M}zJV{*KbBM~e7rZS9PzG#IGSxeZk0Wd-Vp`Z=3l|QuHpK=?QEzp6ZLno@L zy8^|rrosjo8h>)+Zw`_6fk?`BUSobuj#Us+m3(dtOK%l|fp#=Mdh0Zjl1eTe|G?4~#($Z6Jvh<{MK51; zs}!4EQ!e}{K5Dxt&FrA#fDs&ooZk*TTM?XE?k-_yxw*^bsV8jCZ5po)>%7gylk*O2 zNqnR7&4O+d*`yL=hJ(LWe_d_p+h2B!=P93S5Os7C7;RI87FN99Q8(E!+F3SrO0^4H z{Np8cxmc|Hg=$86!&OgTn<{iNMg->9=9vQvjEeeIoi9geAZ0!YLKweF>loroQA@$Dw)yf*z-neBp8r~*<6&4CW|KlK&0x)S5x*aWObZ$xvR&q%9(W+ z*BJX4BSZAMtj7ZgXHg3{5mi!sZe1kLx%Rj&pL6X&f=o z7DnvlDcjsum=&T%c@Py?$H?&&32HTxiJ@Dp1`3quV)EF4Op}?TKAa4e&qdFZ*#w-T zzKiC_P+))D$2#ti+@@>5E7=QM~=wY+J8mz@^X&ZG-_QGJ;6&e z#L+&PyPPaBsQ+fYE*Xoq0vO}9H$vYn2HcVWp?@)zYZ$w_q$@F_0@{EUHz;X7q}><uyM$?Ww*%5c6RTK;|G79NHY~Nb76AeWxqnitTBq!} z_J>E~n(<_h{N^-B~uW2Br+>;rkWnT`@u>pGhRdpA~!bjZ(-rX9%$GBE@IF z@FNDyxMzKi53>O2z9}5rhDgKjXu2zi0csW)1_ViT)TJ_(XrHXeR{994UXh9~NiXSH zkbF6i{TOO~n*$1FrNI;*YWBmV2@Senj6lRC$^ag^a%weA9LxDu`BgX?Dv})&(@zM_ zxQa$>h7|jTeyxOdbZgo&`?G6wrzN&HPA(_Wrn>=}ID>lb2jB`v0u*0CScx_j)wF=_HZsuTax=pjsRn;mztmhL)0#7OIpkHbejYrys zcFv6LFUecoPa1KnT=3?aSJowq?*LCrth$w8qj>11pvR|1Via-aRd@C@E%l5iSyn zoo#q$#S24%_nd8jAY6C)t@vo~0K3&YHc9_=^|ql58((q4g~8*cVIy_luht6++AQ?q zOUAEeQn!JSZ~ABld?5xYHrRp1u-^C2s`E9QrtP*``YA;%HL@r58~Bu2<8*s zN`q5?pG!2IbhpoBcB@$0#a%m8x>j^>MNEC+koiC+Ssgd00=-U7KhFz`66j9}uI5(5 zwZ{3{@GUcm%#WTSg+@)5PrccqAhckrFTbA5x3Hh$bR$!g3l^onEg*$bhb9{j0^u)R zM*TyVK}`Ft%d}wYe&{mt!CIj?T58e$o$05?FsM$Exbc9dH19Eij}(cvVOJ$43GO zg`1jeuYzpkdHPj*MSn zCPT>*5~g)L;}k^%|8gc*Pm5J+M$6yd$75emZY@h=9lmyMlh8Un*8kPU8at|-{26Sa z|3oM-#Z)+B6|RUZV~ zEFOG9QCqFGx#z^Vivz4sSxL$Z=aIPGQm~^z__VTIntf5_yJB^WC2Dl#M`teaGO@EO zag=^II=Xzv8x!x+>D_(5#TTDZU1*3Ro*BY&>%eeN!FZ^ou#xihkROYY-U1Jcc8-i@ z`I?{II7ueV3puy*ovYW$rG%Cd6wuArl^Qs@8p%ZRUt91&ugFaYfL?wrQy1XW%sGn- zDn222;6_{`sVNCOtkOQ$uCz&x?ON7iNqw*2#TBZ-D>Hdp?#SA5*Rkxm`5}8}t7MfG zS@B8Hjt;vAv)(P-zI6tZd3gvys@IXt>foacU+00W>8n6%u~{ z&BzC!F+t}>`EX{EJl8cDgu^n>#GKASUNr4KdA?DadLbN!*m-ivpLJU(f&y*LSumk# zle@)`3YE9*KsU>0P4tukbiY#qeaAp#kM-d&HK7J!yQQU^j zA!_vb!rRUTD78w2Zj(m(P5#OQE83 zY$PH2&U}q6a{?K8&aNOc(~buRmkD~qw#KRj@--;f$i6Njq>PRbp9vQ1bWa9^I$!(z z-hHU3=dl})8@%xL%(c5UtJkqtp8AVLTT#Ikcl9gv*ANB9?{*o2>G6_pLnA`sndO=$ z^`KK2%bqo!w*lUM{(#FD&onQ1!q&SwBwt1${w_=WnSiG*I^{G=x&{)FqbPUwR%QJ0!ffL}=WxVjnCwEa#e|)!aDEgrta9i>gjy8t%W^?m z{+4Bq9UoQ_|B_|Aw1Ooh#F9fwmVeMG&WL9vK$$vC7A{U$C@mz-KY)!kPWrZtT)pJ* zJXx&CCY)=!qT&&lD(;-k$=XP$&0qxPI#xB>h~*$L1{Xk$!kHOam&-_hoQ#eu@_-U+%z%WpJftLS!4ZtOmnaQW3N}NIdmF z%FN9lWu`VN?fpL?B7bU9{w5;-lY~a-ecaZW)QH&(ejl+)kWo7A#&Zj)x5whh}T3~91o5Nb{ z$dzj<+ZvVOl*MYonk5=UN^3>uR78wb3Y4(T?GvO8k2WIZ4BFS5KVF(|2~!NSA+znd{g@8(GqOP zm${r;`)GF|Lkc@^h;2FK-0~Puh`3l@#&Wav?)H%YP~RLFyG43Yd=mtq3L;Tk4yrti zkZjuf7>>zgK#~(nTt8O*is2zThp4nh1JtCALqil^#vn?8F5`d^>^TRkks+75%K^3u z4?M78cQw~ON$-~|4mX`CxuBeU|Jh>vWHSjr5(r52)WJL8VYZmhxmBhrg9QOgF<;3W zgbWzm>+_$#$%@L`8?X6*-q{1Dt{GKcJL@@Hy+P6WHp$lR>ynHj<@X9&88i> ze+S8W?Gxb)NXdWMf_l9<$Ohq@ds{s>2r+&&YshHuydAk-9J;=1T~7|3Mm6W*P>5dv7P z53g0CRj{in!8Dm6g?U- za@MaYFX?n-mqXgoGu&rrfiq8QxPHobsM_h?rOp=9jIFIuAbaWP~Z?Ne(cBRF@Sl){QRay-iM66UJ2S zf+e?JxDVD43Ascuu5K;z7pE>i;w%)zTm<5@K`ynN`>>qk5_9%BPrAF9CE;=D{ z*`o3Lz9TvBIJLrE5c}krxoVT7$FE^4f@1YnM~wNFVz8{oG8W3rhA%;enh}zJXtqoDsJ3F6dW59% z+!MHRpJqKYB$UXM5$j3XeU#lrD{w-u)6*?HYIIaddoIGBT7Km?|1gMGrAzggC;aKZ zpm3xrl);iKj#%SHFaglRGt~JG@d_59Yp?>i&2dlKjhh>JauzS2Ktr+#8Q7d=D3-c` z3Ip33I3(S`>puLlHa(})&PA~0B3F(F3*KWNe{F*fZZFlM$}uyHRzNE>RAY080+$>$ z>c3_XL|`n`aASbz=(g4iX10}$O@CDw@gn>>Xpa-+m*mKOqo8kZbHQ_|MBvRqM>7-o zDI`*uBIs%~Y1{l#MdVU^=Y;<2B|8n9loBz5eEn!?kh4+ezAaI_(3qARUg6kJk&SG5 zyPw;XLAe%}&|uHBNeZIC?oY4*W*pEYXWpB(lsQYDzFPV}D}ckuN%ca0;?elY5iHnv z#m#Z;2*;BVOf-w}k2MxZ)!BS0BP1>LOg6#6G+US5vK_VW#{W3o^xkmw(F!VsF(qzg z4zb)j{;em6lDl@&J<`Jb!y4Kh=%1>xzbxTU)i%f-Y|=6N8no~!TF)Z*(&8D_?kVc= zS_}|VbnG%^Yh0ub?D;cmNf((JraBOuh$WZ$FmM-I7qBkdG~4IyC3+h!YlF-18X!g) zrw~0s1WsbQ(k;>l*C2(uH@m>-$m~uMn_4&p5f;GZd7Gt%NWaJ8v6zu-)nzeKKn5D~ zgnv6qQO`f5jOoJ>u3c=-5NeXF<;m)iQv`|Jyp^CH2Ls%ipdNsrT9HoW%@UhVTnXjV z_Gb|2Zg?1tR({J~v^TI4Rj-TcdvqV;_<~uia)7u?B;7QQb3_wHTR?tiScB3VE46BG zAjpK%(}Ch94~{{p)ZQr(e1u0m3mm(uB^g?*L=k~f5f71SFOTL&I7f-PVWnAUsG9e~ zC^}lWYf6?XuAz19xC-ohzZX4lUB@TZHrWVcs6@tR$GJ+=Or0+U?YZfYO- zi1Hlf}|6kX!`gFOT1ULJ9rbh zcBNS*ueb-R5sva;Kuq65>^3KESmmUzP!)(TM7koj#N3{o)T)-uRmQyUU|8U4+cz=q zgP!?}`X8OO`ZYXDT0MG-%c((W?9Z|H3kol~Dryqd9nF|_Lc_WEBRuedBG}g%Y*A$L z9*k#wzRLWqtEF8b3A;Bpsn#}TEe(n7(ijlhiBvubm?tM4wC1HbGkIA}t2{|GDnB=b zaALlYjVs2H9ym!h($Zobz3ADrw6R~~mkg{9i7z)wcGSPDVL94eZ9Vbd;48O(O`HEz z&vCqbXZ6`m2|lXGOi)qL+9gDVcdepA@~G_`!x?XA_Q<0{OJ75dx8YTyBJmVm)vSC_R+3yDgKhNCWy62nFd-DFA)hw0h$D#`EE>~-=3 zo=l#LR_s{g=9rC!LV0ni*Po-**Wg>k`KGOKu&Oz&pRHJWL2@&7&gHdrf)%|h!=O!o zm*V z!x*ec+bvg0Oj)D0nJs^Gc~$7EEG+w(D{pK)F#%X)McJpqdhx+gnO&` zD(zYJR@tHWF87Xiq>N9Zk&Q4L{wUpQwRAguDqxw!Bxcxhv`ma)I$x~MqRez8kx|Mt zTjE`oWLAk`R`T^o^EKP8{wr?1a@CCatw_5v?=aM<)lA010xZ@F1l_oimdmxN=s!V9cOxM!|t2G?juzfhJ=2ToN zSL2E3CKHyOc+SV?S5xyW#=mOdm>6zkVLAb}Tm!mw6nB@T8gY|j56%tNI^>Bp>rD!| zckEYs4|JZ>jHm@N9Qnq8Gvl4O!MQAr`6iVxB3&A^GFe}p7_1v`>p26tJC&w`wCZ8y z6Y6DH3=c$QZ7^p`vogAZ41H^Cel~DfjzFCP;h53t04+BwIf}5nT=a=9pWFBs6fPVz z+|>4PEqeiT;7!cmtD#&4HU&dY$4UpYQoRMrd&c2JPe5Ll0%mO@_naL$=exrw)Y)0^W){hx&nd9P_&p1^ugcR+Xb$$mS{Cge+v0 zVLE9%k;JP{u!sYRoX(UQ!*udo0Ij2!90#h-`AZ*<64>CYf|t^vUgSbr0*U0S5jx%& zhVP(wkW7Uyoa3^w1JMkQk8=I->xgcA!!yT%REl1Phnwt*)(E>&k7T96B+~8N@yxsP zO(Js+2GXMchau{V^kQvq>L=5oZ6RCpH(C`unQ6niXVwnI`PL|BUhGKE*P;5t`4Ok^ zRL%8i6Vg;(kV%j3vo{qe;}Dr*|18i+xHMeXy%=MHe+*H>O!GH0_tB$`*CU6X1a~oy zhHudv_+s?WHvT$yXWr>LmAq0P6jRoZgW$A9^pFFjhzANym?4A(%8d zjw4wI;S3mh&j67;x$4W4ENQZ$Cw({GR4?-A5WW<>=xa2X{S_qYXz+{QYX+D-%*S++ z8_=D;)eUBk=biWkWt60w>;E{sybIIsBP#mvQY5;*a9oQqMKS+1h!&+-zr`+M$a2RU zy$zBwy{{iX@x^kizo6T5UZ{+|1J~EtL;lBCVun90B>une#Q(py=wSYDOA8$TuT+tI z$OQjtqQUgB_-7HwhqS=)&ms^G03-e1MIay20wevuRgo~#|63IaBmF-EFnnD0&j4%y zMuxuwu(EzE{_m2l^K(wVzuMr+wsJmTc9bi zxu0q`^Y<5=J0VO{{mbmaI$~c0V}gU%n+YLgttecsUP)Hog#uKPrRh;Lksf}au&7V^!k@W8hDWh+t%6y}vur8d?K3q(v{CauV`0n<0 zpH#=8Z17Z@S#o$OxH`Vp@kT@>NIAq(PK>R~=%vm%T;&suSw-mS0hZtGO&Xhxj-n)u zktVv=tb+qRMvi9-vaBw>#``2%OI;ZDyN)DxbVkVpuwJR|m0-~+kdQxhPQb)1F9B5X zal6{>PPjaHxGfIa)|3fdD8qr7YxEJT)2|=KLaA2e-P!r--A-qP%Got)n`2($cXx&6 zC^wPEo9Pa<=SS@OkCq+XQS6W6^F{v8PURmhJGAaTT6SQmezfeMCMw0Je+3hL~zd3~- zi)d_OE=~mkGz<9UA3ZyaJWF32tg(m&rl-zXJUX(FIaV9O_3JEo^`AR~FKk9-JL72n zr7X}K6u%ez?%6@xaGImGM(>M%w=(T`%JW-Uz%Lk@0dwhN2vj~zKVOZua3rZBg`+=? z#*Hvteh5VPs3Z~1m+_Dt2m@0zC@~#AikZNmfUIUfr@#g&1b_BdM)1fO%dKa{jmYbu zu7*(+HvoR%#1$;z1oe_&*hrmbkat9b+`t{gt=|1#%$-woo$aEwV>f0S+qT)pPGj4) zoiw&>+qTizM&mSTtbe8-*4lfovHx|l#@O@hnFr5!kLDQfHShbntx(xM=A@GM_LP(i z{%(_q_?t!Oe}-pij0p+tJ%}?jFx1fp)19t{vn5?C&O{wADei7YibexA+Caz^Q56fX z>UkUSY%GdEgFo?{gvzXxeqw;m;SX2Dn4X}5wPt{~{-aBB2!AE*bF&D`rH^h&McD8<1776g47%u!MTzVKtE4Rp6&;cE`aW%o3(pQ>$1zYp*G-a7lk3dHUy)JUpI0Z`k;OE+E zzj=F;YpNWKVDJqHte*pHv4`z1+ z*gYH~LP`fcc9;XM!`*!9N7BW=VS;Tg8cP2VGL|MzBwb`l<@^p(AL#aDEwmfNRF53c zC0QTLN)cMKaym)a?cRnh5Qk78MYdoE>$kr|geK9KTb(M~Wf;o86KP6wKDrjEU5|b; z;hpb+$89VUlJlNFQTKm#ekwdglpW~ai~_mO(&NX+3fKp;ohJ3iLJlOSXT~z{FNHRN zk5h|5M0b}NeeaUYfJSN&7js1MV*0CKzWY7$KTaJo7baZcuETxwrydo z&l_=%7Ij<3J^HwOQ_71OL(~fTsk@U5i~n9FIVl5Ynapu!S-Nzft4t4M?Sp`bNe4WbK_!Yt*?;UWu) z#pFi92_<3!vZw+udpKN%*MR;IRT9NR&yEZ;jTTU)5%GnGOR5GJfD}IHJw=!sHr5@J z8R+3FHqj9%75ZU(f(WRhaEQAgkxU)m?9`vTn{geY_(wTVKbh9TI#qG$du1^d`Wt(! z>-E)mF%F|5(31FH1a4}Xi3riB!KqoTHclB)WeyVKNuQ{)@U$AtdJ<1(ER=AdQa`Jj z5aWv%@hFD4XYcHq!j3f#{J>2Y%Do7Mwrx0>mO%BBF+twOewG6y6$;e}(tEZ@^rLI* zr>C#YNScXs)c!~+Ecv*VodnM$tt%D=INUaAIwc80g?(}G{2JyjsmdmKeE9u zBPlu0@#Jlq`~4wl((UsDt5M0-S|Yku&ZDHr?;gKB>8+|QRMo{_XXT%V0nf0)Cd_$y z2Z?eBqo3!Q^06e^)kP({Y4mmd(Iin5&GvZK@d{kSqay?~N$`$I9ijv;en2C+LsQvM%Biwd z6jd7akXH|enUxLAa*g4=9p0=s!Iw6Ib<`1*v^@K$P%Ja(kZ&xEB#qR+{@q(|F=l@W zE;58)MTw)S>nBN~^QuDBfbe~u*-D)L>9&|wje`tZTP3T#xaZpb<8n`=v;00HLI@S+rh2U1;?v#=b__Bpx*rkVht)|geOMcfd2#~ikq9Z{ zG`GC>NMZ>tOCDpNEj~w_izU+W025E zOeq&}m9?>!jnxVxk}8o(430_=CCR0#P)bRDaiHwE} zkO3u-k#pn0aBr4*QV0)`YH2Po|iUa~*iI^Za@sWq5y^Hu+Efc5k}2nTzaBm~@CCw=`jhcwp*p(c3%JrYk7X|3y2at38xQYmY- zFch?}QtC_tXRR%O^g@7#OP$3jMEl3mc5daQn!}(#Q@da!Trk!E*OUE01MI$1^=X3J z)uGv4{K~Sn14It!Drw*Q`fgzFFPY^FB(jiJ$=s-h9DK*MU(i%d%tRIUyKIRoKwHYl z#6lR`+oRzaLQLEhGU)g)#`|9xgGn&c50={5I?-rvH;Nf+ zWNJW4K}HvlQYd$<-25RfZ1GeamS9S$?{y&+iex%uI^@$nvB(I-_p4FdRJi;G4cdD_ zMAEvasRt7wMua3_!FCyAe}O`BGRQ#;w(;%_X)T%HZV?$*4)tixoGg#J-Ixs^C0T8LOZuVN`J<>J+D`MA-5M7PA4mS{eLe1ILFgxAOrW*2RsDEX%#8(KV4>wUdX#|f z@O`F;{HtF)3a-XvL-Aa%7Cpw1m-7sn%P4pK`yejk;MKr75Qk!BvMUd3!Wvs7&6FWR zjd?bmsCbeS15>QY5xKy;GgObG!{dDPe7X}9J( z{!GO{2R#%Go*Zo1>!2L)gmG zo{`;|#ipyaWSc?cPgDo%Njp>9c zadtP3bD<)?QtLT8vKb!(+c*vr%-yh>2Xyh3U*P=IMogvYa7Kfi7eN@$ru6Kk1BH3# z>&PNQ0Q~uA(P+182qtL4xVvNmBZ98{{y8*x#j>qbB#!wDw6&>7eLY4a<+u{971j5I zsvV7_+q;5k>w}l^hmEg{#`dIAgKNBxz>^fPJAN9%*6xr)dnbhUD&MxYte?hv%L>;U zW%R<9+KlES3r98jS}Lwo-m(=%Wq9q-^3=VKP0!DJ`u*1E=9o&K6)8i@d<- z7D$nTf-!5YvAr~mi!y-^%(pdLpImjH?Nz4OhaDoe1vJt*gKmZtcllc9FRpd7aqDkA znxu#D3_|<&Sw8FOwmE;o%T)ALU$=awE;zB;B?HIx{5~(1C7^#~Wc7M{I<8 z;4Oxz#J&|k|D6kR>)0Du*g}cxe*zCi#`jvlU%=x(nMqLm@0kR1bc}!XJnxj?ujly> zX*^i|T>!)Qhaltsgd~;mZ$Ag1HNyC}p99buVf@?A0nm6b{=?4!05JdXbFkwx{_W=g zv_=^J^m71eCjbD${1=)5v_=@2|3Wi>d{+`1)w6LCh}@Pny}kY}b-cAdvn2{?Q6X*%_^} z(=#AAE5ycMH85t&uRFL5z_3##k|CB&ta=+U@ai{|@@YdshS+&=pxPBFgoEEp~am z`u_BVALE&5{ZWlTK#4`0uXYi9R@CIHZ9nv>scMJkuPOs2Ni+<45)$F%l9FluHuVM% zs^vC;&+=G}ktvn&$o%F@k7F2gFIIQKLA1|{>f$7q{&qQJO>p|&j%*|zwH6p-8E@`w z96{D)1#izl&M(CxyH%KPaxxTI9!o5LmPIxL|167a!m~&gkcI)jT|@!@Q(2_as2k2K z1km1#QWzx#lttQ8WcGDuJAC=d?Qp=RwXrt)UrPA15L-l;J*$ zJ}s5H=`vhG7t63t6nqA2v|KFWw0KH9NV0uJhcjd)-O^F8yRlxGM(0@e6#SGIIN=o0dX zA1u-kV(3c%45Gj?(|lPbPsf688a-ro$&G z>WoJ~m|M*QBh%9*1C`tTDhvbOR$IjZ_)>q^O4yase?md;(g>&kFAo$y53^f~b;#r4H+ja)T<0%Zr+%Wnmew!-EdVCO9OQsiRdka;CXNXbR> zVyKHopHvRIHzlI)_u)bRhMS^PV_GL(qv*$g(l;&cjf&l@n`e47o1A6sUr5CC8Pi>GeXR^aUPzYsJF-R3 zsc%Qmy#d<$2%%-q1V4?5Y@viLaPVW95+ktANU!YC@`?{Car9Gtt5aTaGd~a!XQ&?; z$|8=j+J<8ck;0PXwcg8Kd^}XPJx=At(E%)=kpa~7yRhMst-{VspB0m>g@Ra0?i zgU`a(Igw5_T^#3Ok7Zixs(W3_EQZzrln@6kDBW-9{_rE^41(D8Bg@nf$<#U~jKdEg z_>4M)#N&m%hG(ADKNd1>NQguxOhfvTak8m^qlt{Tj|QW!lV+jF9Hm=JP`f2+p6k4Rx5_?CW&QANF;tllLHClSU)dl z#1#|ZS~v9Jo*`d`{Dmzgrn3=4VW2E^IT>L-VDukO4~w1^f!HNX-p0q2X}}wcR&-3! z%26?!+yv(|rj_zr;tD*5Rtgp*;5tP-yz%jqO!}W7tx{XNKk=VTj;ROFLYGGotC73xxba*(XlSk*ES_BlufKa>l}@J=LlXhUTZO z*B_yPxd(-o%@bnR5nP^myYq~Fo!9k9cns~SxHZQUxx~{XPLS@9O9f~pBw}fsmg>)< zC!~#4APv1Wq$c*Z>fG<-U;zb@iO#Kybg*wA0l>GZIf84TXctkRR2pfF#JiP9A2X8? zmAT~mBpC!?_Tv1VX|KR%Pnp4-G4&we^b*jOA$U8%4#$hd5y9Ds^zGn^ofFSBI-9db z(K{-MBqR1c*j1RTGzcbbg+_Q^Qnq%Ckr$X;x)%!fTdOv=7(# zH3S5{ZN4>s7+1P@EHHq|)3DP<_B_!Xn1WpfL}g=fqUvYnkL7sBtl3;-z7GI*M|79w zyj=Pz`tfi8?e`{23v&U+LNXqrZ$6MDHiw4tUO1|m6I(*C0SO~5FOJ2g9n07NeFq`7 z(kw2I{vDfZ;G(vs^^@KbgCii18@0J$bG`QU;8ILhB7n~%v(vagTNl~^KLA~_8BPqK zQGI;ZsD{*UG@nQPc=}VLYV66QVEb~62LVLDOswnCI!lJ73 zZc#n@Uo5J#0N~;-kZXfjfG;tXI20w_Rgsir7>X|`Nh+~`68)8y%T%v~nZeXjEW6}J zOtkp`Y058vflikc1{0P%*w+|5Tm;x(Aj5QZIn7cBIvh$fh@QBz&ZM`pzvZu52s(;W z=zA?BmCq>WOr123dx-{o2Lc3N0l2!&o6>ks`31%B1n6h zrUT6ev!>wELb!%{VZ*A|nkExHtDK2)8fn+h>nk?pU$vgHd+mw$Bo!6Jfthw;sUKZ{ z;u9ynWKBOf#9?IbxXjmUDPst-eK6i28-O2ROrgg)`)7%2nI-VMMAeq+e@ImEbP2g# zJuHIH&C?lid#6)=Scn_#%SUTvUXS-wwrZ|B%4K%#C>@(^V*4L7#28feTIlw%N|I5I zOR8}Vte3W^pC1Q!G}oD|LHK=S6v&(~Jblo$Ok1}z`T_yME=Jiy#Bk>hIaNu^;Ck}KS-sA2T-Ie)@w2c?%TaWhViXy2J( z8q4)7(>xa0SxDclCSfaUTC2)fQSBITCnW<2MTyM3)JFR$rVpN*dVwO*!lNMhHY~BG z;?2kRW(Y@Z@gM4rmf5h>6Lo8Vx>uLW_qv=44z<+#!n$(3^5$wuUm@7= zuJxjH8S0C+uI`raCTJA$m$3W{HuK(uMk;ssVi@UuJL`vVkdwuwBp=rYq%Y|Nt>U>I?-iCw)6c(F?un} z@6@oTZGm4G$vg34m5VxqE}1cf|I0wxx{2W4r>lJ_Oy}ozZ?ZqW|sj@eIA4x{XlWlxwns%CjBuJ zn+adJdefq#D06Ns$<&ILBKiU1wVeCwxu7fV9CS#tlwQ5R4v=7!$ShR` z7?V(gkoyRYf69$G)2}QH-`q7W^rJBiHHkn`qIE6v?r%}nBi0UoTbPllGSvKm+g4blavEM3H zr{5}7=JN_b!v`fZ>Za0d^~v^x?)`#E z4gAW5Z;7>mv1%)GPsR>~Jf%(iapAJ&q!1Q~TnH6xZ9zb)7~xsPdHL4w44q;1T#J`v zQPRZ}YmKucl%OXieUDa~B+QGYM$<}$G zj*I&bLY}`)mg$u`?f0c@T=J!2+9WpnC=BJ)QNK-gZ1fTY3J$|160$p2Ycrn}b{x4a zZ!nKJG1J^O^3pmv;?s~i5RR2sttm-yCp>Un1~HTYYNEFppKS2-8d@E8^QWx=F9Alh z{OoO6c-1(=k&3RZlVqYgsN=dv3}BkuiRmNvVj-d(cQKE7I+{N!94ZB z{FA@~uK>m~=wF}@z*DF@qatkYwg`G>F(L}2 zOQ%3G*D|jUO=RAlPkRr}f)nJQ<>eXNpKL#~=xIzU%HdZYou0YfTD=}eXiRGU7lAD&=&BoG1buT z_KwCCUWU7OBEz~Hg2JxC@^rt4_q{Zkl2%7tJcLm}A!i$Cz4YM=5-^OSDCPPC!z@z) z*y()6+gV!E?eJMmq50F#AbDuv9E~3jANrOyc&MSWlqXs_m%8rS;-2bDPH$kj8}b$! zIuw>9TCzP}_hqfup2OQXpkMbsr?2IwDVX!&NF<9-EP_66;z8jcK?wvR&dCDyYi=x{ z`?JAogk3zFvMsb6VJna41t-@-Lo{EuHOP_)${!?c!Izjcyzg+Q7A{ZS>v9CAyiPt_ z83T~ab;HDIL=V72kB5^g5dnn_u&Oq2-F_h2b5U!ndpsEekGa;Y<6LMv03Led`E+OD z^_pRTWR;X|mk&)JVN#d9{zCWRG->z2Y!TpI41%_(F}|=8cgM**cyNyYtbme@G=%!~ z?BLlXn7HhdD~XqnYVewlWZDYNoFA%#HlfHbl1e#&__qajAFdd)S2FvUYwNYo!qjPC zd)kk5(c|&!MfCbcc_2t~_rOnA(Oi|=otWvYsvUX@xHJ#v9FHMm3 zd1=1N_a{J|;$3p~NQJhRl>h z)YqXmkp1jTaf081QEXF}ZF}Ffs^IX(UcqeGf+YGf;@#uQcON zOL-2AVnW~=K=+|b`Lzg}x44~jW#LM{B$eAY`HO9fz-u!l2aY zk?5$=YpE2-=f$bkFC6&j&aq+115<>KXDgBElPej^qg-GH_{~yqG;s|gYzBuH3<9y< z>^94Z4M-xvYbh}p&X9xvDfHw!A8>G>Bx|Z5lruq4NvYU1g4Ki*T`Ku*q(gI=;fqU9 zg6qvBivvdneG;w%!AS8Y5+-xElwOtY9Suyy!vLEqo7EK`C%5=q3QGu*I-RX8ITljS zNQkTcdGZMAG(k_t3SvRH&Zjo3ZUGZxugjc#UPOq)@<5odI&_=fC=#JKqX9QG;$wrJ zMRkrrMgKR=x^RpphB(0z{%_)tKSlErjTe68nsV?(LEKDp>2Xw=0(mTz@1pf!#RJ#X z!;P2L-hzX5O(%UNdNDivMY8q9_-478Eq1v~P%==cfuEA@x`^xPNVf90(2Pt`pa^PAvVfW0GujkNM=upduIh2gWxw+J>N`QBOzeNA^aE025C zO;!bADpbE856;sTm}Eg+=gyI^X91k6#aBhgE|LsKYisMbLLS~|IE!RX$8-fv{%7ZNMmNeW zEiA)tHpSQHU`pk6Ebz5&lMvLg4Aa2x{tl@(fWIUAd-fy-y)N!o7$b#qR)0@97+)FZ z?--uLkKFaTaDI;6en7)9dYtOea-^jG)1y39)tRFu=C&`Ez&9D1Z(XlhUtmM{oc$aw{(I5$O6 z5I6pxwq)W@aHRNahB|Bk0d%oqlJ}AtV4((KFN)Pt1w0mX`M+o{F{mlPA#Y(M9=*G@ zGp7v#x}F(?{1nZrvBk?5nthN75YfBU>@}dW@%)ha&>-Wqr-uZf2cUL=#a+-z=*A|F z>#^L_-A@+%vh2s7)M}#wt9BW>5TcIAqpH*`xX}PmlK|>gxTF|kcIWlTP;J_aV&S0U z`rsV9AAYuP$mnrWRao{A6t@n(yiM#02*T}>FXR>un#0OK-WFr%7X)thLs8i8XZ+uL zai1s7ZOT1)RvN&{ous}zO2x*!;!#NI`_!YF>OPW%IC(ng&^cZgoI6=fBE?31y1)3| zaKmn|iG~y(l{MZJ{j%%mL)v|>pgJ@;LTYe)XMB{jP*qQ(+*m^>yt7(s_OFsy?^M zn&am;YgJBBt1EY?md=_)!Ol5xj@{HI$8#9Q+0@3^3SbL1pHc`O>=igcZ2d0=W|+kt8Gsq;_gj;_&4Vj=6LdQ=Wp2~FUS#%1 zXlQz8oJx@!206B=7U~3yv8Ze?%p4qk-qQm@Qw>3|)nPD`khvSUCl!n69U8)Z z)s%}Z5NWW(RQB1ETj8ja!zyjws-she1dI!dG~(UCw1hTcPt?aGScDmR z5gHJtdNlw_a~iO!pg*f;Gewxm0j>YF7luw}JO>*h5(e`cuyy0N%$Xb*zban)>SYc*g}B1N4^HX`sm6D|D#1^|w&nRF|E#jjR>p8s z*mu8b68kD%0`Aqik(tgq#Y9>ZFWr@m{XzE3_fo6!%1J;j#%06!L*#OA1bOd9R)NJZ zUJ^rpC_A5(yd`ihz^`f-M)vMkg&T)WR+d+BU{LEFd#5zsZe~H1C0R2}x6QFwAKm8y02)1WwS#v+W1qOBp!{Pv=nPfkmA9_5P4}CD zJ6iPV>Y4X&O9Cq!>J3JlqEIIY4u!LEqbV@Z&Y%U;-sYk!8VT3f#QBy#-ez!2`vv`c zV~JF)dA2u%v}izyG4R8>nq|XFH5R8n&p4?dZ8WdQgQr?*W#V%fjg%&gKw;#&y2HPa zH>~?0*skjiSXGpW{_y@XCpa4g!Pnidn&~1Q{32e)y~r!9lph=6)@8i2q1!FH#g7hG zEa(232@VK%{EU8-6LTXm6G(r#P4?HW&gE=Mr5o0EtKtUMVRG%M47!IYn-&h}ROT`l zD@L~vtxp8dESHSD|BUn@=?(}@kCFhkUcsLFmS!u>FIgC{%r*b5j}!@$PD%%7;fjK& zqO}Ai5TEI=apv;3^GpMgC#}btMBAN8!TZ;VnNtOHfOLmj&(UPTvT|T@J5c$+7Io+x zEM`8k>2VeKx8js-=-1K~r|&zQ(-B;4Q)M}~RdOSjUxnU(Ffj*jKV zng*GrvxuuL(@FmZBD+u)7#Ip)_K~DpfN&!>U9}SsiRu4PVcDqqE8I)R9QAOv!7UFs zWzh#t4$%f=*Ks>`hcA)fCNuO`piGA|T>`Q(xQH56Gf%@%z2sJT=P>bcTOOwX>TGG2 zfGib<)SbkANY1G?oM=5CtfvP!@{uB4*0NNVjYJExUCgCrMBL0V_6}t z&KBwo#d!zh+td|MiMPFSfv%e2&Ivzym24{|p4#MpgzeMYd;OqH2_uOk)!$fu#J!IP zv(=*YYwCbxZD}1wP9$7+9OPUdjtnWKqVodOzsVVXNktbnH6L;{I$`49AELD{ZL{) zL8l{d`st~4O9m1i(wYTDKV$Ai*gYNYdy;2Me2e)7?3NEBn#Kabix%h{HB;?n3Y?fi z^T{4q&UffV!)M#?tp%vG_3pMUZAxgF_#0N>!$d%KFECj^C@`K+=^L=g7q@?5Q)T?U z6Z;qZ_)o$ZjsFf~I?%EH1&sM!zxnHV{zJJKwtpMOaQqgK{-1y`O!R+45+-~m`o9FK zfLsg{{a^l50E}Ux{~Ob=01kf%Q~@?sCWgN*0Kga~hQBXh0380lfDLf?>jD6bVFKLv z?q>ZrVGJ9`zcp{8S~vR{-Rn^K$A>n*w2dTy78EL4F~$+XNUNC}YE?tgaBL7Z=U{Q_ zNa{Fowb7~>G(}wQDnYFy{W{}?yt%c)=4Ka^yZ!GKVGOAhoq71o#H{D*A;`@xx66CT z9LnFZn5qq>f5c+ubKQ7cZ{=l-g?0VOWQwq5yq*^CWC~$qw4~nCF>&)(3UyhXt~Z3s z;j*#jDiVyn2F{Lc6nuVX+}<}^eV|MD&tF<2Oaj4_<~?4zH!viLa#RP9$ZVPoZ_a!8 zVwD(_G`i#C5es2{_CujF(EZ>TzYt8Wm$l`dQ}9yZBc+#yjx@FmPiA zJf*et0Sf?WK37sf5aoMXDs|Lj-oxFK1s}*0febaCDBwhT_CaxAV{DiIe6$kZGnk!3 zm?(S+-+fDo_`=HfDo_j7#3aoz1D5=`UUT~5wF&(eR-S9K{>jL;4-AlwaaL~Vf|t3z zhZK)1fu4RJxM}6sd>~jp{;DO0t+PnLhB?~^4SOa4vnJ6`OlKPbC-<|04ak{re$V=r zkZdy`B1DlDdblf`F1k1VT$xQ@7eHckcYG{6sBjkTwBe-FDhPoXe?ELbZ>EP9Qv1n% zpkNDc>cR+J(>)V+@hpN`n2(BN6l8xaPMF89?`Y467}4#erlLX!&FPRB{s^&v?LP-XkCEn(n1Zhabl+HEY_=x{=C zfBDG`E_N9P$Q3{~hEqrt|Bq}8$?t5;Xat11Rl<8V1{08tIV}w98Ej}IJN@jLCtijW zS=~%d>C}STFeAlyDZoDcJ|sNCe@>fBR5r|fG9JT3v+PxjT5Tv#0f!z`ZJ~~(SX>Yn zU~fnITnrp!tSCF3iXBbcEgB?HAM&f;LG>5zO9M|OPW?$qDs~~5OybZwiHE{cczj+p z#b;dwje)}EIz7y2Il^og>}yLvFeahgf453R2oQ|fJa&;!MFHX`$12(zASa>wOzCPX zHFBar;w?s^07YHCc;=f*p8qJEraeDiq`r_%eEJ*<0zE zq-kIo#bQz!2;P33O^4HfKOHPsS0{K0FP3N(-dvg@y%(Eq2$&SE*q!z!dD1`Ru!l`Dm3D z?zw^bAoOgSInP5DFmzFrHqd7IGlbVUM%%iL%EU~Nr>git_OwZ$Bvn;#_}8MF5L#h} zE^35e?6{uU_43WayTcJ%eXZOFl`mY)o7i_EFG^KbG*_GFskL;1XrR|?&|BW$wu2nL zQ|x3*O&Zam_E*=6LvUzkgG}ho;v%2A%i?VS!+I^XXb3dr956TQjz6ZfBKxrG(H^e+ zF)18E9gpzagu1JV%6p9JIhfay{`aJC3noTJ-b{v0Sm;)W zJp(c^hK4&VvJ#1ZYrI@&I#v;Rte{Vmm}_*AB`_8?H##*X!M2DU5*Dq?R7}iSeHM&U znM1!7#Yd*pNCPI|F6m2#gI{kx6Wn?V{R z=$ZbM+9zo6iR@ryyEcH1&!2|zYoJa5!$i$M*pk~H$rrg*wt4V^7G{j z4F?0SGW3D5g;exlx6)Z|Oa@4NqknMe35MTd2dT>Wq4wuuuf6w;Nc9L(d$x%6qbKUW z(c74jxDb6-@+0rYYRQKOx|z)2OZs$HR6Czx`{{j2xCRkSUrWqW6Kws&d2yl>=eqDR7t+IN_?5aX4wU-w2xq6!zC zNJuvV_-(O+qkb+hu?K%6Y+XPy&dI{}z1r^Zgar%`^QBQEg~a}fI}NO1 z4l?yw&8rOB2Kq*tj2zX!q>Zk%BKFuwNw#upx|KiEQ)kL?yxMC1Hx+ zD^f6XlqpSrccLx>oTxiwmj;RV*b>#g3kcBGD9I-m;Gw+&@qW}i>bQIy>kV33e>qX9 z=>9Pw99mtpU_AHVov4{;^yuJl5ROLX#(0gs#Po#qqdn2hley4Ev4_%z0`Q$SPL-b| zmsrdIvo%()sez3bPk;&GC{$K9M4%KHAD)adr`r3&(L-IC0CbzeZa&)+w0MVleT1Ul z6T+*PjYqX&k`iT9F1@HT!1Kz#``5#z?$LeeGJ65?9mm>a+RsLKM z#-!QZpQ1;~M|ADw-&gCwJk?Qz__RMJVEF}FVx3#B({m0M;qR<;7;?05lY zYr=QTxXQW2d-L?yJk&OQy0}uQl}Tj3m@U1xjd%cUqxqQW#OUJD&7bOO181~&Bm|=m ze`A&33&OWa9007s9DI;*Q(;q67mU0;W07*xhHu%Jk&fuqkeD9+akj;Qd_4XrJg%}; z7l9HclY=QB=&c)anXe;|q|-<`888Qq2O9d`o#$@`lg*hHw)NB|-gp zqNmomYOaw7B*puNa35epm@eVdn;|ec z{Khto7ueV&WAxHMV?7~{Wk{N44ufJFx1!C+F{)7ZamQI%fbbV}hGd`R_f=z0%m2u| zzUAZ+{ghLE=A?n(hr6g%vN$({Xcc0g7uilPkhl!2ks?d zNHVi@fi88wT-3jSq>pV3q~L=YQD>P-*6j}~Za^Opp!E}c9o+!AV6?~ymjAL9=8mXARB*NY*>FQzlq5hP z_JbG;z1#YC0Vy@!6mnnoW_1J666 z25?%#eOKGrEcwtXnorK#7TU_rXN<-r9x1OQrBmTZ1i+$>zul*fQ;5SXDbP%09l+yZ zmW1D~2s9G$z)BBbks@YzvHDc8pm?amqq`M-8e{UvKYaMX*EGs|zJ>9iVln#5>3()$ z6R;Ujy3aldC4P&WGVPh}&8m8c_oqkX?poao!$^DxiCBD^6RL}IU&uTgzNoYJ80 z7F6i)MN;Ac@5;70cY+xVhMRNVBH|vHZ|z@g+}H4~7zL^ybEAu$zkKi`r!Dh>5UAK= z-lY3(3|BxbayHePi0cn18_j<4LeY$vDbNNC2Cpm8Yw&_Lv!=1-R3l%J>Fq?Gm7z<` z$dmXLpk)+v*eUArUF}pNTMD8XYpn3a3ucW6rCeu}8AuyTu7tO=-GJQ3gWJl{a$38? zTEIBQU{Q0tD2ocy#JNRB;f^s{a6T_3_ey&RUI(OH zrlNZW(W@MlQ)qeEDULq{Bs8YLAx@vCxvgrAmH*}{*2kKfxWySB!w2g-SpBp$s^i|+ z)*{Rv*wzJ$Uf9;AgWWgZ*^%7CQ9y$w9DJlqS|W3keOhfykUPRzPF7Swm@ZXx^m?BjQ$10`2BMIUm=Ffzch|Av;C8C z6i{OM{rUg9J4b_<31@OkvqqOTT)?w63hbe3G63(^PR?)pK|?VVJTIHrlI4Yb#eOLy;QP zNZh4)DJr*@X2D4+f?z>I#BjcNnh9mz_lUCVl<$Qz8#%R~_oHQ1cL(Q-%Y_UpnuhyF zjXp&K8n(@t;peqgRQkuGi|8}}_oyM?pdzk_@t}%9J|nKH5I0r|zfaATZW^sI7^iF;w)05{J;yd9ccfB-1tcY?T5OrpVB#{@H|(d^lN zE`7}ei*9QAIIw_W;^C3`bgKkCIOD+_yCBhUd!R zkO$?wqN^f-f6<4k-E3r~1ZdR;eUlWQ<4HEkwnhYFWNjgx5Hls{H1+R1W=qKB}P&Hkc82qE-F)PYA1?LdXZr!L|zzN=^)Y|2drlSOs zq?JH&t?`KT=b|ptWU`Bo0?O7`FpC$5EpApp1U9B_`aGwd@#zYQji7mCvt@tXP6J%m!(pOZ$%^->h+bN*WqPEP>aJ=OGjUxiRF>8ZHEM> zwvC2x2%;eJ*5vy-@>5iKbM9t3EKuP>$5XE)rqQQndz7mZ-;tX0d%STcRu{T^g<(=* zx~7eLSf5>=Fo{{~b9zFcqmlR2jv#qxYFiDvWLj86w?N+Bw*fggk!3v;V5ew_k~|-t zGjKtc^Z@khu15BF*|W~>Mt0b(X=+qthJHav>=RjpozI?)k>pY263Ng?QY?59DfKq) z3kb;byps8Y4J#L9HS7m1Tkx^PxP#jwG><0V6q%G{l;C5Rv$CpC7K=VLY)S}{<;Y8g zITFZ_f94WsVvscOO`GnvwL`Sx`b740UjL^)v>uW#hR48f#FckohaqPI+;ue8U`ANN z{nNN`B6B?k{94=A*0;m`O}7OXXtqBT`EmPm9J!1h!MAa+BOvzA@vF#H!?pvT`*gK{<;p z94a8PkZfUUSr_a$0Le$O`jXObeUE6&qz&q6fE*xnJWm(K3X8pt@hQ_E%OrUM2VJ!5Wg%j~Y2|v1< zBO%AY5<177$mrjtuY;_Gz4#Yb~f?=gK{JlCY^B^76IXSay zflcL^A46BUz(;Igp{0vaj=pYPa)|j^bxqA1cEGTDv$2P1XGKrVU7zpdo~`cJuPbhv zRnXFQwz*q)%P47=ouwtLXx&&oRiks1Lgd1kNwg_iKgy4mXFNI@}|7HitX-N&2_&Z5|;EVD#ruIRYMEk~==Tlp==tLRn1vyfL= zyLhvVub6J$yQFGv@i^hp`sT|G*-gYF-c6TKN2$F5>|Bl;Lzn5IRGU|;dhxm)M2V!b zr+Po(*+<99LbK1BB@&JWoHrOZY7_HnRgN8@1V2(>iMauM_0MRCN=HsqI=b2QU)J&a z+?e#Q@I%xh3tBT}-PPA^6@6A$i}VLNmtDTlsx77S6uaD17_{zvZBMIDp4JsAFdN$@ z|DotBS)A)c0s(FQQ9jhfg8tqNvHRrfxhu#{+rsi@vy)0_n~=Kg($6++yB0)=1-)`t zGOC~e4qlXV-d=-s)n@i@E10TikGi8vjncuTm}7Ne-s4_zNXtOA5A~o7+!E<5x9*U7 z-GT=^GL)fuX2#ZI;YVwK+k(x^0h+gOc>!XpB~~ttafapa*9pCK`jWQ-tsr5h0Zfel z!WtFyU(qSyF2{Lt-z2@^8AzLHvv*ea)HKYr>Ga1N-%TH+h5acKil}fTYBfONV=yqU zXO{?3cr~lx@FC}O4|zM=TTZ9BBpR6wAMiIaC-(?PF&o)SJi(CKqnSkSCy%apzb-12 zh6l8^@7V=EjuA>LUT?*|xoU;f7bb_red|6BbNb`ZRoh3qm?5jP?8IVkWT%EtC9A@K zc7$$i>r{WjZ^o8L)-r0+o%#-p%$i@by}x4^9NgO(syLxn3da}TGjO%xEI(8!nb5lZj;NU(OICwep3>;(uXIeQ2 zk_T@uUh5NVjTn1-yl03#-)8FI{hyQ18Rw>&oC6^HYy5(D>ag#hm`QT(=dO%zoe=zD zHYS)JxIzVUy64UnRNh}{K-5WZ5Hdjw$F{FT5Pvm563)(ff<_K#K@JmKVPJts zlYi_<(pM7Dg<<{l5K`VOQ<#MdCP(RKXm!o(m5cI@`zO4%@8gp*@mJ?NtcFS64XlR! z9}L!cUM&pPm;3tj180e-U%i1#OninAtXWSXHYHh%U}*}^J?yDWVBF$@gD`uqLGekm zjUk-h`^TVu{g;!SRrr7YJr>^fxW1>4o!n+>;T2CF+`Cv~ZL#(la=}ZI~;kj zwc>L8WotDNz2vXapsi^@@8aTMzt}t%(f%-qC`qRoX8e85?%cXY3?F@BKocUAbp>OH z#@7WaNWzVj_wEFh!1twJK>8j63xXeTwMI9bH9YOiof16W&*V|A!ExojmXhk`hPc(TeM5M(C`Njnj(y;SZM2|Bg>Y4K^9iN?^uacBuAF_4!&gpvR1yMI5F$JKQ1ZO9~zh)|vP%(gF>tosYSqN*o6{2lFJ5J$%1g!s&kDGE|BjxGM6f|O>p<|Dj?~021zKxs zw-q*i%Y|d9@$iJ@%QFk^3wT3Yie*`z>koLt_eKENzQqjIx-?qtHp&{r@;y5*+)fa) zDRg}P`4{nYCFArV&dB9WB^grHVVw4Ri@DGcS0cz0i9Qp7O&sjp&B|4fRN|HEF%j&k;px^_QU94S`mUtmHK?CZsgvW5I<5i#E=LA*{HxJJBZSX1gKc8k`;ZQt=oaE| z`6xl(vzWq#{p}Kta%ycL<)+ivNyOon6x8C>vZGOhg@k?sIgA)T_xRh?^pJE(hY8iu z(54>Of!UvBtr%|S=cN{%`wE}AJIrUIqr#=fAAq$rJKSRKp40Jl^owlWr^MQ~FfW8x zzA5#uHj^^*D@kLv{_;FK99QB9i7z?iVkVB!qgM1dIvQTv(piP9gd}fa8A%;S3wF!Q zH-kt0GYalL#Tn6Y=^l&C*V5mJyS__IlgpQpOl?lIT=(rFgtwKC1=AFR>!|Tp)!Y*E z&;~XS#QJucKGj?c=#0o7_uKECHtCv6bgt$m)AoIyfQ|KC1r=jhEF%;?H3MWzdbROG z8(&D4zD`%|YMC1)6uUhuYL*N-%=D)+jT5uy3%BON_M9*cU+i05qI?XYPn$ z7mMP721`O`do#QfCqjhC=A6o2p_FrrR7M@C7IBvcf?0g;P0=qmJiQbQM8=ah5I4&j#84ID~ZfbqFcq zvz)@GG1qsXi^6=)Eg~;6RvrL)%D16#OkAO!zTM+wa1&C4OIeGj+%#_or{fy;E^hoa zG1B696J-%%ID|2vegGm0B^w;PfT56+0RLTtw^D)2%|YVW;Y&AwUFSl zH2D72yJ7=B>8uzW5M~d{W0S5pMxDIzlTbYp`M{IO9iea;mABz}K|b+TN^iOp-p(~a zKSLKG-bH*8qhnAk<;Sge4a?3Z0ISE-K^7rJMK1XSBi1!?k>PQbk;Oi;V94bR#<98r zbz`OP25L&EqwgmD(4tb(WG}|*xnfkv49%-QnuKQAx9z#E2ZLu~$tt?Ako~jeFx1)= z%&h$Jq$(rje08_tgjD3I4(YgJlNV1+H!x5_ROT1*wAT=E#C4_){PvUR8an!>Wu-}q z47p@LZ+G|1tL;FKYfKVy1SC!<>JfM>@G#B5Lhwz7aIlPcr$EFaH?{Ao>~#QpBe7yB zg*%!kyq4(e<-yJf$sX}0@#}C5MMquUJ_2q6ur^YW39n2H9j^2BbCg{?3*u!Y47SX( z9cDzpQee!8_CV?x%Fs0471L$Qrl@Qiu(vcjtsQH`OjYjn4UrduUH$&gCTI z!tf$c+mBxNZvgm4W;QIN?^<26SG8>F`=ZISJ80JvEh z%afQ9csO$sHDDC(O5C=ym*33kDLFCuZ~MsIrP+ssYds}{3ExAYe!R6n*?$D&3#RD( zLm$41QskE{6x5sETg!G{8L0%TKoI*ZCbigVXO4|;^bIF2KT)V!uT~&~W1^$RlpG^v zR=1|tfE{F2u=^D6#(5QAejBv2$}r6>+5?TtPJ-#2gVmMxym|kc6+8ebm?{}I**3i8 z3`=3KBwCKYwEnOxJjSsa$+bFM{l&|Q|BJuz_Fx=kJ;kofWM06%j6AAKiV5jM%X~lT zC1V%)s`UHDLq<~rl1666)Wvb~-Jj?qeidW4Rsz=79a4u^=KFrwbAD@hJyRrf$A#Pu zEhL%r0^GW&Z|3uaO0ihxAu(bYP(>Q#CDm7(`qhG!@sF;LX*^OnFZ2x`aBrpWG27%UdoRO|3HEjndxtEsygCtklhCOrXW??+;a5!(?3xX&c)EI` zkOT@WohG2JQ+G5QFT7KAvA^&em|+S4egpG2euMZoej|akS|=@~u7T{R_!67X{on8# zl)v#CLv=RCBlJ}e;=xG#uhHgG8v|$@B5B|q&ywL=Y?=Pzoo-Li*7@)lB|^(6&o2vt zn9zeHajP?!o=<$;^dPJAXMyB@uU(n@C9m9zHy-5F6<0T^(Pp?}5$wH{N1f|ZY^xRY z00rE!<4O{Puhzo}jbwvDc*ZQ6z-~xnnWeJbvobic|5VG*y;{Po-%i%W@xue@7bojI z!c>Qr6B@`2>Q#alR$O z;jF)vc#aY}E?Pq!@^Rz^cZv?(DyzEknQB7doW`Zu3R&oKQL;wWutC}&J)Y&2*}$hy zo3;z9bPaM1KJF}b_@F|FsYDYy%-0W9oO1iBJwabWIqg{V7ut+;ToAeYeD3Yt@%mlP zi&x0ydrC!?z4i11I?)v{M{tTrIjk!pYd#Rlt>j75){)be46ohN(QUb6acI7F^85?F zfzKfD>IJ?53&1yyJABLm_=e3*&I^3Q@Nrx+{n(K*Sij8FJa2rureDxJ(PCW39IyTm zQQJ5|lJAXNJ)^woFla}`3w$GXMsDHt3w$H3OsfRd%15j@;7Vx*_soWIps)d;ovv9d z>|TXxT2|P}^&41PJ1i1KZZ|vb+M#c|%r(@*e%qRz9#m@f;UrTp*wI_8$!$WuQBVTV z8}SLh&>JhB9%s7XuYRF7Mt-3;e3{=mw-x?wYBNbRF4;Wjb43vNF|gy~2PHL^H!K%`lhych3gBctM)xkD zU|v@Z1Tw7dm9IfIzVa;$ttm#|qpq30EWJ_0{JKcg(<>2dwkD6V05 zJSV^l+r5E4`)u~1^6(dT!*>&Jf8Qy1PF3$)>e+)1X;EW)7W>nNZL;?5W>X$9L0h>; zxvwZ)s(3R!vHSt~^U;A^5@jit*0F!vv#a{C4POUEuTY%3hn$&4?_dQRooM#U)rold7fUU)T+4+f^l;?}`~5Tn6Rw-|Ob-Hz<`S zAL&9(aGZv*StK!7_}b64B|~JA?QGOHyl6C=AfWIToM%ISSy`(|7n7+M%XX!LSz9G7 zuHl2>yma5kc6sCCySnLS3QS9MrXs0qYpbt9gh?!7G<*F3lP?Zm%vB`2@dOXUfFo7` z_@`6dz6-90ClqYH?KW5|3w86YJB(}WhE_~D=$d9e+p28mt+c1fxC3SMB2Y{4wCntR zmM+KrN;zvpWp!gZ{`Li>j}4!a7lc6}KeIJ0o?2dY9UXC}->?^~tMsce`bn%snm6Uy zkkZj=4d3UD9l}bxOm7BNA*K%>A~&z@11`jC-$InZt`8KR?`EvrmRCA*;BPL09EJ>_Z43c9%*u*9Y}WK~?rKXX z$6?TOec8$tIZTE} z@JK`a*mBz&qx0$owy{{_Zpvtnye{#3;lX~WavbY30<%Df`Bb)X=L;-6R>p6}TG|KC zpGOD4)3dx8G=rD03-K(#WJwok_gtT?;P1EHne`i6%^XG`T<4wKl0UWr3y<$!(s_R^ zJQlguT8W1a#Py_J8_W_n0t=6G_+vr1Bbog7dYd>OMMD}_!GIVhp))lq!+VQ^#Atzx z=$W}qkXdC>f8~8@G@Pg?Hk5UV%}G<}y^;N*$t%z}*a^Gpu2iYlQ;}gzS+!1IK1d{> zfYb8*9M{z_dx>GT?d5ePRcXFztYjdF_SR;ZVJ1liB7G9e>j(e69j!`0@D~h@jlX0w@m7pZM>I^`tq^nDRGc{I6)rNkh%%tne`^s_%-g0LYYQ!x3xbhfZi zM%SfbILn4OA|r2JVBjLFB$fgBBT<@|r%5YY$?~pN*QWrkht&q)LKnl1$T+A!zNDV8ki@SZAEbt@v1YA^cC%66cS_uW2W;9 zW+McI*IHHf?#Dve563*Q;@sXH&I_$p^kmI=3%s(=TljQ^M1}&;PKmmqevq^TD~jNM zvwG^^4}pEoo!t?Fc_WXSWMn)AEofqV-2(eVC-khi*=jIcO}I_=8DT6m2i2OPK=b&O z=!!V~`Q}$LCKE-htP&ezT{sw$K~|XHj_@MKQT>>$Hwr+oVli6u60C$+Al`koK#ce- zB^tfMRtI8}L%>~4TqT&6g5UMg((TMVG~#f^Op^!hs6&}x%Y+|X$IKLi^A><)REMAJ zdUh%>?enc%9q4-d5#V!>QKTuntqN+rGEAP)pSc((dR}Q5x+hU(Vx0H{@NC$Lcq{}jf31nGl`bQkT$ z`vN`sS}IgL2YSF|8}4MMm>c;nE|yY~$ehBdAP(Zpe|1am13R{)VAn{OH4H4n2PMh* zCcY5SntorJ`GO0aFw-qYj!E(dND=97zxJ-UC&II2N>;9J{iit8fZkw2@v#wcouU@(1Qy@l*g zUYu`sd!1bpw-sHR zyAKn@*YB|k7wq6ZO5sqBRY|Ga_eV53aHq?#q{-;^Z0yg zGwUm@KxBKy_bK&+2v-V4M7v^SsL^)*L1dIB1E$kHR3-)^Cd98@hZR9XCK+Ro+fa90)p+iC;fF$bQ$b+Y;aH(9JJ0oN*KwB? z&|viw{=y*UI|s1qz=rqd`c&>zbGAEWY7qN-*HI1NGMuZ7V+(*?hjq}>S;hWETEP#) zCAerg*R7MZ0Ag6-RvnK0ApHXY>*E2|i@0xEn{!Q~C^K&^=+yq;GSVIWoOW`IEN1HD z)y;dD5qVE*q3*5gC4S5-4^rb^44NW1ki^8MC%*G93e?xngAK;ksLBlR0EL%^gU8Jy zZ+n2H=t+obb`+s(YOd>pj0FSrcSIO0)lIyDLfY&G2= zr0Pz70s=^fasiIkm=9-rDC~sl?CYm76j#j92ZD$RVY#%QB|hF1aigVeqQ2edv6UIA zTDfz;$j#8xlMH<=S{GCtlbi)>X5^RJgN7hqYqyHK250W&Dcc(%RZBi=C%Pz0$wmBN z{fZ06MQUP-pG75?CFX8F^tdqpRJXK-++y*@xP1uqcdD}JZ3XL3c&E|KN-}$whQadc zmq8|L5%VL8mfJ|jm&P}f7ZZ9~CZ zTT}Z>ritqz(_U9NdcQ19{WWH>8blQw7hP!~ey~*v~>+wHx73YdibR%2@ox%E;aSo0YK! z{hO6RTd~IgWqY|=_n1<@*-&|^Ggr}4(4DedgA(E9Jgr9sOOm2L_3E50RYV?`b&Lp% z0Wpd)>~VdFwS?!+r$}^JBJL*xkSr^TTXsU)AMzZSl(&)!my>K8lvyrkO8jO^OrP+d z+8j9CTIUxjkC4PY&RBQ5TTq+(a3Dhx1v9?O+$UZe-~9#5(5-5<4%9ME`2l2FtraTQ24 z@KzuwTg@@;gd?4UB~&(asTy{iZZ@Fl-qDPkTKMV1`EcW!jW;%Y;QGX5!Mt-lE3>YG)(6?V z*LI9pH8dw?R)x{sy>^`%q7G=I3EiSiPt#iP{MvfU2y2b1;A;h4pU^29Tt%{tpL( z4S4Y{br#mYIT%2a!V0|guWkzy5i6jQ`TYWT3oG-VJ`8}%Ug2j(%s`*nLvdhO)Sr&0BR}Zrjt_%@#8mp)xj+s}h$vPx z;g`o38>^Jy~0jP{*+sdaq zU-|FW-&XO`AU(WIC66S5_l>a_34-G_#et_zkj?1HN$s|X0pL;1WYp7_h^%o$?g%XN>AE$ z)k=((*BnmqwG4Q~BuR2$7YvVBl4ipvDk)4NMS`O51Pru~9hcY&8K7F_)KEdNpC54G zGg5bp;1SSpv!r;*KukT+JjXCo{%YT#*XCx*lIK;VCCnI<(4NVkgtw}8!@iS=RO3+2t4g@7w&&`c6J=Na z$rT7$9AcAPkoEw9FUx6}&fL9-EoQ_QMGnPG1Gs#0F!*s&EU5lCPv>TCNFFL_3WP;A zQ`a`vHy_?%@TyTV=ao@0y-@`OzTZOL(y*8^%V;K<1sP6bVXJ|@i5NAgmmN?nkvE|z zcr6MrOQ{<%w!*#5_Xyv8j2BtPPbHqsLu14sl zq6~EqDB}?y93Dj`n(-0E!S0IHfE2F+16+lrii{lo^*xhSL^Xw9S^Ttl^!K_5^oS-3 zaZ+XnqbWzSS<~sjYEYpetq90;jZmauo6&4Vnz&qo^?2@bdFx5dR>zi4XwD+1LEA{> z5KYipDt;8i7)PHbBUYPCY~TZK^LQIy?_=?7(}N;&myU=(#%1tQ^{LK(BjDVId~!Dz zI4(&qD8E7X6m)tixI~a7D1E4o6r_Yx4)8H}zz{ecIJfZyy}5F5miU)OhWu z#u3)+k305M=0*~*AN*+g8gl^QrAjXEEM~8f*WEh2>92|$1qLqWPVVPc9(Lm~{0KFZ`+M!SaIE z(7bwEZi{%acAVD6BJ>LU5D((4(HgLkyBk3`C_?6W5WeVqai*KWAOW2(;|GJ)V;h)b z>dz>b&R9&Ff>42J--<$+V7`IEfuTtJa8CM=GcFMmls3->`-`rT>_wG)oa+{pz7GKb zX^U%zwaHpQ37*T;_I|53Si)RTdCi8yW`!Wlvwk@6SGxs;%!t>{RPZH*agra&Sb|}f zcw^5%?S@u2X4oxBjYlL}m?mq~ZN5rEOICNK0_rntfs+)CDVgETOGuYU>LKV!{LAN? z{M+XnTur*S4$CcygijO`tYZ&nof7?ua$%kYWosSMSP7<9?kfdyKuT6*PXC>0!otPKIQy19dHkknRP;6ykit-hWXRa8!8Zn} z%E6-Av%YJ#SRzj6sb(#3_tP1>Ix=ulzlrDd(i$|&sy?Dbjn7`M_=@prlc4CQ}P`qmLf2%8c41ZNHtzk7MAJ zhnqbuuZ(8Q_b|g@$UE9!p3Z3m0j*4qrBR{DE9U#9g!f~sm30-i)>z`rtLgH-d$yPfvcly&n~FiEX)#%UFV=J+(T(`pjcW&mq$~m68=I{m>Kf z!%*iR zV-8(LB+E){$CJ#i&$M*8i>-$?`UhMC9mkFjw{oehL!0?O*^IMl{5T>^6&zU|JVJqH6J)VzT3wC!` z0;&>?bucnZ#p3evw+UO6l$729t*`5Hn4()z^0uM|!-_$t>e&F9Z$8&=xJLU6TmvmQ z-7@uX;7PU2GXlmrneQv+P#YZm*rbm>r#-yx`)e$>CqJOF{ zzZyNJV76dtJyVR=32mS(*y7)yrHiRy<;DQCbS2~kT57#q@qNDH7qs-+B^s7z@Na0T zHaP$-rQ>>0%NT<)wjLfNjy^Znz|N!RKxR;%DYRTMOD`@}7dpY7*}AUUxX%UG6;OLS zAEyjZEIBleb;Y^o=-QLhUoP|F~DG;uj8 z?gMHWH6VqlK^t#7rQm8v^4o&prznhD83D$0JJn;eLwC6T1vU%-P@o`B3vo? zkxuek2lAm@464Jk^@M+&MYA!8?~%>+RCp8ZX@XI~5#25O>n$cgD)W___MT=v| ziEq>VR|rG!62h#FVMUJrTL`0Yzoo;(jN71M|MPzIZYPcU!?B%U&FR=P{jS>Lvf^~i zkuu`X5|{ktPYVS&AbrsbW?wp&FPWuX)k??4p#?hJNIkfWO2%qghbn$)Wl#$;A-}s> z9Uoq`{?^K%{?%-ObgBNHWiz|448!cw7NK0k`tAV8VH!#sv;%y0AE%PAFpCbQjzrzK;Yy4A_ASa3>4dyqRDGac6Aor8)%g8Xi#ZO-~3?3J;9 zixQ?m{S(MxVuA^z1G*DfVf08oPc6_7w|%OThKVM_t+6!t(F6Ea(wtb2ReFBf{2Yi> zm#_D4N)Hz2fk7Zb&}451i(F?>6{<_#3|r?u9@AaT6L>A3ep7JVTJ|c8@z#5yqGgVU zhr2eSk7u|YO7Kj~2N6)n)O-NDu1mag%X&d;1mBoKFLZhCWJJb`5Sc#Yg7DuAFDxX_ zG7@r0aQnubr6B3;t|#oK91qk15??F3lN*3o8nc88a5XZZtt7txlK6r-d|)`1sJs*9 zs`VC{K?qMbxLJVuhW->#u9TrLci=Ebw8KgS*kdxfZk1c}Z*Sg8wwsgqY^a>B;1>01 z3dPUD*~Z?BXi?a!>6@Tkt*Ct>inN%SAS(KpQSf7`+S>h@UMTlb^WE)~WWGwfyIBMb z+c5p(V%f^BV)xz!w!LLk`oJqSohQ-J7MrCKF?2RDSaS=psycJP;=5$pRw`7+EspL@vk-@pc+E9{G( zH^yU{e{K+LsN%b|0d30T1N1SNlFBXDjgYxuvG+EhPH<0+kVOZ27pJ!T$fgNYfXWvd zGw^o?vkRj0NH}L3eEYvM4;JQ^w!)tb=688S;XlJQ*!~5s0X+2oW4MO4)AGPapt=yy zIA5Q>4}X{D_*uFkU(Sd}$=YU9cMy3UL6Rgbeb-3p>FQ_4Hxab&?`a+TrjzQaN&>{U zGETnjt~$Y$)E7IyJp^zXT`TJBTFb`U&I5evtA@)dG-U77TcjyAPD+pPPpX-@ah)Aa z%cAoZamH2E>+3(xz&g#RU3xkDqlDY=nayd;h7O0|TxykJRZH5Sb0<|gZYx9Bmro8| z6+sn@^f7l0Bh})B$(s$T>3O-ba;F9t4yX6whYT+Tr`B(&Ny7X4d=IY>X0$b_trU(y zwVHW5tx*NlJQ-KTtv2ZaGS?i*4?2)aBYpyl(T4$Y1d_p`FJ@o3Q>sIbdr<^s=BUvO zS~zLf*sv+n)c5v9EE)+;=?AGU{N1NtV^vFXqO& zAma9WkRL)Qe^{=2VmoETz9x1+xLo+sNMD`20KZ4xH68O>(-j24o+jE78bR_^EeL$; z7LMYptpkwjK#2h{BY&+QUoKz}lACZ;huq;!OGwSGO*HWX4t4u{iFLPvVDq>^dnMo) zQAw3-&=>9EMWdxw=AdU;)%bsb}j(0_~2Z8McOJRByv6x8>1*)Ue z3<<*%$;yA{3^sEt&@+<%(S-aic4pe5h{_WMe0Dn}rz#tC&m*Q=weDjhn^(X+(?-e_m$S4&WsaXtYFWCm+IxSJP?HEB_!0oIubjHpS%H>||g!sYs(p&A~ z-I0FR{En4RHrw$*X8D!@poPvD|)sxi$xV3*h2^kOJgQ0 zN$> z*LZmY$rVxv-{a62`;3@7{}^yNHp+JgbWt02JAx`>uxV*qJZxO)H(@wwohz;gK5ke;KcI~e0K?BPN0UpE=HQ75O#w49vqCW*9XixcvT!CIQ!61 zA{>#i!{0elh?|Jj{EVB37$(UBo|(X1WQVEE$tM&Of-to=2no4`7c3o_yzvZ1)jBB$ ziujAMZq!*4iGv_|V7x@tmAzX`1jaj4{|o=~Y+~VH$D$v)7lzIb+k($FO zX<)mHwme5)pU1%Bd}GhY^CBTPH70RH zy^K$)c8S#MTeZUQ>QrK@=<{uiN7_#~Zl}nds1N^W#6OEBCN(K?^iDvqv^`H15uHX7 zvyw<^(tzSiDCQ_{V^vslv5c0E0Qt`ffto?EAja7wh?$^rex-`9Mx(~5B@2$0_5~Ud zrZ@*R%f;=%oeHG9+Az%;cqjDCE(Kz7ct)mCVDM^=biqbB0bH%rn3RRtR#7ZH+FCWc)DaUdT*B@pplFU8@tuK# z3n2Rp=reCLkeeBEoQGb?L_1D{MmK#6I>Qi8{nAaPUs>6&$A&)mh&p^s7ZZkWmOm>) zz|d+G`QZ^i3OX>$ro>Fq?RTL?1WK}90R_O&7$b)(Lu zzRmf<-eWdYzW2RR8l#h#)Mk;HxkqfMUX_yqx>1kv=q_k)r|LAYE;Nv$jAe0qHSm^G zplk;n_d;Mc-330OP7RpKK0KvduMeV$49sWjYIDXi+0cK{jv-4Q5I=KB#EX&v@7U}5 z6cvqnIx=JRm_0ifJ;$>A0|jS*SH&u`bdcAM=WB*Fp3D)r80T8_K8h4qE_p@8_&PZ7 zB~8M}ciE}eLrUPx`)QYnd>dzB;Fzmo4E6<>w%m?nsJZq4j$#)kk8I;-QdkS?cw+^J zjsu0iGIE9>`fHZBFYndh3;71osa=>(wqYQ5d5o{^11u*#V#n0&;6>cuq%-DzB5^4YzLgDaM{RM7Wx@JIoxq3H*?G+Br~w3 zqHpp74s;+wzK5Zhf^VxMDv1eWSX01izNWoQWa?g-(1SK|XZ8^2EJ86gu1vn!3?3+G zoNR3;fHz^LO#6B|m-dJo&IdkH)SgNTD+3w29DAztFz_ip`QO|D_s+?$gdx!Zld>gQO3Rn47R4>Zr0NcSy6^BiR z!)d0nDTnwI|8f49RHx=gST`&oi7}bH@)p_j@uvp*0jz@uky8T?mu1}I!j+#Mt+rSR zt|~ru@3{q@H?FaN;AiWV9v^;Q)T>y!_I(Y|C7{Q%8&sLELMh#^E+6f6l}lYXI(MZj z)Jhj@gZ#67ZRcd_b?P|!N-no;%g0-@v;g2jk=(sXYtvet)>tcKLA_;1x=riM5#5x= zOqtr@cKY?8E{jN;(#mF=w)0Zs!-iyex&?=Y*-gGy>D!<%O|K5Rb{98?=5m5I+!?sc z3HJ=Qgl+3)|C$nEBlZL96ybe)86~BteWi}Ya-G>l)mqN>cesM!T%UVl{a?3SYvoW2=CT-iL{RLS%*UMVh z_I-Lx%a)9>G`9WJx~Ou?ojseh{yLBm`Pd6BHr$TYHnf=1AxD0@>FuQ%@)RxhLiSoS zr=LVZMPkr`sJ+pG(`75xk&@H>EjCrO;Z__=NT+G#p1Ch5iNb?a&x$9RN1;chM=77; z4rTpPfzr+*tb@t}+^cfW;wSA#xkp`}!Y7GGJN=3SgcV^+{kHkF{6mTr&zkho6(hI` z*`&jUDzP&hmjVh)Y0YAImtyWKg)8Z?X&t(0?m3)6Qs+A8R) zn2sDES@m<9$yW@n_}rJ<*LPCcwgRsf$9ZHc3yvX8)u~jz?QDWMQgM{1#&b~zBgt#> zwOq`Po2^)WvuPT>c5KcIRD-(q_zc~XNvVOr z{kCGvq%njh;$htU7?*tX?WI`_l;8NQBKO`?Ln@3)A%4*g*aX~a8bW5BisEF|buPVI zRFqkJ`b64_8XZISL?vLBP(9WWH7!?>)4UsE;T5abQJBc-Rox%%!C1OzpnFrtHwD5K z26kiycJSWP{W3qcWo-krqF`^YVzj1@f9VR(n={>pU=!`)9syUgFJkt6inqZ)c)^^o zaF2^|*<0rW1<3+igjW_{K7NWMZL`wr-{=@=vrR=TX#ZS6yL3DgRNvU1=*4_*3R=BW zXa2xe+Ic^+AYf=cW1jW)Al6B3wdR3aZ=>C_T2H>irg7%xqv!b#4;Kl3hO{W)KVKR> zs+ihOVC@VG-rsDyq=zHfl(6q`Xy&~;yo17rRk0R6Z!@SPnG2Fpr@$&N4NnlZ6ZTc# zIYSRB`_!amc3OAd(_IkaA&(W3UYS5&cEdaCyDHM}`?S8%HhhNX))4ld0jc#|v0-?# zCj{^27&E8eV5cvl&B0L>cc{|z{UD*Rvvv{Z*qONr`;l<*N&IjP&hLUQs-K~HB*-gDX0z!~Jn9;G?#ESs~={?vQR!WjX6 z;wya@61%=}%EKXY0<2b!=i55Zddr67^oC;JMFq40&IP|a(2z{+&q{>ybkVaLs4{u{ znL0S--;9&QeYl%h4}QEH@B;@&q)FmIF9*wEN#eS(NKTFx(>?~pP5Rh~*WZVWWMVb3 z5wC_mDpe9zGvh1+2X-$955U1`=nw!igYU+0(gCMI_u=Q!ufO`4~l*G>AcN6E_5 z65J4>F|4LEfe5}w5h=3E_na8s>G?jfOfxhg`o?sryOK^ubX?zqv>d}b zueEBt{OA^ZGU~s3Uzj)CbDwTaf4JPwS{S%vvKspNW5PPmZxkqfJ+dtEjsCgxkW>Ht zYu*-cF~Os60$^ukEfm}_Mg4kvf?uD}ueW0mR;C>Nc)7%jkq~Bdp(slbIV8g5K}CVw z|2-$=UrzR#H}noR5MB;8Y@45LBrN5qawkfMDeo)N;7fld)S#(9Kql00$ADFZDV&k{ z#D9A|yRZM)*m(YUHFc{rEAxr(YDwGeGHdM#KINmJ<^O)(Wo7->=iUEi=Ron_I|t{O z|G^l-`im3s|9<|~03N_ijh*2bR9uXlJ?u@17{u)yZ2(jQ@blLbIujg&qNt=V{6;mN zs9$9D`&{8Jm{}L`mn&P^LRA|3fDKs%1wws7q6*tLI*-S&1bV0&P_=M><{Osq3L^@> zk4p)5dIBET<#Dh2C8cRf=1$*~pl;Q?Ff=T#JoVaB+uUE~8`NqEozItpc6v{Dp4@qn zvcBbos`5{|jlh7TQw9bV7;qf^8gRsXxF99k-adS(9XOoDI*a}?bc`KDv@@iL3)e=H z${QF*9XuxZk(C;iH2G6g6A#PFg@htDy&Z`~gL-X3_R;V;WnY>av@Z0q)Atp7+Y*QK ziGZF8O#tH|{lDBOX7r3av0&6l30D}N98db+u;$NN^ zk-ehlZd6Dp53kME%9fz5pKnkIVt+0)exPvV*-9jpTmKr~0PlI=XB(gwL&uwr^#*}KAfpHu)~BVS~xE>0acA~iGR9UnNmDnu%n3T)6Z7XvVx7*G?uBdkoq zBiB5m%A=JMI_H7?1}Y3{u`SwHKkQCHIF%NKmG_XskR&~Qpy{64ixqr6O!GDkks$FA z6P49nAus!lK_<6;0HZNP)(4lA>AlTR$4LG;yej6J0p3YDKR*Us)DSM_J%vb#GkLs{ z!6kReYbtdVA}tMZ5?D3&r1v!VNsoPZh(*Y;3jwRI3K^T0E=BhCD2TZw zH*5GDnhY>!mdyT& zRo%BPo68}<-ch9ksk93*1pLX_ysDRyUtFo>;M=LH0UczUfg?5WLCQIv&STt|Zj2vg zH9R;Hx3xq*D4l8Ge`>fG?rYP6O~K5-Qfr>wv&Jm1Uoqe~hypA1|0s%?|JEE(rAlZe zC?iOB@26yXMV|NW#}&_N1dKW0HBtgbqX=5SoqV$F)Ie$9T1DV)j-Z!T zWo?(*#~c%G)MYmwOvtAA8T%s`lZEbQkZe?_$=n|DlQo*jZvCa+VG9kuw+WAl>qDDW z_$n-LeUdKXVqIuj`&e7tB<(TbgR}9*{5|K=O!ge$cDb6ArUI|pnb^Pk9a8mcN^qU* zh!#|(ZdKXFAUEm$AV`hn-tV9H&$ccfjnb`=Rc%zE4^a-l_$bte9;HR-kyl%>?Jj^b zDuUc6U05Kr&STU`bCd#7L#LIJaO;m{qDoxQVu~rY3!&D#=al~;QDaby+a0^3j&0kv&5mue zW2-yXUFp5|d%y3TQ@7r_Rp-|EGqX^cnUz1udgd6&Oztr ztKI-bm5rZ90~UR-qtt1Qli`EmIqru5-lUewFq{=s?5hwRg9I`!+`BsZxnA&hZM`6p zRQeFM%x8-pXJH-}UGWdU21*YqLdn{Lqelp!2hw_lv+PyGJU!xsps$TxFbU*=Bsu6e zijV&6MH>&iU!`_A`^+}tVx$X5A&Bv{XyLnvJgd;zR_=ALv6?UgQV2BDlz@Sc>oBKD zNc$Qx@_IgK1$}eIVc=+JnqV1h2_WRRCh#_jz?LDMWhlrM#CaSD)(C+TxI6;>oe<0^ z6~;Yz2dt$6{*rV_Unfcz4!pP(+C2?|^@u|P3cIx;X98s-Q)V(wQo7>(K2dSA0Au@R zjplHdEt;gUycozRc64;;Q1;BuI>Ed$%9Q0YnqH{QbbT) z4Cf2|)LS5Z9GXCVQ9Oqldn&kxp6Qm*`JkiVRRlrAD@HyuUGBrf+na+L9HPd^p?;s( zJCh7D51rPtga?yi-Kp-TrVSB9@&AV&>5rj-XjpPn4 znqt$sdy9(aqZqzQp?Ye!hx}=Ad7m$!=jit_VbQ@XG;3)29zemuTS{d81JedEeqhoi z1Q`21Vj^AoX|O?d;GmL&IVKi}CO(#=J&5w(1yF`DF_o-h+z&-$NkyMat-hTx{+PFb z^3#XRW3aX1tp?)}o&K2j$kaw_s2PIO42lp= zxW_+hj(OiTAx|S1#6KYmL?5Fa>E@8!INOmde;T|uc2amLvvE0H3}rsEKZvFn1~fsE z!IyiXoM*nb%q?AghSRWpOX*GhDh9mAKs!lEs=Hk z>})KUyt>NV1VxBB7oUYF!Y+c~3SWP6IDBIT-UCITnwqhu7rZk8XfFXG2tNQ3gkB~W z*F<#X*Nugu>L(n<1WrD$mnP#hGsn6pa46HztLF>^u4M2_Oa^mn5Nya=3S?Sx1nZx4 z-uUHYO*EB@RdOUC`&PJixM|?XLzo!z9|IpoRc*S+z&)NuEPa514+~8&*)WOe`2pIf zlwe?5uB0)ydN?I;GKX@|xzzJMhv97XH%DtSy(a@U{1cnbH=0+r-6#ALA$3hBspnGJ zjH;00v1nPfem^%Bb8RE=cAp>Dq@yukFlQ58Z3wo8?Re=S+P&(-& z-Adu?zKSxS3(`ya`6?c*Jm8}XQvE6Nhd`nqZ6|=mW_W3RnLGtdr>00J(;&sD(s5ZE zma;NfcuC}x-deD=9Fk^zf;H0ZlUAljD*$vs0AEl6U63m4uYipYQhK7_#6JKVA01Hb zNX0HDfjCzVP1RokT@af;8y_sxt6i;(C;l6X1U5N9j4D9wTx#>i*HeXZi+Ge@hEqXc zb{DBJZjMf~WJyC@>m#Rkbmj{AtrPoM>@>U2hc;M2&5#paT5WD1_`Y~Mn&7QD3(IPS zX3tp)Dy~wn)t3T;F6S$4wV<(HnkzNS+M`&^>3g<3koM-NbU%f8kSUd#>k&6QMzx0^26BjMo^U0Wc6yZxQXylTJ3L}2Ua0@D-SS*iHp*vNJOMYRQ9(~ppg{V;57)X|NdH_vNt9)|etKf4{}NJHr|2GCh9q8+-F(wQg6chbYw!M5MtY)d_V z!iP1KJ3frf`<%G@{4w&8mw+4y82RY@82QlWJ)rqjoO>h>b56fMw@FR4ttP0V(17iE_Gag*<9Jgd;#cAQ@Fz%z<>s^1F<)MiF zd@)}2V$q@uv<_7Y^q`zH7LwU;#ZvF&Ks1;-64|s&`3$E&R?e?PF5%lyn-!;gKUMSP@A!<*QdP(Bs=hZL!Sf&vCVY;L=G zV+!qFtKmsLWddHhL)oc@m*4jW@7eHNOq7VjP*~2^KN@EXfif_(gX>v%2Vo_Ml>9F! z4ckZZ{~s#y-$`l2{{yA@goTFsUtQ0K2jZXW`EOEeFfjhxl;$sc#s3US^DlYE2c`L! zJmZ7X{7atkL23TCJOe;!{KxzIZ&-kD;f6FueqBI=;*f%~X&7UdTe<%&dU-pfE zo6>OnJEBvq__Zcf@B8ZQ^uiJ7!9<|h5hum95t7Nu#$q~MzG>=j6PTfKq%$jbOZVHN zASmJ%^=mD-(ZQNXAaHP9j(jMzHlMXU-@yQu4ZBDU-`H)x9uWmVH6$2N4S9cf8`;|A z{&ts1@i|OELs6mQQC>a}gYI)F%T5@YZPLKnO8Amx7Xc}u!`(@6w)eySqo)9AYNyRo z`FHCw)3=L>XhclGB<)@*QsRoUs-&nFVuHQ>bn@&hAPWGcA)yEbOB|Ru0F*;g1O;pT z0F*|ne5WtITddrWsue(K zvtAuV4PZ&~wDW*^$l1lkVZfB?ghQk2_sgcr_Xge8Q!}>{(Jxi5@Bq4mI&g&O@BYv(YjPt>_8>Pk&! z>L%V%{r*sjJdU8+5u*)qGhW*56&y~={XBzEpmN=g+e(QMK{2tkIPlfq7XpZHm6;Be zsK&aUSH*j6DI&(G{kI3~61=10WYfe%?ItVy@*6%OH_os6OG&JsF1?guVLiEsCTLFc z@2fzaI8!!F6S=y&Ouo2x>l@DdRUeopYVdDN)9C1JClt33*%3$IQ}KamWX{n!eNdL^ z5OKXisS843w%mgwgJSEuQ=~YaN0I;1Y?wTNj7VGXIWw6;0&J(a;AdrCHth$$2lSgq zs6Ysiv-FI7nd0dSNZ^ew>Kqf&{%AH>o(KQdY~Y^jnH>~}CsDy5q*AiahQX97ii9?R zWiBZU@V9XLn46{|CFTU8&y-aASW22D>@7p#m!=p73S+q%A5Ly~8uC=rPs$Q~8^S@r zg(z}na^THb*`uT`f~Qce6FN2`6^fIO;e~>X$IGR7l)ZK#q|fT4->F?;6(bMxAScRR z^_AD8TwThZ7~lgrkN-(WUUK&6s>-PrY-E%4q2W-PFfH1g0S|H?ITz zV(9+KEuPxjAvq{dWi*c6P#A^6#wmb4D-Skm^rHwG_(H)6jcHsKSh;z2_{f5;>=d`CGm8jk7Cw!Hl&>_dz*u$oCfNwkLSYtlyedCN>*5we+bk8?YFVnD))R+WTP4k z^=%2KcGKS@#5g1v+MY=FNElHPmb_mM@wYdOK=;bS*Y-6$5cgG6RFCUtnTPr|j>%8! zCGciCA&NwzT>(@aLp8wNAt2uN-$tv``7-rVuEN(z?PJ?X-f#xP7zPz#R%`2rvudqI ziI#k`PZ4$(nkP`^n89v;M+4wYcj-J>b%&oiOYByM)hWp|?8%N}V|C>mQ0zqlxbFiF zVrg;42|MKP2={>gF~6i7YeLU%ntMTfu6xCuS>rLXcsfa+rkLnVFGO_$5tvVQg`?Il ztsMR5rp>w>a5!D^btcTmiqP0%v^{-*ib$XrUv<hRx>Cy=~rk(3!+*E40g1 zjWxW+t4gIUpdxa4+QBD4THiD%bhovVQ(%m+jNC7f9&w;flGihB9^=ddJ&i-gq2$Mf zh=j1H^-FdwC4U)FIa`!2LVzAt9>Iq_ub9aXMnjK1O4m>gz-B<&NZQwlsp542nhqPD zOtPFF>v(Qow}|7BVKW%I-3NO6Y0Q|43zs$11)S3b_smZp^Q-oR;$#`Fphz0R{vBgt z4mMQu88Nx(C-uBJpIVd4b-)P`wixM&@&aazkq8OzQ3*+MTe6``l62o|93>iokJGD29`sFrmP{-Y@Eof@^3tueUA>(qUFSH&&ZsroB&2z6xG-7Xz3;`t z9oRGppBZm$D-dQLp675#4@ZW&k1H2|6Bn4rfz`B0Hyt)DXN@@LYdCGq!qrhd<4x<$ zRMo;~tm>D5A)|N@1I;A6@C}nYM@zDe)}b{q+4Z z7{);U>H{pXzR%izTlpr0JxNeCCdhFxCC$El>RFB1qsr}own!8)WF9T#bB6b09i)52 z5hOSf6jv(^r(rZMF7Re-(OeY8rzu%(cc*?1F-b@%--1=^ms^+bfK{_qHi&gA?6D{3 zIP7;!evdbf_H zZc_d0qOC5)2EQZq+;r)CEAXmC?>jy_A%3}bq?;WAer$I}?H{qqg_b^YFmGS|jUsI1 zK8u_O$-acJ?P?r4Htb*(R3bq@<2-t9>-FX6wF$Q-1@gPH^Bm_OUe)YsS$q4+tw;gu zU1##{kZoD9#VW=1Q_tu8fUUy-b5%1Y2{}xLBV`a=NC7%z)<*=VpSCvm>6}i0S<9w# z;+FRjPJK?4TdFAk>f(>ONON zV+$x7wN>d`D9n>dIMP+UGaZojy4eiDIRfl)ZUbMoQhv7Kr;8Yw#alwrWMlikb%gxhy^*o0h$CW%ZHOKZo%QrjE;f}@{_ z&R|?31rB78d(>dN#HW@(pT302+T&NvHH|M~S0_SHfOAsgRwBk)A~46p*a$$kX>iyg z0Oi+yyadyrQ*9grQBNudkfDyM1C3u;y(R?mEzweY5&>+eP`nX3bos;nl^&dQz?-+c zEohggv`dzw3{CiR%hqfcO?VjT1P!OwfLq8Wx9yeWscQO0jxmK%ZjfQQL8Tv!nH*6GHL5iTg-`f=Q zKh{_wQqXI13TkTXwH=c9dWGHY8mxmZzNRqZ{FqKXvXV61H;l>3cHGln+NiQ=r__WY+W^0ghfI;bJp%nQ%MMm>ehnd+yg zzEDcDrj2wHb4A-HTthxD%WQCaosEUysQ9ZA*#4mfw1@WH5z9 zNJaA$d{`NEVLpk&3pX+?5;n_V27!Bak=SxlGa1`!ICJo^b&LqXHunH8&>2eteyD9u zlwvV-mgq)0%`bD^25_38;k>^%&9BN9WxdVcVZHMyijATu$w~uL-zN*_be>m9q~+3e zv%&Z8O3$@ZGdxBRx=QXfGu8^*a-OTsdYOk=ahgsSZxM{Gn0vBj>HPCP2ktI-5*}M6 zj)nfn3m8~z7_Ee{0dSh7jAYnz%9at3vU4MNo18g;#8yn2C6y{30sAQ17a7Umqzqu~IIUUj(1Xvc z#WO`FL>JF4c;W5TK$m)3*`(P$nw!5QQzSC!nSX>4oVZ)CIrIlmn$XTGG<+Lr4oE={ z@17Q4M@zlVx=BjUG$&auB$l0s0%pAW&SFvMCmRt_jm64{rYXqgSL%^DI$8keoa&dz6(XQP=xGM{>IvjOP5C z1e6+6IQbMgkVjaH>Y%G+7iiahVsWWZ++p=(@h&(bA?2r*4^9)cf3R#}LrWFYI(T2e zopgEScDw);(jsBV?5__b7;Umaoe9Y#)F|XJGU1-*>uwA>TmDn-hY*6h`if}ox zQeLs&^cr}WmPjXIo z@c=gzP#~f5W&+Os%E!DtN~sF=Okub|t!C!__^XMp4pYsMdg} zg1qNuB+faE%M6A{VaB;%)MA2aEe(&0?z?=hq@UA!e2BHy=ey!|kjV^9+0I8%oaaYK zJ=1iYEbf@FQ4eI8b$uQeN0nSPvbL7Qx^-Zb_C2%!BGh7LN(YZqG4?_d%g=%{txH_& zBzlk^6_R4OJHUuItC|ki+OzwDbkP8>^0|ZFw^>0!@|y974^*R&+VxU}$Hc=FE)01sFg|8)Wez>|NS0Pu5|{xYD_i2@`ZEKGl$;NL|xtW5t7s?msF zWBt&f=CVnlejbFS*V598IyYvUY`i|}a(m&Ix=B$%A(hHwO4RF)3e|+QhUN(L3<>*1UlA5SJC&+8-K zyMt?2=}BEyXX_g;krc%UO9d6CL0!9M+fB4j4f>KAewB~%gBWLAgKz|D{J_)bI=VD* z?n(dv+oYF|w3mMeV4J_gHPSMHi}RIf-%)Dw`2!1P9YL9R6vBv$c-X4+blN8_;8Atj zqS+E8`-o_N{|@?~Hl_h`Y5;2E_}!MR@?E)l{gxOYM@>p>S89>s$oG7*S6lG*9(>IJ z>%J$}9}oK^i?s;mkaS~qENhjNO?MrrHH;> z*dTVj>s_`OguyPyY}i$oroysp6Fc(OX;aJZ#RzzNfRUOJqJd1u(O5D9mb?kSsHbdf zfYjsIaPF*p9~OC;GP_+X`GRwOBHorVvWTpQIEu2u^3d}zh@>3bpVYudBY0h3I(?L` z0fMQ9E|$nW^s6!g>ZUvBlWalS+l2PsZ)&-akjQu+(3qc};!QYT7Z?uCPmmIy*2)OUkUkovYSJi-;f|2!}wH_%Vrl+!ahJ-TW zb`B|f?!bHuzy-@{f)Wf0RMn+W2*w7{I}wpc0W%1?60QU-8Otd%0O=!aGOROAGp%an z)xnsfi{fNFDu8OGDQT$dvy<19z%h<#YNK>TqBdTvHhleRxGyaO&*WEJ?&3N+Nr6DT zfQb!^@8lah%r`6^^$59>sFU)-Y8GbgP(W`Y>-v6UUiCcLp~ftVskt;O_%&5*9T zi0Bx>5oR|Aku+-$LeH)t|*w#>AV z?a|4iVE?!#=F+iuv4qZTZ!o$S4UeSCz z%Ao%qILe;Cj{`JMCi96vzjr#c;$~>!XG~dvSZn(2+QS>ss!hq5GX59>_2iHgmWVC~hGj@B{7 zqKGI$_M|0vIIfza_=5tLgoz47!!i|Nw0Ol)i3uCBq5PX~4d~JXQPXrOjK%wWW0M1B z-|-3SJ)k(^v4H5HonfpX!#VURzAJ=W3xkh6rBW0K@dQ_yW%R*&@^ z3QrvzYK8s*7)!TO5ECl;;4^6eKJ)c~%=mK6T~!*sYTOxr&1KfI+zT8S$3)f-q$0Oe zHN?YwAlL()Zvjq7qNfI|dq@U2xL`&R`T_G< zt|Jy4R5<5xG3F>#14XqN)$yA5dIcttP)Lde zUrzA}qv1k>+m$DVMip)DW>i=JgeKuD?)*4@O9=Dh)n-TFIzAoe1lSjEJynL2(ssO_ zyONrEcm`nVO+iXjE1?8j-XvUzt3Ts=Ynh5Z57#B^N=+lo(G`3} zZ{_z;=zZ*2z7MvxiUDnGP{AaXi}M(QIT zrrX)tGL_exL}*6Csg;z=E*5zox=}x8t*G{_-kt#r&7CQhWAsU38VKiH8OYY8_DUd%3#3P{S@z|NsFp)Heeg3{!CGTNepTh$J6s|+JTPQ@}!5p8nu|T^W)U2ZR#te((@iYr& z0^l=P!g2cbw?&fpFAYxJArGk~E0DiywRjW^%(GuW?hY(zSz3N?Hd)W&ZAo z2whbgn`yvWXQRr+M3|RbL)8Uz6BczdEBsg6VNjrjVm~As2=z;E6vY>$1h3y#8WDMwKdTlfjv9@dJ zk&tQ=sG%1l8jz*gTLffjZh~zs>>nA_U~&hUqk(aQkz*dc_r9BrK33_NgyjwmY2$x7 zyvse$k%rR&q-i+Kzf7Jh>e(sF-iM{aN?S+62j?gV-}N-M*6Bs+h6rNL6*#RJivewD0hET-#-d;h?U-fKrFjta0;y1-)30fr7uII%B&a;bc^d~L$Z ztJR&7Ezs8Y2E=J_lG~PlPvIrkiGZaN+2)ZzGSU*&99ON|2=OkeAf`a@dWIl4`60M% zLvRTeR|plqFmuA9l!4f1#JLT76Z_q|A8ntOms9vK74D*E@y7EQ)s&Vf>V zvKNovNd{7L2XQAoN%4pS5eJS{95F^;SdUsJ5%wj)uCYKkYqR$EU`9#+Lp;9LeA^rN ze5uegDubJkNdgw*O;f&kDICW1o4bK+b4uap_u0h_-eIu7YzMprUH!~j))SX&(S6)W zBOcy_ENg5|-mWdQkNlMgIaybM-LN>$LfwP$@s)s;q+506s7r+zo^%AH@6kg!*uy%Z zU-d5uLHH&H>{w#lWMb|jMjqHHxlslW^|`>U_R99wtswzkMAwi3|6-246VW|rOO$nm zyd9FQ+32nyp*>-*pauI>EJ;rYXJ)lR~&xu~sqY|>)N&K396(AZa3Sfs&uu(WljXZ84m>IxXw>~NBVbYdwb7>j)0XK z;Aw9amh=OA*ON2rMoZbnq0Pi|2Q~LqK@)QN3H^gAkDX!Z?q9m}rZ`wsHIGG5vpRB| z_uD1udVrN0N&}xj7d|$9xJ^c*Nfhp-?L%-YF}xOBug;0ypB%?)*B7p!5s^<@u=EFC zz1e!MB7m=E*y}tZh{1!m5Qdu?Ai4>GT*G=Q-`K$7G^?IreM@S0zYFz<6TSoisoagd z+#SSM=^&AY|9FWJJnR#YgG2`908)F0sI~nr{GU+>Gvi0g<^PXDLEmLi;qQO8fa$6{;%2nF~dd zlRI-Nl4Q*DU5c8|#N|eXaYl2>$0>#;krfe<(4SONj~Lo|jne4@d(qJux_Z?aYPYG# zIT#D60jx6fvczO-nR zmgfkv*O93R2uXicL6uILRPN;(w$ecr><_ap5&Tg{=oYwXepV75AU3Hyvsc(cr3rl? zh}zj8wwP<*Q?i(E4`Y7joJcZnMJNfKvf}<3_X!e_r=gU&@J_z?2Cn{re?alRL~YeA zDpvj`fm=L*D8baOD+(w}~Vn-<)Pt<4zO;rtC zl)Em8Cr4#I7Xn;_%io1HonyN+J`O1-SPAJIB#Tq`UxzHWkh55msIyo< z-a15{4!=;Eo`R0S4A$IWHef8tBjB(4-2B4droQF6?F$*h|Av*Vh4_us>J15oBB?$j zaYPDSECzS5h=3B3#NVo{ULKD|dIFUrG*TYHnFORNm_Rz&izj~}s>1YVW#NmTZHgu+)$eLCXWW0(& z9*xJ%jzl+kC_|bxUQ|we?djDqs;5yJ)gSLttL^2YN=M~IlC_9#k{;FXdT#FARM8@4 zayy}bx2;f*L%aHD+0tu78DIMCNr^nY{zO@T>K5a_8?yFf-pD?S0E=eiol|o zz(oqdQ3-+IVbf221yy*2S|DQmi}*59zcp0eCEc(y2PZUxWigI|%?M)CUX2GuzY~~! zE^#ox&%F{yY(4VxdnT{dS%`s4_)pug+$Nv0J0MHwX5fY84Zngf0)XfDKxL;?{iRVj zHpMs+wj;HHN}Uk0iEZHXQ8?bsI5tvIUouXlGQ9PA_qUE`L%KS+&(12xvm-E}KHrC! z|6at4MFh@um^8+}K!gQ(CGX@S!paZwH;XdI23qq8+54$>L+;rjM!OrU3zmfVij)yA z_HsAQl@cqS=+DZ>!Dkd9nsIi}~(a$?1 z5N?yUm^vo0G+YQ90@E+=-7IL=freSW%78XeI}2YkM!9gXBWNbI)h9rHGGS~vWB##& zaWJjGqOqKBkmB=*Ra9vDCO9vhKtEBG=~Eo`a|AwY;4}xjOCdo?;V&oo4ttKs(a_kw zAWFeHaD&fA1BOj9@Su$*EQ}OC8eVKtiUI$HL?O@+?Mo<{DVZ@{wjd?R&Y9J_(x!EK zAY!4Lc7Icd(k@!%Qe))-WgM4ex@;qok(lc{YtaQ>n4B#O(~uqEGZ=}`Czz#Zg8{pV zbjOJoYH`iiY1*^?t{g22-y~ook7>#wUmo5-Egxae948Hmja{aZsPjX6ayfx7RJW;n zY~Zeg+hL+(H)Rn7jln@oo>ZQXkpdolVxLLuS3lM-;xn8fWKb15gzv(-4}+JGcMBc&Qcgk_+SzT`9G6jwl*^~XHWw5-dfR>(+23O7-t$t>D1|DYJT^MuYBgyd+ur>-Pu z3@Bhfnj_HH9(NZ+iPoE(#x%MC4 zj~zTY*(wbh!%gE~5R;iCQNAKsPo<(7%%eU_9uJ_{$%EDhOSB)HVJ!%fbhaj^St(*N zNKLmcB2Ny;i+eBU(fG`?&`8ya98ZuCntVF6m(;mv$J}tcvs1n?eSsld71fiytV6~s znH025;-nh(Ux^5?SrJdF*0e%Vx4d1zU?^v9&b{mN@WJPl^M35IKe@@;xS%)hIS_T#iH4x+oOUwX7|_&@bC2m%b9%H72$uhU(51nlvMB@`fVymSpHF%!4O=p;dg!4G8X9G8A~`n zP_cT^Xx9pQ$=aC6ru$_{1%cJGckb&2T345b)H^kf*>6PG7mX=%p>5Hst^{1cuxFNg zZl_tC>FM|+Mp+cDG1t~zJ1n~PjpkpOL7SfIZv|ZUx8zH0y47p!jh^p;vf>NicPhLp zMKIgb#Y>ifEQgB9ME zwSUAA$@^n3%UB|?fQB|>^81c_ipud%DO?lg(&$KHJ61Uq_O_ShMT%aHk2jr>4xXrc z(xtR_xH)~$2MS4j5dqFR^)mku2w_JHS% z>;-#1iy^ORHHqomfut_L7)sYK@mz#Bc9*HnYMVy+o4n|}p*5RZQ+jb%g$qA>mxAEr z(UZYr>7}7+D5E|zt6|Q?d2(yBKM$|5&)rk3w=iYtfzd`*wXnflZc24w-!Jc>Rbza! zn`)*;PZwi4v`vC5BhpOCM-7D|9%(4t{h>|6o-xCbt}6*MF~V>hpJCv)OWb2DOg-D?a6El=NZeoqxt9C1hj*$1g&^LvrNLCaeF0S8@p?3oVisMF8~3mz?& z{N37=D)ONT!<8)A0drQorO%^GRz=hba`Kvsa|#w2YHdnC^K@^nZ=6-zF(%34H8V1& zrgB#5*lTf?#_FH7gp8TAF@+=2_v=!GGicMW<^)?zTP?3EbVGx8l&(|VNbthRcdB=6 zcO0)>uLIqvx={2&s|T2_;jbgzXmvxrhuIFe?i4;GKe#Sc?O+TLSuS;`Z`D`_pBuJh zh1@!URl=Bs7nP9Smk-opgdtj!$_}KO4@B=YVuXjLgr%m0XZH)z3`kZCU|*|tARq1= zatqa`IxBQJn`$-gDhM%(G0!1_5fRtdZkXS>P}K#N+%dq=%1(2gZsVMAVNRiaNmMNh zI{g%Dr`xZS_t?_P{5|X4X(Nw5wUV}bUv;S)bwySahE8;X(prrKIsfT5iVFpPfO0Jd zDHym|Vpy7fsT}$(PMD6-wu)HFuKPFAsYW`JQK{q6B~xyj!!ef;4OO#x7GO=vv#HNG z#<$%4#y!fdOMSP{@}qZLm~5BAs#PiTeV=|ib^smuysGewOX4=hq#<+DzM?5#)nE#Q zwaqSvn4KP5bgIh@-nx^T7We%6%22_f%rsIoyBgLe{d&bQP$`Sm zB&diOOH&re=a!wVQF8vpE+Kl^_WDy*k-n3TXsSWxgdqqIPIU6UJ=C!mHumvyRy!tx z`&Vq@HeD>J)N;2F0v#7>q@g;E*fia9)&BE3o${lB<`u%tb<=_C&8CSeYy1dL*ruL{ z&7Odl-N9Adwb#1b;h)wpcBMDTdid`lGHN_-@}X1YFSzCME~r`IX5lMW-|EY{s{8B3 z6QI+q^WffsxA7{Fc0wFXjfc z;n{)JT`wNp4&AW@{<;8giLlcHRE zcGIf@;?1yd0UlrRso1)S&G4vi;0i{s_|%opQ@Jy1sl47qNzInk|G^jYDEdNT+qqQ5 zdK^_~*OkeQcT?Yd7R}e}o*>MoFs*YX-LmN}M!CM(Luq0WKhE;b#+x%;=~gW98Q`H8d)dlRXQ`4-tH@J49EK@cZJDp!iNS&`wj2u$LKuUd$VO6a^iPi8F}3@mOZiiT^A4d&W!P& zM$56*CQ=vFgw6}}y|96WeealB=dbKL>E~8$s_<;CM+!f$|L}y3oQT2BmkldtpA+gBf0>n zs{9pd0Bn!2u>R`=fan4svGCVBAJGNYzfSP)Mi*HAFZM^eofK%=Bs70-TKjp8>nQ+c;&3+> z&X@IiwG;j5N5%Nuw3#qbW_e(%`-(9`n6QVH1Q;M$@oEa#vjrxl)8%=(f;9L4UXcH1 z$~7rn?5<583u@wHfW)gZ+%@_Qvofr72c)PVfP#w!73;`WZDK3z&Ne1i`RUxK=yM_1 z^hxvk$v$=SR$px%_5E#-A`~}Z%5?>{Z&_z!3M#uYeZl?mZPQxrO{>!-8~Mrjn$9{eEbJ^W5ri(+8hfaL^oA||I|7RB(11c6R*oW`maT=rvz%U6*_CZ8pP7Q&_ zbAs5(I$F||Shboz)0XdRPrgKjXubZD1H=_-4gz&K7iIKPcXk zK>O1%Ndt6DtkD4-lf{pYNzxkNzNJk{51hw^rB2(_Pn#@nF$-oEU_5(ig9VpKR~zxV zwnQ}~@MY&=*ujR<7eR;^zdJ(1yxki2gQy+Kda`eD;oIXxJc^a>&%#-DGnXzWZ-LYmj~9}6VRfCUnD{o@t33xCt1 z0u;o>nK$Q;1(JCKpJD0V*coH-L|PI?XeV7URM4L{KzXSqByoQ_ChG<(wiR0hgQ=+~ ziXCeTNzo&|n?~aaA9ML?F8~3 zpkXocs9#t90t~cx+U%2vpI4)xK5GbRKzkxZ`mLS7JdBQjI>r&|Yu50o7xpZT&}e>b z@3om%`)hs#NRJ%g0Ws@|rUch^g4 zB0Jfh{8#Ky3Y4a78bWGdY+^|NAd^2kuLXc|3Gl8czbaVDH$b_>gp{!h?VbF7C4;rn zF2Rw7YZ5A}Qtp`&DwjV(8GU*}=CdsWtnKmk7d))ZLr<^(aR&K2P@O6bh#0;4CIoCi zxkPCvFEx#oktnvY-&38q4`O|CHKt!MVin8uAQM;eQM+gcMJTxu^O21$8?-`y0|cM#pKt_BQDnn5~R7oSe>R_={f+h+$2meam~ z7OW`s?%OHgrWPAu0Sq2*^gxw*m2;(J=-e2Aw0IrW}2bX@8$*6~~7}SFpQnk)#;-l)U zCi3MyQ=DMt3)V~n%%F%IuP9lt{&bm|(~W8fr(`$oYQKEmU2SO>Fg#rXE zqQa?^$?Q?v-1&F}UqPsRiNI^`okNkIrU8pAfY82-sq9~)ug*k(l!7|+cD!Ztwb>m) zbGlBa3l6(yuJnlcps*iQu$vn&98s<@mHD%Y7k5$0@2Vr0U#wkS5lz^N_zOdf%e{Sf zPQxeFbzP0a-`lHi-hfnK)?a0T-ZLX1Nc>AO2;f$YnFaC?KC%j{DWiCWuzI~Yfo8Ri z{(fu;3s&35w-&i4+;93Yc?SIcK+}j!nKQ`Z^t_P#hTmfZhT$NzAU{DWojo;x$guvP zb+1@(%CY^`2fhrW8ysQLDM+j7I(uR!C$=+~vRvM^+K` z?;3eH0yCz?K8eB$8Xez>Q?zSa58tMZCV`zvj=91~6;>R!7vYx#$UgiwD0%RFfm|jE zCrEpT$Zg>azxv$!TUDh~)wj+_Z+{wQ3My$_OWp{72Oal#9VBCz!bkdb;K*Qm50U#O zqz`Ct7@5m59F+VHyO#XT3zTY5mM|VHMmLpruc1LFcRS6p*-8MGF>AERkmTj?lk@EQ zSwA|;@Um@S(2;tEK&zrP!LvJA8&*+6GtRAbp~)i1%4Q+x))%hW-NsZbdA&W_)UMdM z3=T8-ga!>2d*E_o*d-&%s*|C5DG+aqEB3{ zw35c~xTGKe@yFaI`=@(VZnuPC4l&J;BoL9vwTH3uH}$}qwo5y8oAjhx=eV7B{L=bA z+asB;$qx9I8(rRNEcoR~4(-vj3tD~eK2xK zziYY15^;Y>raK%z3AZ(j6ji{j6$JvsA3vjpcWbmN$J%kW1KOOzyJzoFjp52V7g%eI zU&w)JF3aDR*yTymmx`=6=%j^6y$?j5*a^O?B@1Mnp^f$g&?dK(TNw!hHfneX!|cMq zE^uTdtBJ>IF^R-{YZxh;yKhM=o7d)i2818-%hKYF&VEX061u3dwRfSpgn3;qJY26~ z*~RfnF{N(@&hRe9EDcH5{*r;yEaguiEL$p*sR84;Z_l?^3PdZNXgZgIs`C100(N^S z)ej*4z_MxEL<7$4pUm5Q>lMP)aia}QP5yC97@__MY+c4MVB2`Bos z&!;zM((3$tVz3@e^x;hm18Gr1#aqq6N)2sq`!o4-TW^5Q4mc@fRZ+BtdAsQ(0lbS; zR*NstusYD$#VQsZAgn<9%Zm(9Ci(Ox(XJ~h0l{_WMhm>Tz}o_ATTYv8B_(U!SJF6Q zvu@2oPaD{9Px}%>vX(PHohhb-)g**b_DJ%i@iQ$xJz(? z2X}XOm*DR15Zv805ZpaDL4v!xyUU$q$=?4t`>$H}Vc$A0qb3yf)!+fB+33A>l@)&k z^G+{zZiLO2j&cM%ij7$+Bm&h0zz8hG5hvtf7koNk1a?O>6)*yev6zRae83!4z!}r( zjS@t;H3BA?Wc1RY}KW$%T8jRRj*d_9u0FR^iN-XZ7MFt)>`FW+PEMPpY5 zf(?*Wm{-)@A9N>0(|YBp?P%8zH^PyOIbOrRr`l6#0Zfp5IZ=dvaP|{x_NbMH2MX1! z9hGx^*>_7gra3y{0prazCwKEQEJIXTGMeLigUg74Qk3P~Zv28bo8EXcfqkUU`qu=B zk8}OD?lJEd#XlxU#56zMsDrUCCAVrr4Yqs&x%xdp!g+z@st3h&C8NIgK0)#+rUdSN zf`su21p+WZqRDh2219n7tq*jrXB{m++XDzIz+sK72Bi{$nb2gK6DJm*r4Dm(aTG0I zP{8sy1b&ZRN#(Xv)uQutX$E2i`MLgisG*o7H9Zuz4NMi>E;KQ&xU2P=^jhu^>$7;k z`Uk4SF=yr7lSpL&EWi}3GGGeU3NQuBExOc5-nN!xW9qh{3>(@iZT2ak3#cbXdFEpd z6ptXfkO$Q(u2ykHf4RrC$`AARA=rfaO)FlqjtOvEX_VIdn1i3>C};a^ohgL=4=i4o zx|hFqNR%Y6hKhecicoK~TN5o+XSo#{Y$Jt6=@xV)r$N(osD$(la!g)01THBRowc41 zIs9zs=H&8hbihOmnO~$Bz>B{JXtapvIys;H1^zU9>SnSP%$YAh=r zP#LT0Z=U*nd$PUXRvOARl;o$9&XZIelWu!dg1nrf8WYX7%Gu`%U%aTUm--kSI&40s zUV+E68m{U*B9Bo)Z~ALFuHGU<0hVAfdReO>e3ncxbW}zg+$QTQ+bd>Ajna;_-84=l zWi`dl!LroXn#=RpnWh?V;0;x>i2_a}+4X7#jX7PmzLnS@sVtf>@$t11NL0a(0{-g; z-p6vE8`waHxE!^5;$VFNVvszsx8r@$6<+ez2l}!7788+X9IJ`vgQ!8YUGMt&5#&P8 z?fM+zdN}m*q0bAU_(6*R4;NyNbV5BFhvA1VFoKL0Hm!}5=54Et}H>Hh&5 z0{|oJe=WNLKne@{UoO>m8pHnAvgjA7RfDit7z(1uitZe_NND_@R@NQ;JVT(PlnYr8Ofqs; z**0SV;wW$(6!7*c`<{BLf2H=tkb?ot-Zafi$;(LHdGh*}lu#)f7=6=1cN%Zl(MWXb5RauFo-?%W6Uu)`cCeNMQ?Nve6REXN2g7@X} zyG=2QY?cgm`ZH^$yfC?}s@0s-TH7PfLWEr07c~i{9;3GdRz+{{R=118Um>DZy!X-9 zPZKcEWn~YCv0ik4npxK^rEgAu*$kDXP}Av2NQBlXD&}s$S$H3BAhs?wI&O5XDp32;y{lP`v7UC5=9g&>D899&jit=+On6_Q6Fznn#bivpY<$o?AC0Ov=g2_KwA zC`C_%tl}{FS54d1v0{4^8KLLH>~SZ5?4C5$@Q=RPJC8?fO&VRTXD7jtmEJBSs^|g8 zldqQQ?R8l9aMu(ey9y*A0}V%tcu`&>PzwYY8{aOjRuTq>TGG#!obIp(-biqwExj)* z3ZSh`GwchX8NQme=B&NY;~gh&4SBAdEcVf&&Kr*NYR|qpc&1UTO*&eDeA-OuDYG7P z@fK@%$1#uq97Ee*_vMEGR}9DnWkhUD%QW}gKfe;GL#IOOUCL0KIF0f!zHuvsgZSK3Z zSUG9Owc_sJ#T7x>0e~#;I)aUvJgUiLLXL^EJTsP7FLS^ItlDR)abI9xX?C4WU||@D z!X{T+GXfF}$3*2XaM;5j3tMrd*bszUmTd(fqCidk8PxnByWm%T%2CgbjPp&iw}CGu z-z6fD&oS#bDNMcVk#`l{L3u-I^mN|ktW>+Si}v)Ppt1#}XktVVL%fDaK|pIojUi(V z#-@3*b;$Bmmb~iDb#PXZgm5r%MDH$ElmKjW2+MeM3}6*bxIAHfam!+K-+;GcgpU+> zH%ijCinbrqf81t-%FP2f%=+lpAC2tMHU}2~4zo7k2zENWD&ncF1|G?BWPH1qNA)B4 z*`@-HiduETFG0)HM2Ornby48jXkZxY_Aqkm}ygmVecEB>i zt8iG>hn#tblk}cyez(xP{pe9`n?Y${ZWzWH`YAMJ9^i2;-9>8bhC?hJ4Oq)8|io|iB)I!cC+Xa)#8Dthpi^lHQBHtwKoUG1*g)o(7y zTp^X>E4wGuuj=D>iol4AE5fz(em?-s5vbW{?5PMdP~cF`qPb_;VodU9YD`hBoy|~Q zoG?Q|gQKaKjH=@dbSo0>WX2MUvla&-W+dS$UV&P>t^$YJ1u*bmj$z+h+3VDeuxI)P z+?O~75p#Dq;6Z>HiH9>B0;ftoA{_!V;W1NFnQ6Ki*97o5)(9GyPbr$#;%WFc$RTE) zBB>EdA0q&mjL*4gQW!wMy5I_P+#%<@Wt1ccgZVVt^|8)+I92YX*raou5&L=k=FsZV zGYglk=;LCvQ(XW+WvM!?dviHP{C3hn>w&7ocng}~xfE;qP^rYM>LrOBAc$KrGQ4+N~v%|LOxQzk1cD;-uzBgA50q8Sk% z`H5wUooK|A65-sj&g!-oTdQ!MC5Ho^t%k)Wk!+x$J4sAqw~I$&5>8B0U}TCNmsP{# zCh0&W=qv#R3Ph6A8=?96HTD4y;$i>DeC_AL*gt5E9o8g7dsPO z0w`H2Wp1IINCmRFmg*W@0Rg;*EGqz+A*?!Eaq(Pf_?$|lfdch0Uh&DiWT{P?K!h|{ z&_ktur5n}RC4P?oWopKR@*Y=#!pSb}rC~C)ID!eV=4T~w@5SCrx3d5#5UJtM2PsfB z5-7rCZ0{ab(x-BC`wOq-Yscvvj_ZLB_MDF{ zLC<8K?xL)de=D(lGJ&0HFQ+q$#k~PUt833MGJ`=C*n?r5#`&0-@_>~NZQ-v>gEGW4 zSMKtM9?iaEEnv?ADyb=Yp`XX-B9^P$NFiQYgrV;jOpt)+PHW8)oI`_usx4+qm(IwR zg4_*~k2ojijYO1m#j9^7f6}9<_>ST&tykHJNeTlg4^wm9#^GuIXf>miMCQ-Hm`bBA z%cs$NTo_geScR=8)0fR0Kk8mb;-M->LO$W#3Z6c=aMv7d+vHqQ}|XfT^QYtoEFoh#aT7u892V=vA@; z5AM9$D+!Ywg&3WzD=@?4m(tTm%5mNcYNzHei2PTJVoa*~4Jvw?aj57fYBjgyXwRx6f7V(x*y20b;@IHtlK)bp~2a@SMF~PqwbOef1C1r|uFx z<$}we8peK|9%-LOP)bNxEGxrnGVq-i@(;z$VAYj&IxjRe`cGKd#IYRQ-H0mkMF$k| z=y_3p?m`+NNHVaWbazD4N0L!!dw=21lgL zjuKwN#TmF=pN3hFXGa3g@F?fae7OsCA%s<71`wxG^WuyCP_kA4l&lM^`Il|cbhB*| zv&sG=yhdwtjZ(1&wcv4rn9qPYyUD%ixXP`VD9Yps)E)evtSmr;)}yR~7avBiNQpG) z=a#UZdqv`oKlC&Q%UPiski0P43!q4?Tn_@KVbf-ocIL5h^qk4JK@JoX)`}^PEQUJg z}ESfaaN;@(i3)(wRy<-_+tNX>8ACeciB5*0_&c`Gpj{n$)Jko0lM!ueFCnu@mQG z4@@x>p9ovw%(ocS`q8-wUpHxkQ0#Lj4Rhs&;an~Tv0N}ER8vJjnjFD>^=a)1_!6x_ z!;1D9>FOmJhx^_2Y1PtRqTl*MsDSlq=BL42b{qRH4U!@A2JJkVg1nF=sCIKH*|8LU z;`D=suWJIjO^y$<&gdO?WU$FyKuM#!RwV_2fnh04f=^7s>2;sOVoWf-(q4M_gW5m! ze`Ht_30cuj-b1|kRa|RV=6N)nzJ4y2PV5rh0ZC^puZb4E+P(@DFF<4jA&H#9HBY}} zy|QxcrE9ZP#FdWWp-OD^(2h8YuVtBdp)t)h*$8)0G7AFNMIskD5)@KWsuYCa{wUd-|+pFXyE+!xTtlQQO2 zy&d`Mc!5emp_1?bDZjxs7ipjWZydr3aB%($hx|A3jMV?cGaVS%|LH#eUxZ~?|0$kf z{llQ~e*n(_u*u&74}j-`^>2X(;05d70uKP5Vf~lD13*{)CGcP;Wc^#<0r+~>KLsAY zm8`7H{}z^EW&XFY3@h{hyRghZ8_xMl$vTl<7zVzDK%6N=S5biso&E7ozRF1r|QMy zEz_<&+_Z}N_+0HDGzv&liYO>Bx?SlDeC%z?psYatzP~+caOwQ`?8K6eO2v}Z@whv; zx7PXS%~~8Tr8@?dIr~=T@|M-^aV01aCKsn#6=M`QbZ;(BwFaW0)8=-4fGh|3CRUKA zASTDsti#JR2VNdiGXL)PFdZ2R5q%R==~J=;R#Xs3NKFfean@6%U6WwXiA_>+htN}z zPC(%+H||MbvWxc+g4EfrPYRELvTm8x~BE zCUVlas5;AIl<9OQ{&S-@QZg^^nVHvO83w_oP1HVg-|>vcB^TEkUk_d^e@B*w(I_oh ztjL(%>Y45O?k?`CY|FF}7{GpxdbW!9l4@kk54(-K4?Mg-Lo=)wj|6MY&#GV61b>HS zB$C#h$EZZn{RBx8)hFcN9AK~QKew;eJ(<|`fjQ4RsH)aK9iQzUG$xS$yP37-Z!;@H zk<}LFVgTBFNT>|{Ci|nijP=;;)9!=YMJBU-tl-S zA3aC=YQghfGshK1YzJ&8%EuJkp_w-Uu$Xfllzs`P0(1vPU&x#z)}4c^z&=7w{Tn}AS<)ogzk#m0>aj_PecmH%W$jh7$_RoDk&SYVu^Yw>!DZ04T5Nu zTf!9{3Rx_}Eef(*#SCcdYy?#X$PC z(OG77YAj4jk9kD@828Ms)r^OUgvG31E&6>oCsMmE60?ygU7(Z?rh_Y#;zKZXc+nQdA{OD_RWnx`MN+Y?@^AJ9%ru4hu}U&FYj0h!JI;w2d9^iD_B(TSY~oM z`~F^nuf04-)pjOgV`{7><>_7H%24>}>CTbn8bqO9K9J*&e)@?xdxfeYy zIe;LI*4c+689pfPB7VYi$UBkf=3{fm1MC|hY`pU{N=iOAeT5JnM+H#>^GVx$^-P#& z&OCh13V`kdoe`~z!ZpWvYy2mX_3YBjq#eNcQNtdvfO~EyoxlmX7B9zyq4Zk!8P{IQ zo!+I^J6oqyrU7S?X>^ZszWZgjiT?1ryOUweoA+EoJ9HUV${wZf8&&_u$qys|F)JLo z4H`hqY7}z=PM*UdH7n}x<&rGjlb{glaXb(Miw$id1B%m6s02v~#fSTAt5hWTTXIG} zOQ{V?v4SsM-|1$aR!zhhvUPtv5?YhhB_~oDBlibX_zhz$0&)RP(72rw=P9}+!CI|~ za6)8UJ32bBFf18e?3fa9rhR=}5uNKp@w7dh>%)b4Qr1x*I=UU5&_-}}7{97@RH6+I zCKypRZHR%$ENg1L*fJ)YCd`)uI%sDEO)PyW`s$50$oWldS%|8>+CkA|LWs7B!{u%! zLts7*EExW;%X@l1lyILxr2~8mI17Y|=7>xO6A0-Oy^)xHC~>6T^%AH7%{q*^A^VIU z&fM6|+z~d8sY0%u$lVecQ~XHI4bctG@_$P%@~Usc7O7i6)iSuAVf9j1oL;wCL0hAgkny9fM@EV><*aHn z<_21^C6=~mi==!Q>97q&`7=(V2lG2lLz7~Fh$rLo^Wy5T~hM zx<48{od|?!wozzWtxLKorx|*sph|p?)3}vBQ-rPy_HOZ{-8vWoJ>Uz`)ox>oUskyM}(b=&eVwx%)i99 zO&nELHfpmRrnrwsY;3U=F4K%8PymsY6w-kdfiBoOw+!j9p@r6jbtH}o0+KWl`F1OT zbj3IQ4M|{opEV(W3JAA9Zo(z(1imL}Dh)ltef9Ld$h~_%aOplL_fAW0*aN&D&p_$1 zBNt1S&k0%l%j+JjY!#ZUi-f_AZIe^qSE`PpowUAlQQR4+y%~C4OGY%+rCY3T3$b%} z+uIYPZBVr9uoYFq8_?*2@JOY`Rc3C0921Ya$xh#enBdh3Q(%S>YRyF`jErM%&ydMs z+KSY%F^!#W)owac!-iFN02Xw3>Q1{x`?N9O44kMIuB$w30AMro%m`{V7mdB$ zZ8?NGhYFMm(vTm2}Thp+~xtVE>kWsP4k4$I}uy@-mtl627B6 z#i^|gHA2mPMfb&)5+gq_s*ZQ)ul*dyR&{V_z<$n(q?jKgH|#8)o_d#mTu)EG8DKvL z3U%XP%W%mBVEx!YdW;gNqe@Mb_aiquV$nPnOmCjp*i^-s>AI`HQ7vS)13N$QwZ&$vL! zAAiJX8rT3@R)=n>V|oWbjK&;c6mm;*!=MqFtfy#!>4=Tks%SJDApIE3jQl`lACWaS z=#W%8#(uzldvyW-X>;*+i+~$g%5;?S{)F7kX0ANT^vzA59Lg z?;4IVc^tyx^;Kp1kE|KbvZ(@S%^P^!3M>%4q;=s4JQ?j2&x~AU8O88Qx>Xr4-*Spo za1V~qc)XEm`{J>{IjXy44I4v0r~JqG#w19AcOl-4^z$Lh{(?gm6OwrW*PSH5Zg~Q<&@}I*{ zC5}7G@16uI3z(6rXDf5(V>TjKOlIVppP{VUd}Q-(J1+z8T_OFnsG|p@KbUubCI^z; z0h5=Bwgx%pc6Gjq0RPi=v5nb^K0;-=0Wa$dbq8q}9+eRppYiIigLIhRCe{pqiB&NH zt*SV2y7S4=bzIE2?K_PT$x*5cH3Wj6(m^@gy%ux#+>TzZLrXO-yC|n;lr2}oRzx*I zAg19;-WbA~^-A9hPyOwJ9c2D;tLCNNN~nUtSAT(FLYd*hmu;s4Qd1SWk~CoR_|uMg zAdep2Dwgo83k~iDcuO5nCL#VV=*aJNvf*!P1JfQvlbA#|*18U4t1#hhDz*;G1eZ*H zjgNUTC5@Ul{*?X7ya72X_Gwd+_rAHuI?jW2yb;oZAHqD#Ol5JAt3}MGzK<^YM5Du{ zkNYa7>#}uJZC+6rSTvrLVMtFpleHD1|C-ENC}XhcveOKk?Fe^JUtCKT=uEw1-s937 zde?nmJ9r#GvKP~Y!rCLZpU~pQe~7YVCv4R8EZvwZjr>WD0JC** z3IpY{pJ~5KlroyA$!kx$$TS5GNx2Gq=|b?$fC1kZ1bX= zCihM!y`#&nlkF4EJ&bW8XJ{{-Q&HH+&_@DVhRHA9bpYju-;v^m&@rP77OrmQZOcO}6HJ#wV8sC!+omXL~3}f7s*&{bc8v9C?xg~yX#)$n1a-|@L zW15x9Kgn0RD1qS%-=0C0(4h1zaCF{zp6w$!7Ye#pJa?L4q%;CqW?<-8*q6S^?MO+n z4;dt=all7|en1ddhFzC2T{5VjRQ!-4S@g8UfLTUPibB&YDaob{>?w$hXT>}cSjTWV zi0x>aqS8M1S+IJXR_CaEVn<=m8{B2+F^9p&VIIq4YYIt=06*@AI)m>E^yZN-q3kym z<2H))J?3-hSA>E@Gx`Zvk%zKp+1ggbO2DuwIQAHMp(@G*|Jf z2Q!jkozMbHAHFHzBwwUMbU&fKfUT$Mn{*D!lFhfN2~UekCkT|U6NpC{tQ6T^&UreW zt%o0O?3?E^N^Ba7ahi?uIppb|X56p(gj+%AWu{e6Zobx29NN5CI#gSm6}CL=3YoaB zRuq@NTGVQ>OaPg`wrRU~g26l0@AMh8WZXnJRMRv(Zy-h!_8t)ti6BCWhd_&a1O{>o z3~xakJrLp{O?h!ndU39M;*TS-5t23mUUxvbCG zgOBIoerSDt{S=J9dZe8@kSlr}IbZl1&O3=neLUX7k@wxf&9xI`SLjiZ1{XQgU>HRg zYmK9w@nNkWCI*F%t%h@@uOQOuaPU)%!Xg|DWa?td>VVjk)igUbVgfTKluQeOc&wmQC_lRB zht%0Fju9KQbiD#%n+XVlJ>=W3vl>j47<#EpPhqY9KE3`};LN`s}ZwtDGRjN0X( zPeGhqBBn@5$oDBCa?`}Spy0XMLi7d%XyIOJB_HMtI(5ZDriX6%k$+)Q7!;-;CQ8XG zTubrhKLMu^V1=Z5=&Os{5sClOGb@OX*<7xNBjXi@(z7>hw_d%AKCU+4k37_4b>ORF zF&akKh;%cv6Z=-xKe0*Zp}U>DIP!`JsA!|a%7yoB%n8ymIS`Wf4NAq(b=zx6H@L}a z2i$6?AqW4^ih$povTJ5XGP)^mgBJ1Vs*)T$^rWT+$(jL6(*=urPG%blQpA|H@ zv2o4l^~!e0BU9e$`*MQ}5ECs!94GxK%VMgCl%1-?*fZBMdnd-2p`w+sxpGUWb_Ih> zDZ+K?yyYlw^>Zz>B3`_aBMdVU0FJ_IhA2VF&&ct-^Tf&g1+5m5u&UgMJ(Zr2;N9G?^@VUUPQuYX=IY^8spG?!qQJ(ma zWeQO_g%qO9!amB-qh?8RKW=UFj~RVUiu>ela>6dVf?AWJbWa0*V47h&6;G1NO>G)+ z#}&mOQNx=pAnyQy_v46GwJi*_gKsb)j20CFCH0rZhNGSbc_I77*)|mT9xu**q5R>U4^fd_4ea34ZoeLZS`^O*i6g%Zx7wp(h&!}_X)`*Edjo};D=%ZCM9_W|y_Dm93$wI{DY@VEZ z^YiVw?_9-|1RTe}@xwc|M>p9ln~xpS2^XsjyhSxsSf&La(vRa=xlW3qO^( zV2|~yi}sB!dsRRNCY;BVOUctfa=QQ27#P~ndm&QARk|7lOz(P6Ot)s=@nTnc-3?{t zx-2=5Nmh0;K~XLA#(!b22;0=CS(3{x@fMev6eH}_F3c?I(zobzNRirIkf9h%9+9JP z<)+ow^)xBL$F+|{p?kn+3C0l&lG5LFq2gHe`rF_J@TAKu-tX$dWp$olTQT2-RFxk3ZX++pXvW`>JTJ`YTTeAl)w2HR%Uiz!W zD}s85#rH~;k;WC-CFdyHZ;yTIo%?KO_lMFIi|V{qdx!eS`SErVWU&>#f4W>TZ zB2KW>pL(BSOn}z!W13N#H60g^JlF$kD<}3FOdphGzRp`UAw_+kYjk4CuT8spDb)BJ zX&KKi-e{g%cUY!*GlKnG>h34^twX3w)yJZ2o&`$I)N`ox(J-;gpqPQTzQdw8^KeyW z@1*e2ymi^JcB)y!l3uoTriE9xWWk=tMzz3nk(RZrUC3&M&ZNHf_?i%~eYLxF6WwFa zqOGITaJacLBiuM|B~!6?^0=u=mOJ~hL=7`DRFDvi!nh10G}?O85-ybay#-^$zsb7& z;Nsg#iRq!kO^|z~PD%3N+Kf*LZ`qrYZrS(gxkK5*@x#Q&h({5xa-H%w1s`P}#kJBm zl{e;ua!%p;I8HSBTeg!Y^UgGD`Wa_NP}QOlWz_}ZEe)r#A`21qQU|A8_Z!5U{Iqh( zdO1m_LT`nS^(r{^%Dm-lhZXL{-m&N{D`n;GY-(0h$L~2_7-d>F0ORj`+YP`VydL$BDVj;I~y{g_Z2C5B2Z$`tBru*sgG?`6F zdE<)bs&2&-i|T?FO{3C8e;3d98@~A~xCs8@!}?5XHaW7`wS_j1^1$Z9n#{_s>?!mF zgqBY8;+|=B#IokD2u^EZ2-#Nb5;N$Vl8BSdHf<~Vy%XpBq`iqff|Ftj71piF8S3UfBultWE6_EWE(cYIa;{=|dR zYRE;kI-@S&%Z2ABHYzg>+Wpd!Kp0rF^$OqF`E+%_t7kWAn$2<;o$N`X1)K{pK2tse zNbfY7ci2pq@6o4w2)NH=xlkNNkR2OWZd_MRY|<0(EqbhY-Fa;Du?wcl%1+nPT0$Ypd94Wk zD7ZaounxMR-#1>^D#sv6XM5Sr^J8*6r!sYYHoiNBS911R!tC)v=v?-^d|vz3AmWh; zzajHPzxXP1w3fRzH?k1Y(iZ%^$^T4_e(B-EPq&-LK9~4pTfE{EgYL|>j{Q0K*EzhG zFITGl4Eu@cST+LHjL)kwn>RA)ojwAGorl7!P&wl&Q?Sc)4K{DD=2u(Ft<7pKR##Wn zaqM=ePX{D^twaSDD?rT=A+fC~XGF}#h)q|bKtj%9!Sszr1wRJ0nLL0t@$E6AfSA@0 z87Uk-_2Moo3j7?xhi42q4@7dX7ZvKxGR^1U?8($7Rr%U9GIf``GY~! zDKyb;LR4^yp{qbB$4)-cZi+S0E;0}P#@0VLqM>+rpfsY8E}@8`|2*Ef10$O}zY=k! zQQMD!BH71p4TKVTxRtu%24|e$2YY^{@M^=dzh?->eWhaDew=)xgyVQB{t=UpAZj?s zb$@EkVC22vMH8HHg=#P;Pwt#%7du$${#*^N zxtF3hCZFS#c_%I#L2x&lnH@!Nca77P363KzpI32LR~L(M8(9$l|KIWI6GjwWav4eu zIG*GJkah4kcK&s&A<&m6OJClt8{c3S*b|)d?>;Rex(*4_o#e;MjemmvGL7tN73SPs!fqyPQBn3d(dJn&bUIro!XFZi{{!g-RzlXl9Ug#k3G3eukN5P#-wu!W^uoU! z9)R@1zZ@Qb^upf`kN5P#pAL^d(hF>VNk9N$7FM>uBp~nQ61G2b4ga`Y!t_tdCFV9u zgV?WGy4^OhRkKE?h7o!5UuH?HIP(MXsvE-w7= z(MuR$`cQc{eNl$NNY__s2i3g)AMk9-YNmL6J2F zE0dB)Ijc5CUy{rZ9vztyWOvW56C5<;pra@$yOf*WcD#!|r~#r6L)x;t@z<oOo8> z_}I*boSQeF&&i%oN2js9MqMPkOFV2(HK+$aU?V!9JQGE-2Z|?$WWLpX2Z%mW5%=F* z8Eu7ri#`h9MIROry*a_I#BJUw3asi);Ad&Ar5S;!$eoXS4!=boiJLH_pj4AW|wYP$rg9s74yPK}rq;qPq&J6MAUHk^bNtypKhr_C*!}jj9TUf=K2xwZTN=& zq)Mg%zlU0BHrmsvWtQ&)^6_&SST}|q8A}SI3228ML3pp0OcY`#LNLycMRw)AS4+N1 zE;r8P1#~uqBq~~@RTrJ2rib$$dovja# zdZ>Ld)hLX4(c7t5w|$QG#eN9{5EX7S$x<+V9rYC5Jm?jNjN?d+z*BEf*&U?QAm3j~ zQO$)TF=lLvzvwNR6-7As=D@)d4S{zQs}yGSfwY6mPA`c{44a+%3ub-@6(<&md>~IF z)&V9LIXy70R-I`+J0IF@8Is~ksxx0{$yEsCo4Mv1%ZY(Y4;ogKnrzdWyg7_B3i-h` z4&H(oIFEm|;X^ZCe73HZStFoiBJYfFLJW`8P=0Uf)tC*_^y_#`01aA*;u=w~%KB%F zjt~x1{WN3yske)}ehOphlhM~h+7IB(9RNmSe zU#-4biNjeN6okPq@+MDjvl=YUv}|9wS_KsC?&pHvfB{mFiEvN2P@^FrM~ z!?07F*QHaOD3a-+T&Z)vK)waJANEFdftVY(0I8O}bn9x6SE{D(^eF1x1zob|Kj89B zv&w*zu1`#aRb3ABd1sFp`8FTTSh>H^aac?J{FHsT59xCBqtdMNaHl=-dC5vq1n{#J zv1;~Gj8!GJ7l{P5_h)RL&e?MEB49N+_9Z#i)SBgN}U;lP{VB6U~SC6g%i@ z{z+^`_0N{GCwVJu5j!=M!iB+0`F%J&xIK`Xm+wfnD#VWd7#XO1fyKm*8l9)uUi1T%4 zM_PZ_Lp8GE&x1@XBzGqrC+;w@UX08u0ZFPayDS(OmI7tbnT!DJiqE29>x4IXL|M`h zqjOeVq_tBFN2)F%JJV9PJlHo_WS7gFpIZIXdBSbLz>oPIN|B;t!lOf2XqGTQJ^5UP zcohKSv9CTcVqkj3e3DxiL?sZ4U8;w{7Ap}#CAqUlM{1_LqF>gD%i%25F_4B$3hNrFo2-CZNxGbWvo-+) zDLHXfnK@!sRcm=0-Qig!tJleHOwaTK`;*lUv+R%&p`3+knmbs?elx(A7s?-iJkJ*l z1kuvPv)H5i%%LJ}iK|he-6$e7yuius>-}Yu9W+1#P%3f#sXTW<1e9v?&19a}^&3M3 zpEx6QTFZPN@)e*|(qxZqGpj$$CuHrU$631~hw%7UspR-naHV4IYSM?f@-3Gquu!lST^w6y|VmH!p zmaLoJ$T|!_)NrS|5D-eg5!W?<_5`~FE)rcPfwKnB_Zra39sPPAJ!XT4}#>LV! zGvwqI^w1s_UZ-%UZegbUKT_rxP|+j7sQ|(cnEpI}fbgT<>f{G&446n@B_9^bTq@g! zlEJZ(${;Yk=^jA%k(mz=ew^;=*5;jP;^yzqwy8N=*jL;$J4wvUt`aa6oPXo z`sy#cgA3w&tz4CYU063DYb>*B<4+}VYT*>#EO{?`G261rnj$u)HLf_9vMBI8?82hf-xKU^Q2$Z?1l81 z+si?-5o2$*-FO6x0~)|vuvzC(b2cmrr}py*a2Egg7Qn4 z9@r(fVRZ)UlJ)wgP=I8y(g-`|G?`o;3Byhh%`_!^5B00JPUyh~ql@=67sQRwoKCg;Wzm%;)@+0WafzLK!5yBw~X0pJScMEqn@QMZV6TU`kif>-f zDv!_dlR>zX$U96<2Fn3UMG#=2nvJ7!o>Y6vaYz-(M^7aRRlzJyXakdZjPig*19pvC70r0gdRW=N)_Yg--n)&VpA9pY^3Q+5hY6$dPSTldNkdb#c@Dv*LvyM@u!kH&eaD6M0+W~?fzFLNA1^|+Q(d3 z+HTfON}R#j`qYdsPQ;f)rz-xT}i5d5*I1>W12muH4-uk6%bGL z$PhZh69YxgCTrL)1b<*C?pEF)6bP1&2mGy+9M+=gt1^lsNk$0y-ro zr{{i#fKG|7vh)NLET2Ijv`{fU*m|rr3X`j$9v0y>AI=pr&!inskD{IMVliGEAQq~rI*%6WWR^Vz2)+M5}tXt=Sm4cb?95v{rP2G5o% zVlhv_@!TC$3MME9n?~3cp=#~ZNlW`7XQy?#um=53{@1+u# zS$MTB&!3>ZqRitcgnCJk;RE;ruM{IA%0 zW%Dq*Yfp`b*sD*CX@lCy4e~7rcrI|tpEf7aQGF!eIK9&kQ_FKKZGFvl*}-({1Y;x9=$Y(?0xrrJ)P{^%<0p-9x{6aTi2?(?B(VK zD0kif7^%eU2Hy5u@gs3-=`3T`5NCH!PO#;z{LPHEmez_&)8iBB=MLf?coTFHe^?Mq z=~TTLh^(aS=hr(5pH}zFXOCR!-`WpV0_rm4tr~@X!b)=|mhY=FI_x24<7cx2YJUt%nU-Unkz0E4leEtv@f-6}e|+z;1atdMW9-l!Tx z{K`(Xo(5;IMX?j#HbYU_)fBy4FQbi=rO+`M$jF2iN=qkfff_9yinsdmcQg~d@8d(rPK@Lqi8QSMOcLzG0%{;9_!(JeO`0nG zlXZ9ctqC>7hEVVKSKCU|pGdQ93R=LoG;?bmKW1>VUi8?E9B)E!n!f?+B)9d#H~j{H z<)!~0GLwc}vo!urW_|$3Oj+wfefcTyz+2q^!`xfP#Jx7^+PJ$@+}+*XT8b8TiWH}~ zJH?&i?(XjH?(XjH@(o?@T6^!a_xbYvb52f}{4z5n4-*m+=AQe$t}qF9fp_gHuzD65 zt|_nt@fxj(^S60~yWz_nqgjjPN45{<$GXkkT`-CY!B8yQT=ry9 z@)?y+T-br)x&m|`x>!8!FXF!?Ej%mrT(K~X6eKS_1bi^-QYyF0IQ@aWyMGd}e5N|! zIgP3~2uD`w9=gx5EF$X9>h`nlPX#`PJ^({xh;3DDO@$7nD5tH9FSgv@{jq)dY9bI# zNdc04SKaC-k--h4x(zny4Pq=-yml5&QC12XTrMB$(U=H8uXcz{uaE<7?^t-u)aI?uE3N9B2hw>{V*iI`F1YW3UkUUKSOF$jVF{ zQ#jm6($SZx)BSGM)6d}&xm1+{=ON9?bn)EnZ>e8)hN{#cKnk}{+# zJVp{e@)xlgqE^c{yN~<@fL;{?pjU07Xu^@>^p9yjFdwl(0L%v_Q;VrpvmyZVAv?{G zxyWfZ)d+6kqNhdt0b*O){()Q2|j59nCIR_#O{w zf;GGiC;+{>^KIhJwt9It0j})8^pU^SGX|G~oPKE>!1-97_0RxtKDOqF-(U0SoL+?zc@1CM~*;b1p2abC9TQ*31R5-iUe&JTA;9MtTmh&C^<#;0@LTM3i#mov3%vQ zG6;cw_N2)4G3{tBvOY+)uZMtnL=jG)g6|#L;lRzm7uL3_Kqmm#gc?8 z1U(J{>chg1s;SGGzX5ts9r}xmG_ZA*i82t9iCen2^9tulGBhvH2h1RJPfWbM1e4>r zci~Xo^&Vp-RcmoKT4ccmJNd!ToVr0ekx{2^;j(}a+aTs)f2!%;XM<8Ii-;Z&z^G_( zkXOernrYQP_s&Q=@LSjs5M8Y-)i3*0@(0?0fg>7_zHQ+bJk;oPR%tQGK?+11xatdQ zo`8occxcu@ zUryi-Ck!+rthjpGJtjV2+Csz%L`&JJdhq3QcmZ~j_?6~xOZgzPHMxyA#x*6}fJbTi z0*GJOo7v;EM0THzX1S&qs&+2lC124&0rAUmxq!$7jxU&}N%MH=NBoj5s@c&VSZ3Ix z_5)usqviR>y6{`XJRg9!N^s16%Yfmo;O-vjzu5OX?l$b4-~jZ>aMe;J)t5Ep=bjpx z^+Nfa#Er&=9034NDbm^qpn43jv7_NC0H_{Co$*dNHLoFTPs=gw z(I{N~xKT346-qTU7-jq5G{)J*ItYA_n##Wn57+Gu!i7UQRSxaUcpwLpovS<}2L(Zu zm^QakoZP8tyWTj)A7>6#$*#^k{=8d0(vM3Rv^7GRnL=W{%HlT)#>2On(Fe^k2UXq` zzAxDKxOUa7tF$+2w0VV@gdLj$uFf!#(@F8JD&fq7D%q?$cShQ?CE!*5A(j!H z07hkA_p^r=&RVJjxBZk_8XKyIt}UNs8F6RDMc-t&Hqq@kVAZYU`4)ozkz@Ob;MiSN z{pQPaVYs!7=-4IbSdc1anK=Bn5nW6=&L&Z}g)1B_mu~O{v0v9w1y+uy%%&ki^e93N zh5Nbu(JTYSUoz-7LKAciT2=)Zb_1#+u|C|e8zRYID_i^_;!?jP`$NedcVpF8W2lWI z%&UIXQ#G|bKm*bjehE=kRn^$ z*X${u@p*oOb3Jq|HkL8z?H33^10tAt+8Xy5omfcMoQlRMpn-2dCx@E1k-Y+#{P`|~ ze{ico8s!-|*?6wpzk$vjP*;E5Tcj7(^uof2S`O z4Qi9%A5@QG`u{@p(60edJvsqY54-g+t?55h5BYylJ<`&zp}u3j7Fs?-jjaQy9+ejN z0IJ8wN`!seQp4?ER1b&AHTGlx)q^*&{%@)W?_X38#;&jrst2FWQjVUcJvevI>r;*A zr{3B|vwA+V%}IVs{!*omb-u4jV$d^DpV$$_)MO%>PULS%Yjz2Xt{h+DFn%_VR+EZy zwY5aTF$MmRP{gALU_JWYm;=bLQXJ+zD%#NL9VQpp5t5CDOV*)Hs#~}HE~@P}4Q9yj zV4Az66UR7z_~3A)piJIt&GZtp{C4*^w+KR#lyWbyymHWx0D4*Ir_M#LoHGV#EGZ5c zaQvXHMp%S=hAMqF)QL~_DrjukMD;DK^w;*KjLZKV@Sa3n-ppS5^%p+78-Li)>2#Z; z;pa0lk%z22y`N{XPd;-11E5K))Iu4CtByCrUr-N7F-(~Lh`*p7=YC?)Up}B7*eh-$ zYDTi(bF$1!naMEvn3NJjG=seF}~Fu2$8TjUGLi9Qq&p<48~Ux4DYY(w=Q^~Rs3NcKHJ^>_&#I2VEE8o2rY_puK6!D zj-Tp3Xsb2-T9vKo@Pe>xd~T%vDC6UdKu)ZV9hA0=Eu|#D;fCi=Sp<;2>Em|)qOES= zDyF?I`Y^oqC2NgW8^48*gJ1Atc7y}5aLX$APL1u8Z^6-ZDhc80=bq4A(05}%P~L*^ zH$rx@DNv`MW{oTZ7y23Q6SwRd!82_sG}e;Jxg|Xd!@6+HgG6ZM;NHFQtFaV?b6N<17)7TKq8-F_C{r z8ln0Ov!F;fifJ1V5&BKs^^|ZqCJj7)3ko$*M&stP(a6VYxU*}+?z_ET#0@9GCe!c7 zc(fN%f)Mz)HH7uj*U?k<+B-n%B9G5U=Um|-N>wQ?L}UnHc}(%=b|(;h>_h;ui_US~ z0*lK78H{7PcWTM(_xWpdRzeXpu#^rb3t@$q{3h8}Ok#Ir#q+aeDU_0o0RV6H`IMdk z6|9&6CdkEchA?pJU%b`p*SMItjNAZ(cj@Qqw)AnrDB0Vq#C1`fY`epG2W*dfbh!9& zpt4cRB{@~-M^vVt{dYm1fBrKQd2WX|P~zP1V`SO_mAe%PX5dEn?;!^V z^Z%_njKcpKx^Q9O{!g#x|3)2#>)#DsH~_p-fCc9NfzSnzfBcd7{s}{v0T2GBqXI$~ z4wk>^sDRLggXJ$eDj-c^13dUAO#y^1EdStD0ig@aKL;=oa{rdnw9fpJT zuLJ(w(1qpSVy$XKEVE;HjF(SnnA?q9cpPS_+Qpbu9@-}h=`cIXnHv*##NiFgRR68M zF_bl0I>`d4Z+`qy-*j(nl>yW@vj0tevtjWzYPBx#*gqO$ybi4<7n+lk)!?im7lsw@ z&kXVNYe=%#rOVaU@3gT%-B=mRykOb3RBGPG*QfgQcjwn-J8|^HmX%oh*Ym^Vdx zUthgWJrOoH6Vlx&O#GIy^Knf;0zT3g`S&mI0G3Ch)lr`M3bQxf-O9AmA%8%#^BrDT zK6%GS__8$iI0i4JTz~bs3#b{Pu{UAvw@v{t)elcm=^K)=C?e{YBlwO~Nw&x2*T|T1 zULxYSuOL?p-H88HfK#`!`=13kuXO(ia1YeuLRna-a-8Z(x@?=t z1z8AobA%xrDW6~-Am=_y?oQMc$>K%+sy%lWu8hMACIH8rk!tf2qm-yh4i-l^Lj*CI~7>kje$9 zZ9?=8IN4ot_R${jkkkHvH?(ZIq>284)}kyip&~<^5Cac9?E~IL?cXM2G^xG}?~vU# zQ~{$ZWdQNSjV)5h{mVnTitVdkSWs~`m*Be3S{I#tZo@20o*bbh)=Yn(5;_F(s>bY` zFgch!xKW`T)(EK{v=a0ZRz-kDi8c93fj8DjfdL~pxE`|Z;VWShdfdR9IxuI$_)~>t zZgxu1pvUJ61LuXXASiJCoEE6HEn=sT>I;nfIXX~w5aArGf@g2``4ZH{^y)c)0%!jd zwe6f-STc6hfV#dQF$;-!sieLMzP^}UUvTK58_Z@5JS}c0NtgKoK+%x z%Ur$IHNE{dDz)qc#IsD`AeU^!L!pm7KauvaZ=r%vC!o-n zpxPORQz!bzQUSqBof)fh7C0sB?ZP6eH~3VK0#N$5<}iW!fCe=yl`s9?d$43*WXQkf z0KICtI*n|9R2>y-uBz>{uPQk^dQn5H zc~E%05B>s;UW7vXDF;qrO9~^e`-8OrzDUrZLs&B5tN*(GKDe{7q>)LmPu~&egYF2z zgg?*#GE3Uj_X2yP?FA81A%6g0wFRx2x3nWhE3o>_lnsARQMcayOJ}x$5vvUsc)~PL z<zhiH==g8FjbbxK&DMU)T*LC0>- zXJAVcH%HD9Fbn9u&@b8%4BF<~7bJxS3BZJbfwvoGu>3_-^)@^V-LdJHPf3D*r6i+n8H=SOQq5u8=Z##YwT{*12!;qvKz{)dkyO z>m9NB5Pnhsj7WEf0m(}i1|WGk*{Le<=X00=0VFTs&jDz-^p^+numGSckva?-o8@*n zd$T(_bz9p3|N0Ewv5M5tqi4=d2=J6bPVRa-;Wva#|L20E2&FHLs}k|fnw{-lW%eD3 z=Nf?-EuL1M{woCYf17STD{E1ExW+b_bbUUyIa9}MV)W2b9?i2Pf_F`6B)Q@Q^j@xj z;8Wx<-<~Pl3wdniPK)dEiMJD=be(kq+X|EuzgADxA))7Gq6pj*w-Q9QYyJLPbW>Yf zYF^6!X*wniNsLnr$ti%1s__HPVXX+>HI%dRHW#nDW{Cibfw~z{RD>8_IjW>yWhXno z+{SJj=)T;0xLq$c$eJ31_C{7f)^%1|w^?pUa7=A? zSHfYzBW7J5V_$I(UK+d&hi2NzB&N$Wul3~@kfVngSvNp+bE)Da6C4yjV~7d>ba=7z z#p$;!Jy7wXHvaZL9I2zJy#%Rz*d&hkbR_?Y=Y@%A}M*5 zsQ5+OG98@jL)7a@4##^DX)I)$8LtShk}E-uwy8sgO%2PC(q7v{nb~srjxj^NNKeIM zSp}w8d5s4Hh^nFxuT>vJ)jZ5UMAgU-qN?0dx-5XGS_$GfKwexFG`TDKZDWx3>Py@Q zQFY7ngQ#ju3gaq&Rdu89{4jG=e|yzJi|iL9WiaRhGBspK@s&0X(0rl0WSylyhZx7* zN{naRBOL(){*J%Pc#-o5&{4o*!Sh^oN9&E;W`X$2&mQCV`ftu!8d#f)_!#$9{jRZ} zz9?X_)9C=!4SvsmRozsP!g`iz*4;_|05*nkOK@lnB}S|}JNyRHQmkc7x2CLxFrzHB z#4ll1zuM4js%!2uQO2(Hw6(uWV3F9*eiu2dz7^k)f;7v1#iwJs0W6oqLEt{Nvq?TK zlDn&<#G{o8y~>*6yk1i~j`7Ry@JIXS2%>ha52UJ7vlJI30MYS!%;n7l3Oh%jtNnrK z$O_wzu6{u#?~2I}a5-rEMb%9Nml`ydN2*K@arnq3i+fVEJgbGd+ejgkTb6XR!B!qd zs)%l6`&b9crJ!e|uuOHPJiBV6BEHj|EH-P|QB1VGyO`3ShJ%qOmHOEUX#r`E4$~|- z46fKxFra3gA2$u+rssnsQWf($?xzd!{Kzs3O_El3i-bF(pGu{ z;=L?Db2BkZ4$$0G!H*i*Ti3pZhCwVSJ{ii{Wm>;5eiUE!{uEy-+30L(e3K)bmu~jH zC@fB-0r(uo>l^@@syPc-wEOfkB3J#?ZbTM@UV8XId;`hu*(f_(*}g4=nZE`LLzdr< z#y@zDPkhlDkl$OAm&kh{o{TsAL=&2hBG=1iY3Hp}M2t%U79|J3r}8P=Wrt^aqdn`Y z`?;T3Z<~V@BsCcA`F$s1v>I2RHbCEO^ch-u10cTxV5(^ZjFuZIbt*~f`)F-p-1&Gx z0GO)6r~AcX&?YOzXCvdHwImxXF_QQh*G88^Q9Fi4Yiu1Up85Q?NY+yCC`DrB=Pa?+LxhCq__A$#Uq7}6 z)P2&!H8s5tRbJSV!?Nj8qBXs^CaZB@VWJP4j_b(S<6F;FJ{vYbHcdHC)g#rmL!i|V zbY<`;T#Se0ILN+;FhlYNy|zaE<*XLY?4iMe@EVyC5W%d>35As-zNk7Z-i4lG5G}8* z?U9aMiE%yM9j<0B=Klshe+-niY+Egi7h$se3#KYeKS`l5`D*Ar#@feYJVF>Xa`Q42 zHGxjQ>}FPbx858rmfYb*k~~VIBXtRl%4EWEI)tV)Lq+EHSMLP}{muuIp~DU5w6K|W z{QNk3ee74^m6paDSOB2+;{1F-mZE@C3!Ztfa!iLC&EPkpOXZ^o`K+X5byQrYbz)Il zA~CIhKGdzR;xZ*HOi?lNG^91#BcG^E%@L}m^$V`33CaJ(j=SQ zH1qrcbu9KcWYwbg2W=y6z)2D(#qaA$z1_Nwof1JK1YmF_4jG}wf@MrLthzt9G39sY z3M;8}=6qgO1=mm^SJ(WydlXt+++y4Ci<&gdtSFjXtE>t#wU`Ev7%H_)n(>X6Q$tOW z;-+EfDYP-QJcS7&OpZ(Adrio1*p$B9q27bZfgh1r(ixrTjMQ9rs;oBd7$s$zcLwY# zZDpOmgMJvWyY1S8;Pff4i8Gq9V#zw?OdbnivBpWMofSnoUzG*dIvRHdP^()m=Tp0! z@ysZZZWAR?_knEzZH){H7bu)Q238FqeJ&|BAnHf@`dhPucT#C^-wmUp9P#W`H zsCbFpDWyMD;(TKAFCey_2qlyq69cPAc6DTuiYE5BDOn6U#6`#xIJztRTv?;Nz>Z3y z>fOaIQ*zTfUX2YduyDyLuJ8f0s(z?qD)I>Axk$qkc^*{M9Z+se$|t{k`nk9)QCJ@@ z+RGU;Up8i=J6-Q9v0)sIuP}`j7O+#wmy+|WESigCQrX091V>nGTdSP{vT>J=BeZSk2}(>9_{8dw>C`c zDTU?r`v68qKEEPEGl0>ts8sEPm|n<`v>GJNg>m#{Jmk@d>2NQ8%lzbV)GDoGK#N~G0?{!N@u8ES;1ZwU^3aWQ`Fl?Q zKEWF!!5u!qBj8356YzzPy-Sb1iyz0@myf-~gByqI?pFWFB`5%U@E)rYaFaFexd-2} zkBG1X95u&JaDOs`ua~dB&NKr!fRW%0|Kpjpg+s>y;oEEkQ3x)On-S9C;xC0mjXQLv z$(^ZEV3X)quqe9NK*(PrpIb<|$wR=@eS-~#q7qGvY>56`C_ zvK+1opLLBKdU0UuH>3{2wFXrDX2Lw--Pn%!VutJy7^(j!X=e?D5V#CFt{yn)e6`@@ zWly+ugcL3tjdO90o)$O^Se}86Nob~CuUZ5JfoAskWD8&}JY(*y%V z+c3s9;Sy^)XRW(|>;$WdjaoicR^ubt<<36BfK z&*M{3L43`2f)kJI%iyh*Ovl&14RY~E|I%AXgP|R#KiB&Oj&{9?Rz;oRkia%_O;SEK zq#rykr{K11`14$1pg5e>O4~M{1^k?uYE%__&JQ_DNhw&^@EVploI-kKgxae>VOV(^ zIy9Ls&^wan435LLev>FVzQkOrFMJpTac&cEatXnqFKq6j$ic>yZJDDV9-i79+5?bT?Scirk|(y_=J5mYi&in~)Ew0r#ZXb0dh`(> zZj*8gebTZ?iWzPyQS7g#bP@3rjW!*W*Le!=-jH*K=m5Xjp6vyrj#IoW7tR38+5=w+ zxXOaGq7%HVyS2^-yX?DGkr65B!o2>bNC~uTJiR3>ag+^lJ8Kpg{pGQ~NlR|JlCaO| zJ+H{Goe`t~p$}6X`B3;IPnwbWCsO2LHKFyLp`#vwecqK^Rb`O1$*zBpe=o{@TEv_6|m8E z72Vfh<|Hv;4B%njT-m-eqk3-=UjLS49qGU(CXQiOXkn7o#fOXEDgiK#M!gtmpz%6Z$ciIlh%NF3=NtucIf84umUR`* z^=L!lYil#_OHTXUDuv^(wbNyP7OwXZLNpVS`_>j&BPK%;@E__}@F;xY=hpHdsw;~K z!aq(Oh+=p7p0P1172rX)8LSkbB++ik@7hp5feDRO+76nVXAsH{!0zdrq>CQqlbdJ;v$T^u*fe3b7{D;MJII$YDF zYOZpW^<1fRe1<1lzI1kFdd=z)nq-lmY{}&w5f3y=8(-Ypd>3HBB37ro`jVCGn0)^- z`?WMlio-H5!k|TY7=mN^PG3=-=1Q4QPsDWfZDDLUZKfr;zCz|^wCPg6DWTg*X_Ljw zzRk4HY6%{*8|UoSLQQ^N>g(fmZjwN_eQL+oW)t0B)5Wr;UN9n+R>3;u^lWlD&w^mQ z8C^lG3l5oCJTr8NW`BXA+bZn(B6p57c9z?2he{KQeMPqQv9aaZrskC5L49ruM;e1=@x0@;Zg( zvu3vxw_#7!Ps*=iueIeW_Tff)wdL9;Rx9?~mTYTdGYk70+j7tAv|1?3K=3iY=NBb4ppaBzV%j zGCxmah&jgeE;pjU%bzGxYHI1$3~ccAI5KIKaKn_^h1JujcRhEVecGA66MwCG+pQD% zUbnEa0zJFh+_fwga5$UOnsWwYY&xZ>EsVG;97D}b5m3=7l^c^;$r@j51l?)LbeY#b z;#}RfyFd0-?dn&v&9Y4Xs?BO?pZg&s5`MA<@IzJ*%mX(hxEHk>XGxhT@yMKz`mL`<>q=2I zA?3)_d~4^R$#b z?ZkY3wd`9rtMQURPb*d_?tM6RP;^%*R2kP%b`5r!)vPlYMu0EJCyCtNhHL;cg*)KMEh_mvgK+Ug5q_efl#@wH+ZhVc#2B7WhT#r^iIB0*|GUeh z0IDHA<1Vn`8)APfB$l&R)PG!Lfk^;=x!+RU(H7VA2dIkMaluL73AzVfv@-co#AOcg zL*2qMU*7$rwgdEb9;~2Au1U5@^ma7U5yZpQ3E)Z2fr_U)23|UzRI#|4QM*2%9F;Z* z`My!v{BPfPQ)KQdZDu4qOGYB*Wx+|VyPrt(3_QMia$|8FWeX^W*YeR7 z#K;5z?$`ghuaSq)YIBX(oVO zVW9mFuZQhFYft_UfjXEO|LtZ1`=5{O{~u^302%{;6$qdu@iEh20X+D-a`4eiVE?;v z@X<_Q|EF>QC>C)1Q#k-M6FB}p;A0NL@y`K(W&+1Q2LOJ~9}(~0a}dtI4)}MQ3GA%@ z&K%@FH4|8koZ9Uw0nLP(kejBj6^O}$zRV8fAm)pgWOz68=b28(REl*JEEY{rAg-iI zyu2@CuaXT-h1R#LB)l)8emEo4p_033NXNN{MP|`5Q>t*-?R3V}28N-+s z>B9jF_u+tbI6VyMw5(PF6C_`0?*hRj*OR2d?_0t64+m`X^M*eam6)H{Qak;KR8%xK z9Fjj3Cvy^9;nZ(YaqqE^Z%jz^h=l5@;>6JEP5^EPUfgTn6TH4=f)r8jcDSg?^rH6~ zMm{6w*(1MQj})n`pk^J3@s~~ObBCHj7yKc*7?huef|lsIiq7WQCmgfMi5*T?D=>4W zt7oZ5R;kwRyl_2@G3^%DgB}3WNIi_;KGWn8|x*lUU z*2tP7Oej~tl4jLgoMY}_mWx&gZstO@oDqyR`i7#a;nM0^wB#gAg>9BB+VoQIkRiF+}cvpmBqkRTfUvd4jLrygH+Iycs~KG9FZhxxSTR!(NG1NvJ@IY0@EnY5~QE($UY{XEP_8~&%QAe01XE8M1!F-Sk8n;O5V_9>Y2 zC8m_0#AaH8@Wd0HnOiO?^0I6=PJFZ#^1!YX;^>xtuJA$qkY|b>lXhq=Nh>%zQ{v5}j^Tm#bx5oy}MA_4B zMZVZ8rHIX0Pet(@7?0<5Ul$WIg1zm-K^|P0l%wEynS3}4d?s5Wgwe2);EpuCVORsc zVo5QcpH+c0QTiw3KVuD7iTWgM7yM#^ng)geL6R6bq$LwcjYxrDD>VDdEJA-T=Tryl zJ_m0pLqSMsz3kGAl+R?#O!%pLn3Lb!$qs@vWO=kn3*Z;3)Wi@X=G@ZMghF9TtFI!I zS7QDVX+FFnUcn{q?JCt6pYatMR{8TL5D_=q4k?E49$lxfxP}1wM84gED0J!8L&|t0 zl~B-+YeIv*LT2W1gHPj|h&i!^Urt`$f!|uP^e8U-37EC1HoGd{ab1XjSgKGQJTnT; z{IvzpArX5fE*n0frA0Xg*$cSZDv&?~Tq7mJD*k4_Z%lw(7Q7`C-xnJZD2|^G*qx|e zZ9oEX8**PP|Ls1t$=q|*Oc)nVd{@=mXG71cH4+y&_8aVsG|U$*K8{q&vdwatD4ECb zyH>)g9v53o>+s{MSbD?s2f#zZ4owOM#u9&2p6JZ$UjPq9stsvW_dkM>QlT~sw;y7Z zBY`5nZtsQnaI*y9n7sgASet1=n8=MbZz_zx2PDagYC9g(8j>xcjBMeAQ24(KQam23 zpj-k85&!aw417n#+X47RGV@4U#bA4u+UyAHLEqUe` zsz=^+a-JdpC5D~ZcYGViN5-&b@S&z8Um zFf7l4M|j}6(rqlU^Tl&W2Udp&gL;h;VDG8 z^LxD1wWJufU$u}r>D5GxJW58V;aS;CY=CE(SA!G{NBrd&nf2={oozafg9a9=Lr4Js z3UG{U^d|=Yag6Bqhj{@Re3!R+-^dhY060c^zHI7aijTZ{(JLlw*Q-5K@%c9N-rE^9 zPc}gXsIJ*qkn1$-%@Z6oXnV?>#p}Hy-gYw3ZB1DgMa7_Q?mSEm22Ehe!7tq>bZTwP zT#{{c&&eDPVbgceGp8Vmy4PDN3u)ZgL_u}g^D)>nr3z_lf!G5Z_c)PkpYZe3$n^i0 z`3QXo#K(LDj_h&qulY!Td6l^XRa44e^O1fK^Nd@OmvZQl+lYT0BM9}WXX*9JSoz{RQIb zf4Yt7+=op`V2>s~2NE}io# zMkN9avCpxjmSK!G&X|X z0i|eiv|1xt&i+0w*Mi~7?AOqZ74&?C_~yNj1_O#My3z2bx=vnsJ)@~5D$BUhQGE@H zo$gfUX^a2dU>L*`Z}@01lid%gHa}P0hSR*;iZ!pSU`oL_8u@F;nRNpGaotf!L8##MRqkm(kDv4do{EA z94h%7?h3Ipx`qdOA!1b=E8g=I?La*zA#K%J--#9R(P5bTxrn(-ZUE>oJbZK**j51@ zhQg;4&%B|-GK=pqnf-X}5xzFhPJw08gRKToIx|)DV;>y`PD((Bff>5__G)7Z7l!?l zuIypF(4>FY<*QxZfr0#xV^@}6?pzIhDV!z$p0iFS!x?(F0}Q=qx|)s-lUT4jk>uSt ztDBAujg}>)$@X30FPmBc`Li{1MNpuvIdc{?{9uYDPeP6PxJ=`mUm`ykqpk9P;(>eejHUpnOBu^ zBqK%kvVvTPBNDhkabF`j=|b^b$*A4PJer)dMt+P(1OeoZA5h2Md&9?0fbq!P$9ROX zzMt|~*GUl)BGmA_OBxA;C2rhq5S0Kk?Y82lmuR+pp$ zZY*XdqvpCXh_m~PwGvW*D%CT(Q+%2q{^zJp3KJwvlH99B`k@xQ%Fj@~q&QWkx;I;M zLSL6`Yb=br0LY#BV)saG#r`t!I{hl1aYL zJAKYV4`6(7E3a-Eu9g`=V~=u{$nB>9bQWl?0i6YTg^sj;brt}Ik$Jqo3?t$Q-Um0p zux@3E8ztM%{T*~7*ig`;ISI;xj|&B$ThAG^rWKX#D{+1<-B6bm=>{i>RF z27dsj!)UBti_Dh$`;^g0^B0EAlqy2{0kNAp4r}Q)dS>5TD1^7VaoQHsCHrSm_Lf#N zjMG8Z#pfr+^|`dV$PH-T>NeYwEKcTYM<}em5`GbgWk~A|qktj1!#;WWb;6RGQ3Efp zzIl!X4+EpzM4zosEp3^_!=Uvs5^pIQyuJ%$H_nasjH<}D=Xw=WX6xO$&i{-?AOakj z(O{Q-9hp1OQ5$C4V~D;SHaRkrg5$r-K)Awerow%*XOK9c=MOWCAvHp~>qYxZF5>$k z7eU+|>6`o?vJkHSTw3@mn_(hkVq*uuF#meQOvuT?^^aHt@b3QaZxC{^0>%dareh?m z9{gLZ7ACv2RIuH=m)Fh2YM5Qf4iG3D6U#^_E7X+M6ct%!PEKr%S4{>h3JUQQJOTeD z|M>IUyZU;)QEB4y65#8^eXMr8DIiR3JW{0--w0OOUr4?M#O);-h|IzQ9@qm&pdE=o zpq-E(Cm9)R7v^m_eB1~`oREmIV5c4HGZZ6~y|E%h=2_qpBjv^=i;9;QlAz!>1wrZP zbOOSGafV9{QHg!q{>k?kRlx%9u7j4o889HpxgxEH7bR(C6p3<;!&_9YG*n#7Yrh^UiQ2$~S?<^AX(u zfy>oL5<+bt+c%y^XrKpA&$nv>=X^$2teM$of+qqAxS9D$R=LUDx8mJ*PIPoVZ6F6N1R*7QGCxJukCW^O|Tb7 zX1s+|yH22R&sfV&hAu0|d$No7l6wK+w|9d#p5b?;!*`9SBNml;ffrm)ls5s7NSvP8 zXNJC1yY$SnK0zD@4!DW;+$5j(6fKJizMaJ7cNaFfjOL$mUfgR^Nh*Q~5jqdDJYa<| zmmtf>LUIl=ohE{vo*_vp5mz2ol!ZOv5GwvEl=k&a6*)8N8uVYo*T zzAs^&jv}|~_635cx_9mQvT~wmK*EHAYY&bAo&lmjZ6J={O%d;&L{@qBJN{A-ynALIH8Vz^;+` zyg&x80A`3%Kt}I~B7$f@qOYLmSdLSIuV%nP9zYYvIv19}=>i*`w^sLX-VMtc0)DRb zT%OwkWyFjNu;u~p_MeO>(6=;krd*Uu1@{M=`H9`F7+z0;2+t*>(CLd*47*&&1{o<_ zm8&&x%_6*te%l6wXFaQ(ZH;7}tK&`cSZ$(elh1yYAYb-7Tt>Yq1W>wM;!Lv0YgFLDJh=C6bu+%JWjyEor{uSuSgJo`p(-J*P#gJ%j5hBJquY zaV}73w=_*AyeORpWJ7^?oH4(}1%_m|VAjJiuL4K9w%5LmD^A{T)2DociztwT^~cS5H$l-lQTX@?Gk?Tio&9 zD|3jp)(JF_KwI^2L6H2_rJV-XW$~4I<;;8n_NP^999Z#09 ze&M4!vD(^L>76JpOIxR8g#^v)V0i;4OxDW`q?s6M*F7bCaO1*d<67qc*uh5k`r``C ze0C&r;(;~VDZ>F-N95~}Z8O7ibRN!w>cUrV&xa+!0==fh5Vwx{)Ml?L!?15Y24rYg z=I-B~cazF^qhbUY7I7tTH(_mFy*Em89uk!OceD3eevA!%YARfPF3n{YYH&j_T(5Qv z_rpE>fmjXr#3r#`gJpGTt*eB}gK8=njZW*P6|2jHlhIIbDYsMAY+&$69Rkn1Gp&f& z9+gW(8>8}c5f-1-weO(Clc$j0wdBO}1=f+CqH>;gSLpbx`4jMd{_oE4T*L|Vd$KwMEa4ex3 z!Z2Zd{mnbqs=W*3hHqEcrhVYZaQ-kFH2US1F{>o0?I$>mNDJHe>12tb6i<5UIy9V6 z0fsa>Mk=EEb*_U5+#?0^S_v#_p9)jltjAcf0%3q`bWlo43?E9YJB;bJLp7_JUgarq+1xsF)Xgfs;)J%u&C#A=2-C^f;IHM?v9f=%( zWKd6~YhIoF25-Dy3@(H1G1X*^_<>R#Fy!6OpH4m`YR<#TA^C1I*Akp;U~gi>r)E&i zZ}YvDbSzSJ_Y`_eC*KCx1fDNHRX~>G(=6%*9xQP-S-_q|pZl0n>TNBXDUPLm2f}k* z^7|Zzf|-5*Usg4$=Y>>w&ynunRqx^W6Pa2gVbx--qxho^gsuQQFAIeV>18)|b;qdd zLkDQfK-^b|C&Zc9wfN?*h%X{n-SRlqvM@dxsy!fxEAm9c2$*lFIXK%4T*cizm2mLn z={Zh{QJ;-T)}guc57cYR!0M5z?bjkW#!R5K?tZ5RgYUH$QY+f{(v@CERJ2}tf~RL! zy`LS6Qqkgwee(alTc~;U1;518;5`G<76+`71E*d+?z|wr+kZU(N@{W*g6fW)hS7_G z0sA>3{QP@(b<1qc@=`@#zd&^BlanDBPCV6C7KPapr`@I&+QThT3S2TxFl_{qOx%^Hzw+v_en9f`%~tq4Mq@5Eg~G8Hs$;xG-^$aua~ln zAEK4v9TqE$h|S$;*_ z5n^aFPvJYj3+6P_0>Fwj(i1u?3Gex}Qf#{e&sZsqdK+ewV_un(Z=jgHIe~3B^XXM- zQX#T+x$T9?y~_7`&d!l_QIC*i{~u%L6eCL1F4(qh+qP}nwr$(C-F@1&-F@1&ZQDKP z&g4#Jl0TWLw@T`HSHA4^tyS^RXx3n|p2Y0D^w~~viM>`-a`A!xkF;TZK59p(KA+2h z=*t~ONlp=a7wY1te2# zRFA~j{pC>f())df)>DAJO-jogUv%2UACz~R4u8*w^G#}jnuBxiVNfc=50KmPFni)pPp>Au4jk1F$im2|Wri!#yP154@z{B5 z$@^iYUs?`y)v-Z$Zl$CfS5-G--C?L}06U$?x6})539~)VK-+oFQK0Hb(@CC2kH@ya zm~H6D1Uu6aD11Lj;d>l{J7*0nv1EqB(t$pKV`0MBC`l1Y&awHYZAcv+zd25Y?ZkQI zqVdRQ`a8#Pa>H{os(xA`ewI(N#C#T=gTlvN)VlltJ`oqup72w^mpcDSGuMMyjM5S1 zAwizWG^A``BU|x@JY8d#U*b=(N{3;&?*nGzYo>!5+cBWz?wRHA$M>@@VJ+rqc^TXTt9HmrkBVW|tV!!8Lo zt&fddF3KK*Yz*ZqLLxaH62tTkGtMH1pg$UvlO{ zQCqVTd)2-g)TiNgTZ$;8a`$V^dQbc8e>JzX)u7S_Va^$Y>C8u#Lx%}0 znd*mr1W^qe8}f(4QW#^fc7U3*ZJThuI#@x| zxFz(Vxv!1&^DE9VADj0x4^5b)`cG?Xo4Yn>zF{IeR00s&6j>H2OHz0sWS23=s(+tp-X#H99Q~q@+^J}C<(@a!s$00Ffgl;m=kiuYz;|{q z((4^{BNjA$IBgWRG$iw6Q}DL*R-+9=jk)?@udX&9uEau}gr(34Q$^z^%bc+5N&##~ zM|y<&60*%`IcExgK;O`GDO~^9=JX6WkHQf2K1^`!eG}x-gKRZ<@dH1`K2=e5zFf~+ z_tEj~vUFWItTO+!4?@JPrZml_IxKeh`xV(2{eCo`gUvu0?2?1^ka_*BRLU!<#Jda| z?GS0vAaS{cwHi0TO*)>Km_0cj^r=Z9#H46=-u4Q4?dg*aSZV)y-DcMf5w>FDRYR52 zZ{^gjY|J9`IA~3dG=Gqwu4JZf(e52)&?&;T+Fq=mDx2retx{7Rk3G@;3*o6D=snO3 z=Ddt95uSbv72T`R4!Y3+(Qnnxo_81qZ%<Zh;{*R~yfqFCv|e`N;WGnviS!P!|X7zc_FC2ENJo@Be$}8!tJe^MJP~LnQhy~>lOr$&Gjru z7lDVVAYoQy>V8?tJJu{L1R_4;%Y<)$>g@W>d^-heHFTcQ9`mDEi5edPefy`rJmz zN$r@lD09&e?LljtpqND(7-aySC_k=JyjcfdF80r$hw7;1s&KO5ZLCcntxH6;Dyy4L z3uLcNdd*wm`7zy+Zui$b)^par?TXr9#%}vLj5dh>e*ILKRFRMBq;xN@V3nzeZi5LP zcyQ+x_T5SK&YjS9ipuhN`cI}h;g4PEx_0;H^9D5(F`oo>NsYgd-PG!(ok=oJhbvPf zYD8jMS0&awqEJb8$%1O)$p^F7{J7BcDB3s3Foj;q`q)H+2ZMnrjfmQD-n-p}hyAm{ zIiB=LjkvhWV#6aWq*k?#*UrdS0??4jVHkuyrBdT|W4@e}Zaq_TjoM7hp>7Q>=lKR~ zmfrn2A~QytgIzW{DZ(qL1oV}Bb1Iy)WL}?J2T1KFouPefUx;b!QF7?8|HY8bw<1mL zs2CC?zU6oO;%a#hJ!hs9V9$+F3p31CA+jNz{DkekeB=ikHU31-210#l4Ewu+&c)B8 zI{2*}e4+-7r`qN+Q=C*E6w)pz?O3k;&D7hT#E6zQSsM}1%}?^bq=P7sqB_WScy^JL zsgYHjvg4aq#XElTb>6NQJ2o~5C(Tir zc5mVe{FsueHr@9)n2Jgf6}J+SHTrqFFIEf*QkZJxLZh9mKCEVj6J>9>f79Ij}B z&mI>&50tx)E$rYYuB;qRJs%XS>@i3KIsnPuMKSafN9)|FY%#3L9`Sm|`A zTb!Y#B>r=Z7xDFHNIBh>DFTW2K{T}yKI#!oO3ITu5qq`dNg4vAQClVWu_oQ^T_*@F zIv10(fO97ncKwG{#;*i#UO;pS-fi;wC|Q0F0XadVVsrzKNs{6Y2kJ7X-a^Ur)DgYE zz8IPj^#-WJ#;o~~fL^jgp&RpVy_uMOUWa%-b$QT3WcYv-+^Pf~*)}vgtGm$BdqKpv zi}}cvDEaN3-L0wN7tZ)_(wHQp0?x@qpgrP4l@!9gY;VlHyGvUiMV3Y=U-d#cZlq-F zptVHnH=G&C+;SC0;!+7YtKX&CVuv2o56_2w+4}hUeETeS8`?4(QvFx=gUFbt*{)Q+ z5t~KTa!t9fsr~>%wS0TR%*TfZpH+sk-hv}ZHySCvz;ZiT(6@Ffe@dq99!G`hfI7e7 zsIb!SN+rhPVge%KE|E$rc|-9wuUCEs-P5gW?bmdC>A&!h9d__4v<>DBlRqE3bM6?@l+#XNaHO`IXeK)8 zJ~AJE)EBbtqqVJ!ze(_uZVOq>uo~>FEb^;8#EVU%l%arIFuy9Xx$#cM*CG~Pwujo& zBZx?_5#2FOLQrgsq&M@*Oio#g59>}8#T}TX#u3a6E2eqXzcKtN9vF5wyoIK%wK;?aO1w++pW#*{zx$={VtQ zldH)J?*F+sF+`d0SVn7m+KJ91{ZcaOnWuKnmhqX+RbwrrZon(u+0>2P$y?@}HVGL@5fTb8~viF#5yH@hc_5mCog&R4O2?dlt zP&{k~(F36j|GPDmqGJT>eNnt({;?pw1cWEC-G5?0{M5;rK1*czBAapA~1@IqJW z(BSHB9}Ic!H;PIRlu5i}6Aw{M-JXjkRy|wFsN)`mhmr;Q zUVanc$sW1s9!gbY6+=fBaerZLkllPEc%?Z_3=tDBeu1|VgYNjL=RP-G_^(s6njYV; zK*G&mZQC-@7*waH8Hi|-+cNon07yu&7uwtvP}__(m3wX0o3dPC&nQM#X+_*kCfRnK zt06%#Bh&-H*&$@SQhAzJ*Y;AENM=PAhUJ%5R!-ht8=Ch7dHw!<9B=Ec8Bxl^@TkJW zhHQxw^6O)F+pQ|US4c|Rg@eeKQhkGi<8x{66-ti52CorRl@PUoakK8D1-z=QWF zu21%iVXE0=dhqqGaebeG8*g2g7oDn1`MBS0pxe`BO=0XmpBD7PTLWU5qA7KMY@;Ff z98_!%4@6ie##C0xV*C!$8S-n4e)uu{+J&JqV&xcK8;gP10FeqR-7{BtUAo zlhGF~SEj~9LyRnrjS$E5p?un3EK7+f{;Cr1V~EyOCXlNdc8Sim6a8tnUruOfix?Tb zl-Q(F?Hh~u{h4uP*&+IhE5F0aN5~1L79+Ey#VNotLr^7pK05QYVsp(oQ)~WTgz0(u zpBOK5kbHK{BP-7JaWmElvxM4HtWJUKiXX-T3M7LSuFiEM^1<>)>)_bFJ%fwq=s9ek zrj{Qc->}*^>KtW*<3vl8u4;9`=)!sl*7T|aL>LaDOYJsCe3<1{=}2_$;5$BeZaT4> zVeVX0bcOmQ z4uwMVb7k}0zl_=c!h&K_<@V z4R-TrmqURRI%cNhO3fBX%?fOCFgQ*K&sJ%z>JQHX{Lw9H8=*M9>AaMyp(bxEzj+0J zGSL6VqZx7t{>k&8M(4#(3x^Pr&K1oBGQQO`RXJ z+pSnsQ9?K<<-3f2#wF3c%5H}!VB9Y|a4`=ntx7kO;R>TY*mDoZwL7y5k~sY?_?X0L z3aX^9%AAIJpppN{=_x`Tz0|01R*1*P1)*(kA9p0IPOb1BY5nH0Iur$0k9x;u|XI{m!mn52bE3;EZZL_Tb z)YIA@-&FK+yfKz>uNT%`;JtViUXMQy@yC;-*JGFXiZG1B$>FUj@9bc>e$5#Ggc8U} zO(Djb+M#Bg8NfVUftEXJwcX5EKC{MkX^BtKI+s>bUD_2IYi`P z{epVzbiX2tg$1XkWj2T^6tp?0&(yA9TIGdy*-e#}j7OEZMp;3Dz|0%M-Dm`IFNqDI z+nU_Yi8*;~3HEGtVUmC9MWmGSI;vHi6+{tNXxp@#30`%>xxmLrI40iRf@PD|S0x$u zVlIFaUU)6z_|6*)FYw%hJ*cd!4j)O=%++0p#1m7e*rtlmh^0(MI2a%mBpSe(<*E+g$2}B8x_+11A(D!o^WYSxC;iWLgtVEWvy1yb4*+ z$8UG}LAtWJBtIDqobc-xQJEtiBIi0}eA|XA@lDEl7hjNCj7}t6lLsC4aa}}nV*KxS z1IiEbSi1fSZ$tpUSdTvEMvZZ6(lv0E1Bj5a2c0edsj+mS>v9dENOIR*u>cygNk5Jq zmtVpRBEWwB-TnoLr}uyce^sEHHn9Rtf;UT=R?0aX z?ALL86Svwgta820k45jc+^QNy!E_%T4Rz#TUgaRnY6Q*OvRBaUw^ByY<`5!6EP?rv z^JcVjb9*XyjFdg-0(x3rmle-dlZ*P9w8#3M|0oi#t_kL@B)Lg_nBjc; zO=cPknklTg$G1}TG4htJOq|96!~X3x!j}D8aL1^a>H&-}g@2oSvj|9O9T<^fX#~?!_lx{(M5?C{OJmJh_m8iC^R1TbtBucC~r1eEZUE+kCrKTF{Q* zYM6e3ss#7Dwv|9C8obUXbXE`v3-Nt=gAR*KB7r7+L+V(-*Yk z_A*e}Nmt~ixu-PYR0h2HmDnd;m9#QVJ@eKdg5p^6-Y#DSe$?#dbK0~>|7ruKURY9^ z{)jxhLB>1-YwQEJD~9F}KmM$01QlT(@{PkWM-XjO!4?y6vvh^+YV(Q&*`LBhB z+V5$(Jz_8ZLdfl^)R|Lj=VdOI{K^4)wV8az9CP0VPt;;T&4ZrgHo0#z`53Jz1)QXt zp`qP6^~>EuDaE&3gV@8H6VmRyJst6p+G6#=WL(Bh7LM|3z_0}cXS|5mzYjx?KW$Mi zAX(KMR%mIIi7)S@b|+k@KeQd>Hc~ncu%UDc6~DAp2IDD459K|Q^c>;SDQluA@ahXA zU0IpXVo^z*`FvKMknI}Ug)SdEHZ%j%25l|PhC9G`Y9S`efBd>k(^|X*<>&ZWcX4u4 z>6s2i#kPD5tS(|yptC*H*eOkMa>AL6o>AwQ_bwXrTn$Ti$%}2N7fPERmSv8+*#(;B zm2QjBcH}ok+>r2)g>n93N_6Jjju4C41+hJputaV(y=Kwt(cZhIHi{$b|Ex0#$D_zE zFkj(|g3#m_eVhfr#L@6d^q$tboIMs$d>U#hH>rE^Lkv?fFm&ZqDt3g};lEHFD}h0a zwPP~XhjklQY_^X+-yXB>f&i|b7MUf31)jfXD+e}pu0hiR6S|m+j2!VqkyYybtpl&8Me!9lBN5Y4AIov6kFz6jO$#D>Ke|8TuC!c zridN6+TA9n*W{Q9Bx_sh`bxCrK-E^v~r1@!oZN%F-mlK=`N1om) z8@)p_FSy8FT*6oP!dfkpGzzj?Rb{j3tV4KdH{N`cz*MT!r&u9)>DN|Jc^j0{NX-v} z8h_BL&3jWG9#f)LQ!!nJG^`eu3Ph^ogy?U^(gg3!BFmBq=RrUs88e!<28fKC{?c0qNMmKX17)M6!q-q81XR^ z&6ms(ZK(0;I}q3K+9el{@+uETr@7Ofea>7dOsu^Lj3g4{J}zl73T630vuu<@d`N|8 zPguPK0A4q0W*Krbk%Kmu_?XIgU#-!^DZcmvaCVC<{3o#LzZRkX@1?hYU=<4!=YR84 z{}Ma@Y_0$O_J4v^?Cebc|6r91sLImz3Lj-eh|A<0EVGMbuuIwh1gnH$wk3iC3Ro7l zNeKzJ3nEfN2yl}Y?hAWgdtZBg{})%ao73~!^t%3;bIKXhjJ1)Yq~-t}!GjaF2jU1Q z3cyrZ85IOTkdO`yaWr6LvJ^;!L*U=hfbmQ~SF6AwbHoq8M2Em|utN?lwsoko&k&H5 z4Gb_04FDMt03sS70056b@kLLtB?>|S?G~;DsL}x-<$y7a8m$O+b94;U(jdBJ|5!&F zFp`7{fP{v2^p*>k;1tp>Ks&$?K!srl?by9Lk8}kv7p5&l2vO&sVu08rN{}Pc-oeYm z)7~FftK)!ly&CbgbHrkOu(=fMNCw4dLbxx_cVDJ)i(yKf=4`ergcVok9lS z!@sA0*rC-akc&{OQ>zfJPwezd25-OPckELz&7rfEc@c*?eI@s zy>|-wf(!ENxFx@PbPVDKtiBBocoVE4eD&Aht2J-WA11nAfA^RJV+IX49j=k)l7{q^nJ!cxi#n?+s! zmHE2OXlB_$-W!4ha(K7{1|&!zfFSVbyZbapg=KiEqYLmaqZ+K<2SB)!Z+rdwR2R4X zO9U{fe_#Om)s%ttmDhp*Fu6;@4)y>{d&^(&%e?Gg_VtVLQ#J7`_V8;bu`@le@1Ak& z{`CtPj9Un&=MQ)zc^TG@9zgY_2UhgxP;TTTSzLk~ikG0mIFDd?jk z(97>vUd6M7Z1e|ERAb|(a0}*Zo}U?i0P7a$k-DAkynhvF_RV+F4Kk==xUJo%D=lG;b15C-sRlI!6{q8t8f^D z2yaeBz$%SC7^+^69qp@{qBq=@Abe=E5PwiLV#zd+qYqaXyr13YfCj7nwHx$nyN)B> zKsT;a^voq_Lza}G_c%>6tmB?)zRRmP;j+}Z3Olfggkinru++!B3Ep4E?S2x4s1qtD z3d>;73%Z1!RX&lxkT@m1Ib;uOCXuDJ`FK@ATi6z4w&Qi`qv;v?W}D3gte-c^m-st3 z$s7y44vGk<*3C}eYvNEVM0)VCHA|jazE2MT#qRs%nTFB|iE|K@Iw~ufY2St5r}U6m zouQ$v3(T!p7kHdFnrEu^c^a4?M}0N?np6nOHl;lmjb9>{cD(}0oWrjdZeq$04p8OX zO8PvZqra)u$7Ru`nmvR=-Lpwy5wH2QNe}RK$jzf3n?f$pW=E4*GxeF>jW@+XM_P z+U@Pf&B_7^V#CyWAs$ch26c@Z{?v|zlu6>YKcI!TPagYdW}I7n^F^skqyg{}Cl%sr zjjs8WgfXT@J| z%Vln5(xJuXW@~F2hHlC@fttRqQ1SV5cjBm7u#%(oO|xz5X_?G)|71Ie+i~P>9HfD* z+`o;HinGhOz--v)n%B&EM5sgqwm#-Ae@i&ndyZo14T3yI0X zP!@5q=oQ1MF>3@!ils`UZWo`Itvxx7Mck2zcQ;{$(ee;`g2S3#NZnddA_}S@rE4y! z`>^c9$G_T@q$SjjTb(B^rTdHSHME#w#gXdeRHCQl&tb*E_!iuED(xGN$7zIS9ZdG% zIyCX9=O<_Hxj2Iu4%+J6L+8(RU6O<$k21bxd7F3dUzj@dj+uyDv`4l-X%f}^)vPfJpV*eaf$-7W9O;c|hEua~ z)<#}!_4xK#UA=vDGGUgnzL{RQ^Tj}(ryYy;ro@+M%p|7`e6Xh2@mj0J?_}ah+yS!_ z(874>*NEhv*YK(eM4bGg0g}?3%QBbpre2;{b9Do;6qw@zHtf-U>@jLFMRkXDd z8Fy6}hp8;f(uS+nPw4d3_n$PUU&;ze^5HPX97LR$5k}|daMqGr4CA3EALE}Hl%#5W z-_W`-b`S|PmYCjb8yiL;-DR1~J7{nmUn6{(S}E8Xr}_>tUb`sqXT0GSQW!fCK2R`h zg*Rt|3~|jz+%Umfu?Teru+yEh_RXTikN_JMdVI#o_?NB43)bMCTe$=<8%K3OYVM+U z$`p!DmKEfc{Hdp*$!D%MSK1tUjZgnR>j>O0kY>7~rW0u?oeDL0tfElLTK|#S+Agi; ziOmw$u48pI%=yfCRPhKW(M{oM2IEBWG%`KgF9g0}(Jv=O5(q!DVYt5`ZlC zAguA%@}T3*SN_l>Hhhk3uU{i3)~Ou2G`UOnZFJhOBJwl-p;WwIJ})zCS8Vw?u5OA&_!-FE}sz` zG0Y{B?80=a=7mJ5-+laLq7cyznUPc$3u!B!HI(GRkz+k9ymcb22C}pL9)9C5 zthe5ImK;o!af3gFf)|l}ss!82njX5U7;hutgNwnUm>jDYYQ^Za9P@xAeZ+92Z1db&%^00h-8)uU`#kl2p zcGOZ<>7L}oItf`O7awe^4-0jsu;_Y+QP)aRKmDAAtd$TeGc8Dd?}MhPLv!|JI}=)M zeHKY0@@|s@E$U}obIIOA7xg*@(G@Vt3x$KpcrdE#7U8h?dp3P0#}y%rr^dh6n3C4` zFH^}^q#fLI`ApC_rTkH~$XxOuyGPBGTVRGVok3ukvr##`}YO6%;J!3Vp zaP_Stvx&K~t5e8vL3Gw#33sdCnU_r83e)kP_VZkAab%h+>Vl@q`j%f^t=;4;S0y|% z+f)NWPY^AIR;M|>Px9@e1Me{LiRioC1YUn?^6nLLIo!1$R7J&IhP)?K>3yv5=kk2) z*CE7|UZGbgls%6N1o%m7ALEmjgnf2Aq@4?1R(DN3F%_=HIfDYgLx*$EVWaja37d16 z9?GMss4CSB<*=Z$=wO+2=N^^<8f)FG4MaXUs_=c!c>#>&95S?L2f0mjbtXlI~ub zB_(stv2{ya?)HV5Y$uz~%aI?*h5Z1(8U?N68apLxT9dUW00~spK6`^PWz=GoWyIv{ zzr5;aW4V!$~)>j)u}-#K-q>YaZ*$cSGSPSe7^dtn0054`*Ps?VRvJyCe zdu!(r<|>$?7~Q;;(?QOUH7;8@=F~AcrERMnSj*DNfo8;>T6w%$#jVxR7IN}usF*Gb zLjZ2bvP-niI#|WxrW`iv6{&y_gPhB%xjRWi@+|L2oR3?r5e~9qmsB3!xtfKN4S*wB z8fS3)Suk-@o-VXDOG`b|YKUL-+**eCz&S!+bhXULR_pOu4L?eFkb^Y$q^zs3hB@9} zKhY(VtJP5CNVLb$mIqty?wdGhh9(F<^{2y^S^s|d;G6(A&fiGG)s!QD7Hn9Pr!6dm z_N%~8t+)YW$#iM>$2);Z;5itx`y)P2_$RwBK0*rZ)7B*&jJ$oA5Q~}q4wfp}(mnbD zo}dO#=HE$&wbIi^qB59*2ZrgjR?`S$ z7ln%zNsdrXFXz{i-?Mjf9QESr`Fs|+FMm1;P!b@yKUM!5yPQ;Wo%3)fj_v^NL82mz zGb(VqV0|Sd(}bDE5%=5tG^k&$7c6{I2ckRqt!qPgvr`HGQ3-Ij2>)G?GYW;kgj;8#!Q=g95w<)Esa zIj$UYcJ6Hn0g-B>fwgMkj`ez{$kR2w2wvvw>U!$lAXT^thVHclQf$ zs+s18*Q)EZM-eh5Ynkj92t9fC2de~lcJrp;@W=VMk~5)ZHs=a+_14+UJ^j(B(DvGQwBT~vnp`xbu4)ncyCImZrX#K((!O+_b7oG?zpIIY_- z)S>lD)@P*by>?{$kK>;M$aFe=(QvweeSG(1Xf@{h*}3)gg2J~4j`cCOWv8Dc!3sZi zB>F?Nt&u6BwxfI(c;uteqq>`bldAtA9V;QrM#~m~aRtDc5jb%`P>qXV3Q0E~BbkPdC-4mMbGQO4}$*`*2B-vn#H>=}o9Y)8XjE5a%}~MDAEn zvKZ0?=D3vaS3pZo|CSh@a{o-o_Yy0lb>;BbP%5#rr)@=aCA+s2FSaf^Hxbn+K@ax1 zXq}dv8F7se-1L{j^qIAL*PP>@1I-04beVVWJP3oLsm)5ga~SU=)VGdtPBpbZ9qR;< zmz#%@oX~NH;0QT=rWIiW*EB#mTT>$C%PSWMWvZcM$yEiZ(62&O-|wrjp`ZmvBjQ)_ zC;}?|N&=*f7uz7O@3|jNGyc_khFkcruowHs2?groyO`?{QH9byas&k0b9u^l?gj$> z`A!#7i((RRBbv9g>**s#XSo641QD6qNXIqEc*w(51`v&STG@!0kIzgj;LL1(J8TUg z>r}h`G}^Vq)O-gi+ihsC^(1;~Oa-{gzcEO2HcBe0qzS=5F}mlmX~8%sPl-;Mp^@<+ z9r4)Fp~eX=BFakyw0AGA*2xHG4Z?w9ruXwBVLCQW#&!5b zh#=JXxif(&Nut2LK|pzH=0gO!?~FWD?i4;Xwr8h^bIWT`5?@ALCrdAdsEdOnZRR83%|vHWkuO(EHE2(ze_f$UBvPPbwL_>13|5!B*8&z9FWbh z-}Hw@oCyt&{Pz!rSgL$P+hjO9wwVbbjSO(>SRh_8flGracEvmXH)^nc=uY-IBw1QA zjNn@9xjft~3tSEr4F@XHv{4XGeAwltePl=wF&xL)Vr+b#YTQ)7Tf^Y$N&bTKft?DN zd(*=d-=*NL)gWV7po#ubZfsPh?{jHHy^V`*B(#6B+oV+bdqusNN{YvI3d4N*YpV)z z$Ru68-#5(BpAT*fpwT%B+}VY`9fx7p#x?4`9#?iNf>^d_|ua} zcP4n{pUQe?ZWd&pRh*p~2Rn9xtkKGC`B#p27OTp>!+B?4g-S|mp|qWAddj2Ohpd~I z_u*JOGDd&%EGFCskiP1fYeqB{&XL%`P_`+-yrCO`YO4MKnZ*s|6YooG;6(Aim@)ad zK)W!#?s#@tJ>SjHlb$&dq8-~iOMrYxO&4d3xVx@q{RDrlEgMPMFJfgS5q%D$JtIXH zP$n%hx;U}hb?Og8eXISp@yo>{nA}io7!|=bvPD@DUnaYt#Q9-7P)41lm^9Jqh($FL z)#td_TmrvIpkYsF3zI?$De=O-zeI<@ZI^3O;qKxep$qjY^|(G&urX7|IjU!w)m=so zBi9|}M{y(0m|LA0LnM*@0IObazy$Gu*gVRqOsT@>-1HxfX#-8Uy6Hs6V(lQt&6xU@ z3|6aFX?-NYG-&T9ZR3zRP!DXAfVlPv zp|3-3n{N^mTHOI1T)Dh`ORTSZJ7^PG4?5qwvGN~?kh0*GKB$@r28J(3;5;tyQh~LBfDTn7gvsmb+ z(63lW`3)rMksLVM1^7Hr3~PL#=V*TQv+Q@OYJxsskQ~<3x#s|6 zdI6kyap^8_yV*+PGpT^C;p38tU)UQ~G8mq$O2~|K7Ezcn8{qK)-hVWFD0H*LXjuvDqm%2zO1M*jcD(VkxRjtMAdJUt6{4=FzRRXwHfy zGP5!Cb*wYDIA{U$<+0ysSI;aky}~y>2uZOXB)1rk`Bw1jC7^wAG|eaPfiwv z3k4%;#Na;`T03TatGTtJz^z$lmY5G|>VGvPdx_Qw3*7E9V!$8WQ8%Tt@JvjT2?g4IemNxFK41j;}l% z-VJ6In%5WF_9f(2lZR{<2Mh#}7UitXe~>O7_k(CZ_Yf7esQ8xr%byoY1fW%TtE7#g zP5kM5u39sJb*GfFhKN^4`q$#6>qxLu`$*5Vo868_${sy-x-9LJKg(Mo)6?BG9rt2{ zCYf_wb`XAv7XS_~USgxbQ^?_Vsr?78l=IR1onty zy;a=RCR<$hiMG3!n7vClH7oyB%TA}~)o%_xWo!d$7D^|O^jeX)mnz+`Zn8b5!hCCP z6KhaC9{re@(;VhI9Sza`{drG(w{X&Wg%|y+no0}T2^;H~A7{dUz`D=@unOii`=aNI zRD_XoKMgCNI@vSFm|05FkYOnOOh(_+%7PwRMESyhZP^~Hmf`Uw|LXbfPHE^xjF;JJ zQO|kZ3@Z!ELmhmvnElKIzdgZd`!lj+?zZW77#(rG%Q0q?)hSc^nNQd3ON%%F5@H8SIn1f^*r0dBw2q}- zMr?CRo5?zBcpZ23Bi|9(>FuiFH00MkKNd_<&hb6ZFN)Xwg4bIfQ~#$6YL@?WLCwza zzXcym1dI$EjBNkuhMJL)^IvZEzn=fMiu0fPLjijOjV{KTQWP2m62+bV<_5(b76A(g zc3_(_rD&wk!jYo6y$i+N-JQ}dKF|4v^L6Vt-_xEc`RbW=_fp%Nj3vbii{>Eh4f<=>(?@faS_ojzESLILI#WHM7Q z?>gnCFaVUC0RT99K(KniVJrYQcR+G(?k|7XivnOkN+$CdQo$6ILVY*@E~5p>HSSgc zfi?D;a@H>n;1e1Q0G!_s`;>n>@bGnjLP97eNP!Jl6W|7~X)^;bFv}IKfI!A(pU@oi zdcOf2kc|x;9bL7VTU_;vf;A$TSpYPI8L$Vm3y4r|U|PT~EU?PdRe-NWs}2Imjl zYx?W00Kpjkj2Rl*iyNF70z1MmmH{XbFkmH-utr_oofJQN71 z7LRTh_GW&vFL;A{pvM=fMj%0&T3>d(i<7}(P{0m1;PIayCeI*-pMmN?1^{?&?oVt# zI)FP~fHNz@p%?D%(rn;6c+$W2Zxz7w@ZjFy0n5tB0`v)}cjw?kL-SLZ5CMX@0eX19 zHE(Sp0|S8dAe#LECj!<8Acy&9@(gnq^6!>!3JKKx0pF3{H~=rZ`F-+Y@=uM;;Q`w} zjK9XcHdr57A5K{^{%&7wazcYUsCxs0({Kj+M~2`IUu5gqWx=a`L*=zwRxT5w?fea01Q{0(Rj1;61(VOKm?X!80vzq2a8L&v}I`+db< zyAnTrpyM2Y1ODabzjMF-OJ;5a^_%)&@+Gc8ytDz0--}oRKdUO>Z>I}Xz_fyLZogHj z;hDU&K^((aU$3k|IHm%%0@ADqQ-de+tzVJW-#bhU5I`zT?jYZOY5+9y#qapri&p=V zvtC>{`4sQrP;bqgzjBnY4fSnbJw`b^-2luKOH;6imSgfr@cqGumguyBwf+eh{i9F~ z;k+FHc^i*F8tcN0e)1{#!2M=$tW6%^K3?C|27Rgi2RiZUoTY_22%a$M3ORz`xM@enNSzclPg; zd{bahUv<5C7Xck>zsVOB)b0dN@_YKujSfM4s9>MQ$$4RK`0w%Vh!8HIS_V@x8`=HSt2(LVQoA2xR-yMa0m|@lto#^gUNQbP53-@(9X30D@LlRM;U_fJH5#KaW zzr4MVVBDk^ibI83kipb_L)7ZPf1A$8uOi<-k7VV<(GD*Se~6ewoVI@xH{&5~-b2xs z@jN)6c9rT{hdNRA8ZeSiHFXBUmA75 z$dz|p)ZA!WKQD|UU!#z=xa}LHv@$|u=OarHN(<11z!Ef{0UY1!Gt6@NpL7YcK_flf z@h7$u?rTgNny;P;+lAkf^B#@g@w^|YDtT5fH1otUgSri{LV3XKsd}>5%W?3{5Vr0o zvB|=g&dMa(eJ6BaNS4uQ09NC`QGe=hB{7h#HLUjX(K$k*HHUaVT%7iW^;8Ka3ocWh%YM1)x4AC(?Tx#!+6(2RcS6c zA^tK-YvnQRfa+}Ao{J}W#BPj@#L+Xg)Bg{~&LKz_CET)QpR#S+wsp$3ZQJH4+qTWW zY}>ZYzCCz@j(CF}<|s!Q@nz=PYeSAv<;&=*OqdS(XUE93>ALO^jM;bP}iR|+BVyPwVka1n)@p^YV0kk&BID(AtO1E7UY=Ig>w=Ca4?Hj zKdF&u&P`2<2C0|=rPHp_i2gHhR}8;Cp#h69mNN0PIKl>&tiHlOa?%~ zICm;UlD^h_IWw=L|8IlzfJiQ*3th5g@tFa=y~xxjN|ioi_ot!{FK*X{)e{dU5{C+t zQH+|#hs`$Bc|9ZL`6iBg?~ruzZ>%whysViwo#l{rF7mON5JM4lCx@mrji7F+7B)Qv zF^V|6+D#KWDNYjw=6wV%4XNR=^wm%tr1zuXHgK-k{e@2weL!cYoSmwjxpXjUlFWN& zwY|jdabupG8t3n*f~{?048vLh0#KJiG2 zW!wc-;|vY*^$T+|b6@hc@)IL$%2HZ_oc$0Xg>zPsKYpns#@0;51b=Cc!URp7xZI!K z?GCD1!${u_n>pcT4tU(NKYbVELL_Qed4Er>3&C=3i0E>tU*_4`aK$>3yUdi8YuK76XD$&Sy@;cWWQ8)gfxl2G@%UqjlO) zQ75@F##d&bu3;rn1txORGket+!$%1kweV#$!|c1>(qxnK3oYs|-aD7L8#V;qq#?r- z{@b_;jib#MrW;-Q$^<$H`fi^KF3GI%Psr`nw6zY{>lm#Jz|wLzV#l_AMm)CW(rb7V z`Q51HM;>wPc=nNMbB80|=ex{ZP=rYX69}YAL3b9}opb2*SFye{GHI@T6Q{dm$TtPi znq{|r_6dDWiXHDv=MA+{upYT%f#pXwOokExaFt&h!kZ!`-F?=pL~1oGNIJsF%0?Xa z@&Nv%h$#=_%4IPP)|)?*BPE;m}%u& zMx9RsVyxi|2%KX809q-arBU*iQu39^J5uVqA}W-%V6bcCaz8FCQ)08{e`(R8c2d(* zoX{iQZISbG8-98HPX?C@ zE6tjZ^Zz2iCo-=GBi|zP!f0Ms&9*LZ8Ty{RL8IQ(cdbuXj-F3JjBsOj@l3e1{GOj$N-(%X+`1^-h$66i30QW$iEYxxq zcPL!rPkR$vDc7{_K{_o^eNeUt8XGaGN6iA{FM@JtLN>2|WdCqE@alzS8dlTZeH;L{D#9ZG zw7voJ7-+M$tGLmiZxg#SMaD9L%Ir|zPz)Wt@fIISyDq+fcq&iFwxKmd@}+0C$44y+ zJwiRALgPtwzXIuXNm?n(MZ)VG+N|S|9e8Yz=QW`W9q*QrxMielAcBj*a`8$e`r0rV zwjZh=-)|_1A4CuC#TI0zYTvW!nU(-)og2US!!=KL9kx)+DAoQZ6=UX{P(m$vJB%%m zdY%*VXU?)2B)!l{VTILR>b`g57l@RLRR#}VQ10s(=5}#d8-2NL7=g;PqVSgytV(}7 zZ!&-eC&B_LZ{!-g8nBK=rU^|J#1WYFoQ0oyg|ZKdX4uFRyQR}EP-d3XYLWX+qCtVYQLjeUq4f(rC;GVi^-99ma?5R43843A*-!pvonUHYCklO}I6(ZyWOQT?#s< z%OoWw@14`MH*5O1kxTp@3Ox6tBBQf!wz}qJh~H$QBgJ0(L6iKWkH(*7Hv|p ztkP0aQ4aBG=oZ!7{2!{H5=U8A3`FUZC-6cmaaNJ3OSB~aL2$u`RL#=D@Y9m*Y-_QeYO>U%TQZ-*yW+-P~Eyc5}R zzaCvYa+K3w8^iOHdO@%8DZ-`Q3+d^UO?7(8;C^Qe)zh2sy=>Zd(jQnpUTXSCeO?xG z_bhc9r!W;`F$hX^-1}fDNOWFm^{-HP;%s}=3$mM8YP@ws1VCl=xj$Mvayg4YcqC?W z?Zcm;32wKQH)w_Kk`s=D;j%wH4bC*CK&r^$T(384t-5DN;WVz@DU9UaG=>m%JI>#B z|CmbB$Q1^Pvem{(h{ZYfBUMqURx*k&g{?KLF%Fj8S%959?7FurY=c3lYSJ?mE z|0wRXqhpKOQrbax6OiRED+b;!GY@hVkAD)i!4_5ki}g2ruqI%>T@4FcF7|4JKv5Sm zQydH$3a5x5&Z0%e&H|g(JRDW=DnoG-gAq^v=a0ibrk)I?$$J9srqVK_oGi9#5HVyM zoVAQs7%Ual=re+;6;!oQOXK`^ofu4!E#f>EYc&_P8jyfGVLR-0uN&P9DY@7*`2r2U zf;3gpC-J5-hxaOC8FJ%-SK_SU2-Ng_SZR)#y4^dFPzf7r3z@M~4Q17@fBgGFx; zdZ+l9C*yPc96c83YZyjinYPh7=Z%@Z51Xilkr{rTMe4oSl(=aDtLDb8ob0oof0lw%Y+#->*uQ$% z@)7LJc!5mW_|}6W4TYTiilLN9ih~ldz747 zi8L8jaG~?Terg}@F|(>|iJJgPrluJpx5(1w19(Br_oj8Bt!7DmIUq%t)#59rTgtLk zT~%UDD@SyDL##&@hoSh1I7aY^0W*l4{JedvSpG@?w(AGs+8LH6WJhU^wlKE9Bqs7N z7uX4#RpTQM|3{+Z@Nonh8#O&0nR_a4fj+l7#c}kZ!(^LzO)8$a{5a*a3yW>su?HApv&ZWu#L_UN~E@k?^j6p1#6_$88yqt$S<{jBihoibD@9A3FyS)-R=us}3 z2Z?w2!RxI|rMu13xfeX5i_I5+WVZ0CEORm+dArA@xy858rdfGRH9hp(%?uB%?QW`D zj2Q9-J3ZZ&D}hxb`at_2Q%0L0up@bvOqF2nlQS8)fJ#3e6Xp#$gxhdMD6y!V)-)as z6L4X5dG0OHghUdf@;-ehdhn;E zwEzCYhaan0YqK@{?|04d$ig309pS?$T=wEin2_0MSggXFDHreXv|g% z5Trx*%EUY&_Z_2;%=P7dfuEXhr~F$EiJ5f0pfHf=B}f~&SK31)V#-JX=kY$7?2B*J zfY1}YQQ>*+)4XThkuY}xOk*hW+vQKS2i2*Xp!5^$Omxu2>xwxNvxnw6oGpo&YWEt* zsTBb+uJ43#Oetim(ZwD|?Q$wweDQWe8^N=NUXLU6=!2Ow8T>Kn3~o7gJ3PNS zu;%~JxFv4RM?bd=92Ax>ag)3Pnp0XSc;u8gg*1KQpD?RY5$d-ZL>!7My^f~O)t18% z_1#VPuZPY)qv}RjB?&}zg76#rj61X53+da_;l4A&ZQTMJEW0uzmGniA$8J-#_-?pZ z7o7JoH~8onHy3dq?R_lec{2-VTR!X?+S)tMZs`*UwmRofh{#g>nebI-(GqFs_^n{i zaP2}W2N4&H&$R1Rer5)`7Sj~+jEq(&Jm@G>0;km2bt{;iUkizgo`AOZwMbnb-*#bE!({ce3SGi^DJ2 z<4GZ5&)ruGS4g+(BhAE}5|UGKk;;$AqVPr7)(YL2-h7xf8H(RJCl4bI(MLZE9=zy@ zFYOD_%$sj*bN=j&qEmd~{5q=TUV7xQT=(j@v08*Ie!zKgKIHB*LI0~k}( z&F?NA`9X{TC$wj^cjb=zKz#rzU125&q|qX?1Vh_@`D;Zs7j2BS$Xy~ zjv6b|;!0cMQ;o7dYhp%BYr^>Y1V|yB?wbrIk!Mw_V(2ikeg70)qYFdvZZQb8&bC;6 zTxYfzY$Fvp06aealbVMtiT;E~R&jf)I2fT-iFerI`G|^JIM_s#p|xD^UdkwIu_Vk^ zW*=e)%Gok|hu9ff#@oa!P5{gT0Yx3?W zAs*U9__cpoN|x8*pn{i8EXGUH-gkR{W6Aa9)<&aekOI!q>vnoa#ha1lgySbKJ$kFuM%T%jMmbv$Vl0oJ=gCvcw{7>XDM%TJ_{f^q^2i=~x<+0^-=VD=k1@}sk#>XlLy(eNW0Lt1 zUuihom}rzd28;53ps+uxdoa;bq7psQ3i00n27Zc?RjTR%sN?=_@=HPIL1rDe--0E6 zdcwis0&mp$&pbY&hTN*3CK4C!m$uV6VWFs;Wjx2#OKl4L^e|~#fjsow0eO4MS3jTiDq?oXBftV; z=m!)B%_|%VUg!I-*Dt%{q;;8M3s!Ug< zp(8PmS5yXD+nJ=!C+Wnd7CgtTgs|6qeoYkka2`q_lw;-7I)KOBBi#!U>#ki+)}EGo zKWWbyvtUmXwmyQC%30ZLCi*3kLYVpg1I!cJkd-gH67WAG_~chc7APHVyO>d8t&CvdJ+z{`n~ zATm&PQAiZ3%Kv(|Fp70qa?K*g=! z-ad&$bTj5OzJ46}EPAOTNXd8GJwsePXzEe0eJq|o8UTH?JYe7X$@MV&wlllSI}y+M z$9G1||7n60Ai~HIlB>HPyy94W8W^JigUnY=nkM{y8}KC7)(dMtb*zG7F}8ai`; z_nojeq!^P1jkzM5=lkYPq~JPq*0LUxDr3zF5S14yFQnzz=?T3Fs7uuQ(%8AtD7o4b8j`YX(HQM zG-17ppd_rpr?1qiNP*=l$i`Pppk=c>c&1V#3oG%^Bsartvkpyn`GY1EOWQ4jwTCs9 ziuYje!`?W#FWE4>V-{PFbq+zm>z6i}B-p##Qe|SIk;D=jveHA#B02q3NdtKUYjOg% zY;EoDZ+Fhj4`rv-me~jT$mU1^Ro~EL-=MSI!d32*?%CN1JBK()9h3IiJa1BRXe3rt`E6hJp9IZogwg&Rlt&!e+e865 zHdU%AKFFzh_lsqB+e`J>(q%+xSict_K9@vcX-2=!-FW)}XyLO-tD`-U~dGgnjJR0)>XWF*UN^mT6q69 z&IMRx$gk<{Aw}z_=G?9U8MYkSQ-gG|!G%l=f9>UEfZsDYD_sC-x()LMn~*$ec|teW z(SpgB*<33*WcBULz4b_M2k6TFhxCTGJg$$6;xmiq7x(A4P@}w(6}s{=(x*fvW$HqF zQg~ha1p^yHB)oaMr2#GU_gbC3H?crm9Y){2mwa6*=R3{dwfS~M2N4a8J@i@$3#uFe!3OcpJv)4T4-0KAhAFZcy{j)k|3;GHi?z(tz4B_Z8?qGE3C>M}H4gIWv!+BD4z>EZjiyAYPh8Vo zS6qyM(<4iY5-foPJJWKNdtbs}*H>h$D0A_|NpLh*CqF@3F~NF=o@d>RJ)-{lnuN_& zP&k&1{Pr10*dN50qO>0U#Y~igUz=Yttq$mLEw%c?hVLE~( zPfO4>M@1YLhlzZtw4&A9O4V4geV!YV6OtFb@OcZfXmJCOqL19VB_$JRe=KtYB`2R! zt|hNLpq4lCI*o9R8?2q(WJ_x;C$((bN?#*u4!*tv<(>N=IZIehHwV&Xe)hj=G;t0% zUIRi>`7Ei<8DHZjk#8bJ8I7w&*i9PkFn>lFbFNgA(4Z(iS?Bb-?QY)py5!DFlOFo* z60)mUzuEZhbEB;W$?7|R9QAeuY9_kL+6r9vFd~MNP39?q{vL6uZym1-)zTI z=l(R$os%S|_U8`Ud;q+aGYGBk4nr3(v|f76S_2X}ikjK%x#-?nw&ZC>L>ce;k;g52 z4Nj^SWKZiX+%M!gC7vobSV2C zlDyrX0@k-Heh5IIAXaT{?b9S9z$OkO44ikPzC7yt6u^%feT8lFf;f1>qAYDg$?3A$ znrRMEM4ZAxc6_%ZRS!n@86k1$D5Uz1liBZQyhfzAR*pd-x;66@Y`2(QDZ`d=#hF>- zIJ`2GyaJ!x2b41^P9BYhhdS515NS!IMAx>Ca4B1CZ{*jlN!j(V$mz3 zjb4lVXN2aws$lrbm6hs2uI19GTuZiQX=-YzUq!2Qu+V{LkU%Xu>s>{Wy&A7QGnCrK^)n2a- z_{V=!(H`JGKWBkBW>hFN$01%SqQnS|QZ(pA+b?mrX=DSSZHed?tlP1T*MADKx;cY= z-!TIND|Yg!)9p_*v;+V?nwZ1}OjMKh!x zz~^L3YZJK0gx8aj+5M=tcd7HOJ$Jg2dbQ~=KtSuuoyISif-8(xnw+r*zY7p)jDj+C zJsN1Br(ys01x?KQQqaw`kWkVG%|R_H8rIe-mvhK{S&wceEU_janAEVpZ9(9wu}fbF zE;}VNLa**Y5?dx|I!mwI>e`DZL@!Kpo|>*JJ)0s6iRYvAu+mD4ITJ_7zx~^P`J*Ok zW>xL>$ISsx`eoF(o_u`4xKsQlIP@Ce(Yb%na{=Gu()`iyOoS305V?>Y*{ZJ6D#V}o zwDMd~DvdwT)e48*M0TT`cieJ?+DiUvlUo$l5!4B`}?xk+L{h)n+_IG91#(eiC>MYH|ehW zN|(dha4)SrTw!BEs|E6};72FN$&H%uJzo}^;=nr^RXH0MSXg}N5ygSGVnXzHN6-{@ z_3O}-PgexddgCQFu@I4Z-`L>6@RNos-kqMSXmMov*G zG7>2pI^^~)O6RUYId+oN7?SMV8}jez#8nzs>3w%FRbw~)(X)Q~b>s2y((;!PUTQV2 zXI4%jXMP<|GsYI){p4YZk6?9>i>n2Qpn@nJfq)Nf+5#bx^|nCIPTcA%Nl`d!FWps5 zcbP=T@VPTyOJ0Ncs`}I%O1%(8{(Yr|S_U|U?2-wS9Y~4YTsaQ+M>6|P-vmY@77S~BfnPUJ5A@nB|B>k0_?DK5cjFTo2+vUL>RJo5{!PEal_>U z*wvZye~PWm^4qqeSGdIX?wycR#<+&UC*#SB)NSq-?9lS>xk&pq#t!>rr#Sxt=qU` zo`{!+FPu%()XocvuYs+Rvz>KXk?=H;(8NQka$V^Mh#4MX^beU%@>P!$OYCUxWLA z-HcsfH;q&uYLC;-#4|vd({8Tj6wbs?Lm#yAv)1|k(_un`%Wya;#c=oARFyf+2M3m? zaX;~$D9ZD@;HM;1t>wEy(BVI3)$O>{3?*0w;M&BJ68K9nh?1q!`+&Nb3gri+4n2KX zea;`Lzi=zD^J{h1v|S$o0o};M50RgseAEniCs~2Bnd`7VxiXhW0uHNvlG0+uyb0Z= z^Yhb8(Z`u4>o#R;6Qp@1B;g0}^tBQ)NhA==OC_ZZ8Y-f^6fG&IhQsxeTd5_;L~%kF zbL~kcj=XmfnYU&WuS2CgX@cDwK1HC7+*P5uTN{er{L0m^RH)~*G(GR>R54!%&fXKQ z7~Z7LA2Q;DO?Gnl^Zk{kA1wygOAybP*1&phL~yN%e-G}tLkYP#XI*Z?=}Dz;Ostg$ zoxUd>Q4y`n`-9hO{CdSUxR)y5pSI{u{T#A6yt8wF|RNs zN4rE+M1)j_pd6#_e&rk>N8iPd5%ne0S#Kut;}2+b+%E0n@UC(Ny;CiRPQE3{IXl^1 z@*PjqTFgTKRl7tDV195U2d$xH;vw(_A6z2@hIpWYM6U`DfmA%gIQLE%7s&yISB9Ao zVV{d9#PgceD?3vGy=_mXjq|KyOPtA<1@oZId-%FgWFLtn=+&rk&HKf@1fPW?}PK$Q}G;bFxZC{)w&Q!-+< z(-WUs1-%h(9wWvP?*M;v9c|>8lW=100U)tkt(fmux z{z?q;%{e9k7;j+#-3Ptc^G*Gmf@EvZFfjO^(sFMe#hA~Jc*Mi7&XFmX`h+RM^hVo+ zJnzD@^d#7H+L|HX4mt51S_@G%W`2t%hl>1q`gy({x#{#4uCHcnN!#tY zbT{B^s1E53c-`Id*}11mw|}j+A`1X1T|hW63f64}_rrxw%QfS01>>FZ1GU+CF|I(X z&fi5kp(*@3TC5sp^Cjh~+p-T;`5>$=^4@W4#d+YB{l$Wm#;F-en{~)@AK+EyQ+WMl zk;lGC9}69hZ*`O}$Q-5+%!vd-%Rok46b5R-UWu6el}M^Xb8r4iie?I%ki;ooF$|2T z>Lp|};KdSQ^dj>IfNUH!SYYkv1_SLXxu@EA1wI>UA-r-lGOv`;8_!tSUuN~R@ydw7 zC;Hzj$|rbwR#zmDo^?%GC)Hm!kJ>H_``Mc&H%4|_QYACSJCAh;ZxYffZCYwS%yD~> z5la52g@AdjwO}u?dNBxR?rN*@0a^buWOMCigS~0Aa7lAZ$F@iQFGr6<`Loxz_!h}# zru5V=LL$7f3H(6g1XGusCKo8NU>{C0)wucnlj-?$G?1ivv}L`!(KG`$jUd~~`Rs|} zo@Wt3&`_SEi)uD@1F=cn!FUA zwo$D`XKT|ixx=fr5rl=CCCaIFh%46;ujyi>4#y-?v>X80#PpDtK3MiApV?4guD=n6 zc<+uLd#no&>rGVq`@suq5ofFc;H!|zs0B6l?l``O^r=8ksu)?@-Ww{BS?ik+(t zgwHE?XE!ByohtM4C0hcE?z~X#rE?*PO|e4NH=PY`juA(ZTd2%_-5Am0Z%l;(57gcu zYdSeReQCn!VuI0jb`QE}`zj|+499&2uZ@u}8-)Zp6i`zSH>J%}QgGe=7^3JakW74Z z^QE9KRthm&X7&}%i-V$=8!xX(Xi12_9r2yPZO8b%JU(sy0z>hSd3k1b%mrql@C6665v+D1ozpG529Y0Ykr8-_Rg%!i9{Uh{(sK zz~R6u+ql4AK|p>;j(&=cgouPdU{T+bNO6deW5HVm>_C6?0;q8z+{g^PLEK-21+NJu zm#BWVKsakUfWC~33b*V?-U`yCwpcVlMi1jEJqSgr{f*5vxz)5<35`&aMf<(Fh zn`J#cJnn+Bbv*Z>c&O;@{!_I<1D^%x4nVor|JhUT3MeC_xVs(kfL;UgLM*=|(7>>Z zegY!u2SVM0YJmXgC<5Ct;xK{)aO31x6~fQCKmdL?t9~8#AiiALfc*4+{L4ORKGcaR zuiP2OHn4Aw;DS7b4BddV%SkZvE6Qi0pG2KN1sSvS;|L|xIjQlF;Dfk>suke-U?G7~ zOFlJFWP*5>Ue}@9Y-PVc87g3K)JJ{k<5NcL*-yd8fI)!<3eHQ!0~ufdtu0~? zzS4B$rm?)WCH`W>{C5yWv2Nh%#ae(~f;WN`89)fs6L>HKMB4+ueSW(3^LRk~`~vF9Dmt{M zIc0eK{g1lJkJIyCSM+feDQvF;mY@Q9$*T?96L4Av+7#T*{#mRH0xMu8gl%&EdL1ZAQMo5-)O9C89M$ zV|vc#u@X);y0-F1xx>T946(*8ZKz#J2kl%)CPI0=I9|8-(HbV3g1PCn&esil_b`l| z%z{Jz{iiu%5lhpaJpD&_`IF0CqO~*}_!mDucPi|*CAv;1AJmM*tBYDYHF}f8sKzGB zIo^(JHZ%92<1YinY6}Oo=n|Aadi;avxkM%edQ4MK(?oi{;fT-!;~pR3@4ghXpA)zE z&&%Vr?{a%Mm|vG-kSG7hB*;7l$_{La7f3B$b9M6wD_lCoQJ(mk?-6^FYDJk3%;Sl7 z86OVW!%bfgAcuKYWTK1et`wy55k~E|VB&jG7Uy@hnp6-9(wAX)HKel8OBxoe>0~>~ zELt6Pj9Lhi5nz^8vqhUyF++-C|0QL%BR@XM4kODRq>+=mCfRGzciSNE!?0^MIU`gQ z4Nh@l(ds)1oBhDc(!KZua3SAa911j-iRe_nD#ei7f3*e5S~Ir3X(^f4I%*D#H;I2f1vI)n6E$s$b2gm`Nx@^z5FA5+F&`Ba*iY;507&v)V0? z|A>rZYsZ{&q&rwj7^(;n6HlvRr^UE%XTbO1L1x;Dr%V23dekeq?5X7f|9h;S(2Oh( z&dw_`e|t3hejUTdr+3=d74w>u0&Js;E-%DwjDJko!9;+F>Qn#FW3v0++~UJ8pwb7J z8CVr{OSZ=r=8%tCBpe=Ty=2#CDi!G?^ARrl`!NzyEqVCy;Vb0qQ@??=qb;%_!31@+ zcB&@k$=&@|;Qc%r3c2jhdr3WIfa?AUiG@1*P zRdViLU$kxtJCqj#5AS29&re$X8AXc$Mh3O!rc=T?x|uxQoq3iEP}3%fA+kV`!8j6S ze@>;j$(rHZ&C3YGc-G8~Z5*(Zx|VjP)ucEN!zV~_wrWkU`R>>n5`zaMON+l|{$ysn z?S=5I>>2Y1dOSjJaSa>8);tARhg*#shuRA`Rc}e3s>E66wL62*@AjCT)z+l&ifj^J zF^pg=aPeBu=y0tJC_^Pm91rrXsC6g|<}We0~!Hk-F~;c6{u&YSV`y@gE%gKW%o4e&mGX10U`Lnx4x++t^ilX~y-=L@O zU2%|4a35MIiJof+`d|yFY=+MCr!dq!#-}<)`KGI@5b+3db`VI1sQlww_tmiDeuCv5 zjZG`o)1IHuPcmvLYB3U1$mON09)qb&isTJWJ%aTNb$&Nou>UoRoX{r5yMu687q+6? z$)7JSW@|M#J3bEy+#Egmx^VmHZ6)vReT)*plZva%{ zFK%di*NEfrC)bw9T!F58aE$D5z$i0dd+4`uMmo1DraW|A6iw)6<0!r=Pv+vV|0Olo zF8QU(dW}6LrUnlkvkJTYQiZ|Vb*1zEFv969FFW8!7a#6z@htMOHd&hxhNCsnwuXLe zCQW%8rfphQWJjeTX>Uh$i8)|-0ooxH&z!vLv3T}8y>H~35f`O=t}Du{Q^#9n0EM}R z6Auf-6G9Plh;|29Mxw+c%>O9bk8xPVO?|7-2%E;dBYoUkc2+wEhB{ zc-~J_Z_o+uJ7i&K1UL@`4`iQ>72iLZ{Q*=fgK^HrzK9eSffE8SD4&DKGtT9HeuyPb z`Wp@c={rs5oZrPN*U$&ChOGetFEThK;zJh-20GescVj_gg2V5ZzMmzELcJUrMGuwB znZ7gm0dU;|QKKD|)O=TiDN0Tt_Lp*8tmxE2LmT@Fr`gF>q`7an9Il-C7} zRE?c5%{XU4Tktx{%6eWP34w4 z{GIPog|v6aZx0m`TVm(V%$$zv@l#yQ9~J=deaQu3f0R;Taj=E+Ajy;pavMsg7g8rB zR*`5=nigkNrmrE6n(D;#C2rlkuk}SuogMR2#MVyOcO<7(B9{qts^Dq}90Ti3eE zHkH#wKCUa_wukAdw3QMjtaQ^qZ2XabeO1)gBe?jfkQ*QjUw{!~rHA-@ti^KbNnEB| zPD^V}gzvrv4@e&GJGiysuuhHWVszxXK4Ou-?#gOH?uanA^Oyb!HCe)C^pviT>uLTt z9S+AnX5MR@4Q+R(4UzAkoRxyhL!x7x8GN9HCnmeXIQj6tbtR{Om!_CV8d&JKO`_5H z-UFTg+rzOt81-rLjxP`yxdG_r)yh3xL$f0Qn zE*Sh8;%zJTtEvkMpnfv9bax4$zITd?$=3Nq9}Pzt_nUOV#wXR6=9}fCt|kW(n=(DyfO0D%h$hGs(vvF^#8b9C8FnNl6hxm3+(+ zgwfIeL3?3IP2XsCXM*sx!Fzyinsiz4+tMy8?dIe#+z;jlb<}$1?1m z`2vnR=O)3a`ZOV86ef@6c7gmdDXeXldY=60IfA{WwutTpc@hTCk@~L_bM>k^&sU7> zAVqVQbFX(WYB3r)b-OzosHG5#`pr3;pM;wIb7!(+*x7?l5)$9y^uUbohAz|9XRH{Y z2zB444t1VLQEYEKyteDJjdkV|`(6`k^dlp2#iz)dn82U&rfPer{pu(Cr*OerSieK? z@+pc!^}xoNLVPO1^#+E*M`zuNn6f2=F&$YpX?D;_?;06v201@o+q?JQG3%=;Q1}z9 z#M|&#NsDpb=j-N1$2|CjQ7CRa4+Zog62qJ(+*KRMgl6BXSS1{(;n90M(%t*hIi=8-lK(hi zVj-PWRfgc~+x|=(R^GxDU8iO+w}f>(Ms1~BXIoutk%^CCU)(WA;d9ZH&TX34E59MRQd{zCrmvDad$Qm z+d(JHq;9I}uJpTwE;RbR9ZV%D9oDY#5nDAinva48Wd!fxHxnC@a<6Z#jm-Xck=XXG z2$ke<;oS>Mawb92|zu4Re~ACG5n+Fp9)CY?5)>CnrnjMYRqbnwnmqDwWY~p z)bt|g4;{sjKPmD@pRy#7x?Rtt6p`+>-*|^!sL_(7{gUDq{&`HR$vhvD&Lpy9&FbXd z$rK&p)Gk%B`C;E8EbLPLA~QM0HwBo2vd`NBp3S}2ZR($ zbUeGHxjtFfO)6X_eFWr{IcuEzP*r3t7i;z9O2lGr)jWl-8-x!0bFA6k9Em|qEUF%q zA2*8ByCur<_8IGLp&p9X@p+mhHfFEM^@rTfR)$p&myrEIE0 zef{Nix>;E^>c~O2o%xHrnh;m5Y@APCPuC#HYH?ZU9$OQ# z?u(y=D;b;QP|kYya{81bJJdy8<7b;{L5y*EQkKtZC+c-Hs!<-)+W3!%Ik}p6^bMck z6BW6w0tViwXj*KTOe{^Mo7n3D>ufXlmhl)&CBC=q(8Q2VE+)WnH1b4pa#P}CZZx_& zGuqC#v()3%qA*6at`+f@@Td>GWmU}Uy|^Tx^e(0g>;QiK1CkHUQ{LP^)Zg>SZTQrTe#3Zz3^gNlI?K*t*@4-A5(o?RSg7CDfypff$V* zAVCK$8z~7^X1ZzwKDCb&fVq?CBB`r4cjT@UfgCCKI_(?pSWNXf5Y7e){tn+GH1ed)dRfZ=D!axc5kRxn&ZEkf#L2$S_a zYnY7x!(9I%^ohv1L{HH4kl9fcZ+6p0h9BjdEzG<|pQ48%VooBu zS!7wB6Bm%;%wSEg z8&}(^jLumK&g)mM&EUYAX^bOnRGozfl=8G-2 zA%4<@`1qW5%7&>v3UnOyM_Lh+KZL^EW2}~B-8KvrA6c`4yDU3Z)oUiqV!(I21SEO2 zd*;nAHMpb3ODyy+T%79V$LBzF-2lxZp@^~KkgG`Gp{m2OE==ZPr>wCqCe&d<&%J!? z7|9XTvwJ8CJ~H0SS=6`TRJmGL?jb!_*m2YAssfhyMVj>^J)z9pH;#$y3Zv-ZQ(Jwv z*183(%41#frckP$5Ld}0SfPZo6b+80kZTJh+3e)D0H>EHH z^~b{;Q+HB+!s=(`{R$w5cx7S?=aNT~}Y3{Ab8TQ1> z%i&+8CJ#^T#}><;4!Qwy$e*ee-;>*u$y_V*s?9$dIAKpFe|vkb5X$maD0EWYTTCV-6Mz{jp9Bk`|_sf(IivnLYm}j!E?}9{! zO>d^L1-CtamBEXI0OBf~n6u7Odtb(zFY^x8y^p9;esVP~^RyJ4b~o4TGbzTYo{*4V z?$N;TPFB3ceERMxEhQH%ma96=vBe3EhnpCpV9EYgx{fFGJdr?KzLekC%+67h z2WPVj%|u7>)%qo$=vO5ilu>&rRLWYX-QkMgLv-W!RUn2?AeQI#*I?`lum~VsT=nI=zU~5g&8W~!{p38p zjl<8Ny^G4nqB%yQWAIK*V$nB*%`0Ag@SiZ|v?&Z9Tw+1{q{3@%H*RE%W#9e0vKEnF zZ6J$I#O4sF2I-z`IXJR8{gt+#U{czDBFo}RG`CDNlhh?6hzG8WbhD@XX#hf)>=p=&*lTO()j#F%1=a)hWMmew4 zKnt66N!C+jn4M89yK+@a#>zYLVvxUCX0XY*nAJslG;-^#j_ZW87_$yq)VK#8*l56& zg<2b#SE@f0em#to3sf)`Crts>fs5Pzx;Dxy3?8*k@zl z*)*2SX=#QSoQN5Dea)z~;tkaFBno!81n2s`jU7dcKWoi-wtb1hXmxqYcARBnzpz-d z8&vLfJlcq-OHTH2h`xTB`lF`TbGkr?oeYuGaJ9K!q|g>Xw$s1gsT<8i$W*ESF&JCOK&?p9UHZ?%qmG$Kq1dU)E{ z5WuS&ak4U`M_8Ij%earvt{C+PyMvzDKG7UK{S35&ytEBAZ|~^2+|y_vF}B#LC+RWm zTYbp=#eY05g!DOMqI?>%qbrr;txa008Ne+4&eTv^`ur?smgcW70`$>~zK1&;j(q&u zzNA{~6WX^RWc{o4Cr65@2&QYm)KaaaW$QMtR3rBdm5~lQRGJ{OhEMU)Uo8eSgSE02 zANnOws!gGe(iWxuZAmT~B00V>{r}XG;U+mw?;n?;6rZWkQu@pH-fTKLSfu3hz$E^pRczkYxN#OuZX6&kYrS7^w} z#PNS(LM8%sR*wG+4LR5tIQ}<2>wm(}Y5`S7w#H_cm57EbHb`FBG?(w_RI=>zN5qc4 zNlZq81eLG=O$LL61hjxeEYea0DS9vAyM64M{rt^)^f5cNetqsd=s9rPHp8Le`tWXW z6~|6TLfRh(-v^fhIA(no4$!Y7;K!f=*xO_9_v+~T$p?TV#+U$(6&C+W)5QY~@+@Ek zEhFEMMvefe@Ms4h3={|t2N6~Vf&qi_??3ou6fPj~hmyBz!JRF2~dEOH%z$t2T58$(x6U)b&0uFr$T?h0_fnEyi81O|Of!_nb;uzrl z>H84(lEbHf0uu(Nv)95H0KVP}sSEn+f7TiBQGq33!;WzfS3iOeth=XI4Ji0V=oj`m z`Kd<0anQ=Vw1Rei0VeX+j|eB=)dmeyR$bJ8dww|%9ZYoPiz%qX6L0QU#*T6W)cgng zOBM%8IdK_OaQ^vQB`1s)>gMFU{}#~gU4`&W4Z}GJ718xUTulvQU=jF^nje${$~5Yx z1OMz*JqJ-7U$`%?kr&6n?6(qxo1Q(M5a{LxR7vG+5(pOXryoZ@SHOS)gN6zYY+x&Z zK~GC;u67U1*S2m~a*Q4$$4}lLdjZxwjt&qFq&4iX9{?bpydB0I@-Zkh)SKOKFDU>B zP*c#RCy93fm93JQ^C?7~+1UO)zpU)4UMt-|Vm~h+Mx6zMR8v!RO zE-A55?k?zWbz+jx2N3WZh;V>6(11Px2oV7QiU@w-53UF})Gsyk9e+;+gcphYmt4ac z-8Z?xZEwl!`>LTm;4iKebc87l%-B18|8)O=zSa}^(Qn2{ug=f!+BfyYZ^+(nR@^_{ z#iSkWDgE=W7_>`B=i7I&*yHjf^0bc(i6=0^uazatXJbt!19w~6<*%g*@82`rcoB}a zuWjMBFr+PX(^BBqCYLXv6#lmTT2Q9|Vtp=g__tbc&@phppkJ}D9V#uer^5Y!lS4aH zm~NKe9z{fhsHV?m9iRas0SYM4XW)FX=+xioKLTDP zP;(Q`@w#Px015;U0W&vt0^&Fjfm z9e;ik{P@`!(&?wr?o6O8ynYiFH^pvcD^1RQ-c~|MM>$ubncLrhdh#{9XC&_a6=WL* z(dEe-EWUG$_0&)}<4jD`Yk^v_Ebj}llw7pvfat3gpGHa-i)(}+>SyuXhXmenvw|AQS@6V;@#QK`Clgl`U-*o=^Q33f>1GooWx%`)hGA&?fqoCP50|zxF5%?TS9@G*)m^ zeQ%nO+29D=Q;ew07W8WL?p1@8I}9Le?X&~qoIVA|UVut4CMhp=8(Q>wP*V7-eO$dX zNZ6EPVnSpUAKrG9PJovVG3`vtF-?z&H=ZO@DG(SN>FSXpOl|Drc*jyAa=Gz;(wW0j zKy_dE(DU)Aq$x#~l-wos(7z`0@H305*^GixThh*gJ)kl#JuhiLM zkBhDw*FTnhz@zs1-s$WvI#Qg^8v8GQFto^4l!Kon?(d2mq^ZrqA#AP1jDlr*|9r97I^C0(p??0Lty>-V(t~nWlv(r( z>wG1_aB4F9c=6K{7EEU=?#>J!oD_#JRyTsLw%^BFe8^3{ll^Ov7AzfBXviqyJf&s* zIVAKy_iD5Po3(A52()XgbcES$qvxAfFsa;MEE30EXL)eJBRhY(UQfvIV`t2gv1rLB zJHY7p_4E*3P;f2rG;l{y3#`ha#k62P-sX`54Qd1VMx`ee7m-Mmm9 ze+Pe>LtQfxr^{a1{BzJVP08PjJ_q`~MQFrcg>YpSXep&sw!|hyr*d_QFY!awo-;9S zps@jk#BgC=bYf{;=yiXsBzH@7I?!Kp>C0U0!%VwF3kB9K49F1k>}?$s5PFFS@o21) z#-wmKE*5HU==W?PBf82yB_v`O*#J*h3h7SMidEWWVzmPp9|^oV(KB_t1H;`(23yh7 zp#IGtZRMnQ@SGzj`93q|mfC6u9k(yc!@FU2KaStJB}vLvn0Z5&`Qkef;ln~UG^vIG zclq^W+f|I9hgF2$*^oq-Qzm~1=j4~SBk@D@HxRHll%Bs9WmnC?4Svk`iXlo5*9wt}} z5&eV70i-Vvi9&AU9qkn|n%`#^AHm{34X7t!sw;!cDR2p&m?G?i9^x0u!{3sM;;!7%C=slyNFjkCoDX(8qI{ z5{dVX6w1+{%y_Am?eyt!x&^Bl+tqFtV zZ7;@A4-p9?&EWadZ~!^Xe5-)_$gQo1LE!ppZ zJFw9cZDy{ke>*k%*N4~I@h~ru)k3A!X1MEmSBd{s_J!G07ws$oBcMhkIV1O%l4nni zreM?b4D@BTG6r9=h74Vx{xoxg5lw&3srTTS z*0HhWa92_p;u6%x?)_nU3cbILn|GRLcW^HK)fd~IuwhWYD7Vqez8l>GZ_4WJ9htFA zoheGIR<7%A@)wKqn9rW}sczukKbtDVYV~~237hB3?#%7PvD(mFV@wHA8TmAnN_b= zOt3T5RmJsrkM{V2a4i~fDIOSFCW!OA~8D-3MwG0P=^`1q4Z1+~IKKf;Bj)TM5 zMkZW!Uqgm=fI^inRwT~@hmJVy+la{NQ>~r)wABT-hU{U^P{NASn)mul>*GwWbkn-+ zR@5^a7LY!^z5xuqdF1duhfjL&tz>C_UbM*Ba(9k*_#Vxa0Lz8sguWKoCKhQ#wIrJ5 zqRvfyPz>a@?qcYCwLyR?f#_9er>=BujDs#O;%zQnMJ=zGQUX5XGBgXz4k6onQx=*{ z-rsSy+KGtC6=z9t4LE7iNdVPsZJ~1wJG~B#@2FKY88gR9PN_k2c+l8V9~*~=pd;B+ zGcnNbR%M;^Mky&F9cp7KqD#%D0Y!BSl|O?%dzl*3#67AGr*HAl4|agmvL=#qSzlA2 z^3rS)SwYHL$YhNq6yQF#Hz53?a8hb>HY4;?QRA=Txs!INy*diJ+Q6kg1p&q^4CfgXt9{Rr;L7;5Y`tkWcY=v#pttr-eahFErw z^r<@z^rrnYaLBRS5)C(=2k%S!|1|c)5V^9{UCa7 z*AEf1*n<{rC0UR6b@703xA;%n6xLL+8J!ejHX< zl&@etq24w@sG*lwoJz;tVEZP=i}tvZR}eC@k$3;Ne|};))p+5kGO{+$0F8*vf{(W1 zGOAs0d4;7uxp!9z<0nyV=m)=6v1dUlNi5(>xtQdb?D2A+WlWTC(HeJdAC$@cCD&>s zCY|Gr!w#tBrMwoLxZsL5(}7#*3zcKrwOjToMqbjR!CohX&8(tASud0<@Haxi zGJV)IVA~Z(8xKuNv}luD>#8vb$#RNv&)R~A8q;?03OsYLOAj=}=Z9ddwDFJc;^LBN zM5vxs|6?txTU_0mB%T;Clxw{S#$2z_JMza;lf8njhEE|iuCV!9Ls@3-@~DY?w2Cw^ zUXs4lM&f=iqvCLWGD|_kF`554|G@E+<-uv^b?-=2Bun$pZQ~(v40P4n+nL70aRZZu zKhkY0a>jb-(P_61o%bY84@t7iNR%!%K1&@J4AaAck?>y+p#lG9#*Lm!b?kAIqjU9x zoDs#%;4AerR(;%JqYK^LKJj%6IX`YU%{c_s>_X~;Cy?1FYx>mUSdQW~X5(q)pfs8L z&1Scuz9p5ybZ3h4sk0#32W++ThVL4&*)(qK+L29}SEe#_`YsD?-G5&>9phZIvah^tUc) zdr(F3eX6il*s`!VZ4icvo$gJ|JTqb5f0B-Cd95wu>Fny^^3FhW{N7vvl}nqesAE@# zLte(2`yYW19Bz&1x@ijgyo_~_y1noTl#FQj+3yxPRr{1p60R&7m_A!J(rykTmSC>A zC|z89ycNp9u$IHDS zvy(Q&Y(%q-i*HAUch#^=6mzNGeQzsb6b@|UH2!X1=WvtF6Nd{dyN#j=6^HcP*N6n2pUzlUtQ@rAl! zq3j}Cox4eSox?tfQv(_VN4QBHOz7^1AIfcICAKmG??<5PjS}57aK9=GP@M9PAh9VH zrh2!RWQ=W>UHna=IqAfmDvY&Bmk|@f{Ggz^YTpz$1OlRO)R<<&v3qY-1zjZwqBuIk ztqy)E^YeG@z6_2ha^eOtgZ`XazBTz+(Vfd^{~?vlEa%t$)j+@;&H47`Ax@}C%4kc zQFe=}r;l?tte$WcWfJchYccFmqx9`HLlE?YAh}ensON*RldW_Ho@rA^WFQS^cYhF^ zv^JCax+}>mlIx*LcX-eM)MmO*((}ed(j~`v(x$S<&0KfDT)ShUX?`w>ygUGYh8ctO zLSTY;D1q-)Xvxvd%NOgpeCQIwb|IzV4(*RWk{eW-ZUj;3l37ZFIv>>KSx-w%kdfhn{Hfwtitgrd_Qh`6tIa2%9J2(~1$= z%0{iCg}+sGM-_i^GU^rJecd?3CJIlQqNz3#8J{HN!67@B!^1U(=ZwyaCD=(#q5hcV zsq^601|i^8lyhST2NaGGovS$pu)T+ z53N#6l4;!yl2M-E2(Iv8F;l7I^>MZEFTB6SmpgC*%V`h(Im`6`hfSsKYItgvK@c1z)_4HhLWR}@suiBy}qjaSg;W<$h?>rX@Q6~m}(PkQtwr69d?o|dj0u6s2*V1wQS zs=p~!ReZmA!dZ3|P`cwv{2?b~U;rn#&CtOWj5vdRLY=jZUC%-BYY%qA09cl&X>1p% zmW6E~cf%bl-UlU@(A$XWOzDUueT;ZZ!i0OB=g{{do;=!>Z=qfz@xYmoCa-L9$Px%TI$FQ0rvDNgC@yHPsiDt$oXmbtERJyD5nWBt}pQ^)inw^F+V+7CAlpf+uHx6HnV z|Mbo38#6x#Eog4?^rtMOtC1E1NflXfpskMeH$psXym#eD8+W^1e^FKv_$7VWN6(F2 z`hKI4e(oVR4`WccFZ(C+JhSW1-y$Qy=ysE8J)Cqygt2p%ixgr6QH0#Teya9QH!}6 zo&u;llSJ6oAzs&t$rw*=CePjH60>>P-1Y196gvmoyXf#OGGuf{_L6v0PX}?PO74sw zI*lX8ALJlNuX>F~mP@rN8s!&p@I{w$d)c|gnwUdgs{h(06fh_t9CP$FN&yu}t6>sP zuJl33uYc^rt35Jm0|WKUU{4gAJ!&X)((z1L{W^zHm@`JDCP%MvPbq*E<6P*({s)F zSH5E0rf@YpOsR?};)6K3N^-#7_An_&7i;_zybG89g{R9e2sh%|8bG0C9~#V|)7(8<{GwHX|U^xQVICH)d)nGO3f z-+8U1ds{8|QB5_SE7->O^Zp%a%`)D#dyZRJhNnNrF&HYoB=vejPvHLUQ~vMVIU$X> zA!THftKA4O9%FmNkK(Q{4VLe0q*>qibeSFLKagKj)4-GO;1!K37|Vt+FFV4h-g=?v z^&F;-kxhdm$1u^kd-9dZ)0v8o&TZwO=fG$myB!_Pk{RYISsHxLn?_`J-uWqx*#uXdGLvCb~oZJ8xn1(Tgk;? zh)#Iwv+r4|8v{lgnC6M}F5F>d)0#TB*1`4sDd}g$=+r!LCI#AZnlvFKxIbTr&xg=s zDV7=zW^q~TPlJd8p(&7<%H6MYGwr<3-UqR!%D;_7`05WNila z46(?~v}{<}R}MLw12vPl*GUcTaB&)k*L_}K>w8~Cu}D%auWwuA;PYtv1~TFksBZCi z_SPGjnlFW7qUW3+uL8#EL0TIoJ87|60lR$mut+OOg^$h=c1=%JL-l!j3)Ky&oDfYHtuosj8zb!R%zO<9S{)e&jq@qziW zS>$nJE&M8mV<7n1ayg|6FjnapMG$+B)VGZRy&Z#>#~42LywO-^cx=oCa_utPvXci- zx-3StdBpXH>yUe>5aUyiHrM^9$S_xP=P^1jV1a}k`YV7F;7&IMh?xlvixQayzb%}89|YQGF$>6d3Q-{`IDY#SXKMqbXtw4N&XZh@*R zxZ?!T(_BcF>BTqon?nN6@DsrpB zlEf5D!+#U4-9gDdi3HcS;&|=VdV8k2SWCA?Tb(Q0BuA!li@DR+7Ofqq$InbgCaA)r z0u9fj9f+Hck4(f}PsbPH7>Y?=bcnX`yeSjm>ZVWo>hQf@T{iU81TM7gdx)n=)7|(+ zUsHArZ4D;k?NC5DuAW44yE`yP*5FS1V&+HFD0z7tG?VMzArsFEMsYA7yqwytaur>z z{s5Zct|G%1(<`}37&Qm)#`#A1Hqp!ZN^NWRxQ{&C~1^rY0!yxVW@&BiFe zPrNCZl$D4qtyh=k96b5pX6sQB$J|Ol=K|hb< zST3X!YkL^qby}R^;$w0r-6B0)D-lT?_h74vUE$~%$?Plp0Ck12>(l~4i%fFi{KMeH z!t^K^3AxOOr~aUFBQl8A3S3J}?zSt|D8jB@cz)fbE2R-C6sjvhb!B&?2voeUBU&45 zZ)z5K@UAzq^}1g|k7GRAF}(8mLpvb*O4!a>g7pZNCt*W5PLM~%C`EMG^8h+SFp{p9 z^ug$$)iGCBq#f-)(Rr1*%1MuQzbbJKuQ&`{yJWoLwbMj4n-DU9=a@Wetxxf?e$I(V|)MO3-96!;K?t?8>?ADPkDU8E;v(p*|4)8$Wg84P`2EC;P&n zxqB<9J+89h%>cv?66fjnzKyQ)Nmg`S`RsdHv*?|Tprr{8ATePcB~dLJucNK!z74|O zUoB+g$pmd1XG-O-=x?i!%}zWoTDE-h1U`kUi5nNv-E>AHxkvRq)HSOEHFcp~Jtckb z185JYP!mCveN_~Nr1Wq3L8_>x8*I6+H-T&7ShKvZ8sQ4;tw=%0X1C7CBO(c&ur9JN zt?bRkDv)sN!O1vD%?U7mSb(m8(^Zu)g7rn2rOWrp*nM~Z3*(|$5o+b#2)pB@MXmm0 zp{PG)=GT!k=Kv!+Tj(!hCb+3d)vtv|?wTkQW+1VPS{gnV&TYW|PU7W5Ch1P=dA?jw(B^Rn_QtEzn!`HO8F3__R3vB%Bss0Hu^EDH6zDCprNf8DC>aEgDW2LczH2GsbPmO zyHeb9m&&D#!^X69hq0&KG^#_c3f2@@!mNY|{qV=LtapYYC#X+CiH&;5tli7Q*oMz< zr+6@Gnp=MvI+x`wznl-x#%l5;HJC4T_55!7JD2C-d-Amwx9p5>S)d`SjVa0cGP^ZX zB~FNP6qiE#y}(+tn$B}sw#27W)3q|d?j*LMuuwTfN>rCud5csJ+gDE2VTq|ZcrvTs zOs43bJXAwHSfayF*_t6BU1%H(WJEdS%V5O;88rRxSZA|N7_Ol9B&t23QU zmUCQTODGV*K#4Pg?#P9NSOQ#>_?-l*ZuVmFq#Z^RM2Hx^gn;=h0velh+7J)`Kq4Ui0tQ5`uEZE%aPQdUhU@|P za||ScAN&{-6ydaBQM`4-`VkxAAbWqQaR^9&5RlT)663*u00#u}mv)6oB(d)LR$#%v z%%K7Bh!7E25IdO`hLJ%V-TL%j-#?N1Ko7tmBqSv6zFom7xP;^x;%R~MZK53fIgH#u z)&~GX#Svfv@4v(#=rq7#Mnp8_=eDbK(FX1pMn4@_G18jR14MxsC=R$kn+<#A5*A1%Lt;2H>pH48nki!RJp4^c7_e zEk<1b(_-7g&{mC`ddKaeE{eHdZ*4=ygWP`+Pv{kK>@4*;4#)mJb;pI)t>j)oyB zm?+U+?r+JjZGC=hLqbL<F3-Ane5?D};aSlbT_1p8iIy>qu5YfUf2Z`}3@CfMuOU?0^gYETZ44T&on!mkW#$QNtJ1_Hy> z@_TPJ7KYXp3kA_tedGx`5-LFCPsre01p_>UI(#S~=T~uNul=FkBUl(Afu}gj)haI7 zB`C;G8Z5Ul0r`~Re?9a-VH54eW?takFT2s51yKYbr zL%={pnK^=i#(}uIpzJwm)J$!UwXg^Dbj`v;>24uW1{@`N9^B@LMHMl;3Jrk0?Tf#P zb|nO|l$=sXz$fj7rju+p%uZ-6q|$lsMi1z% z3TWdsqF5t?YHhRn^fSqs1!p}THR@gB=UI8b@jKhkiboV;jfK)*G8Ck^DXT)MQ$KBZ zTo-FkVa?_^aHRE0#|1+esvSJ1^06V8Y)H_%qfQ;zMqa|&mDeuGz_#anxMdF2!jUrL zCN18z!;ZnncKmf<V-1GV+}DBB{5Aa4v8+dnNndCA8|=Zid@&I zjNRYrRD5@mbak?H3JdsePm5#y&EOy0^GB%Etxuc1+jWukLbwo6$eI?W%{-2Elym#u z;fOH-%hsdXwiFq0pg7{vw8oU*3@?o(G~OQ^&>vr)QMH%k%byyiktzFedx((LM!wW5 zwczQQ_%6Nr(ze*^=jJEU+OP7pJsiW_`AwHfNjCgA+Er{7E-yMg===(v0BtfOoXA9^4gY=}c|sG|aU5Giw}9hn zOjs&C9a>oLf zlJ3KrZ9gknA4El-1?&k3)uR}=Dz|86R!P)3a>R*8Urz(dr*uhwDkKLKerzRuo;YsC z-C~1NjNf#Y^H}1(n<(sIae{Z4Dor~y2{ncaJcCddu3U+HF7^#v=|qlwB9QX41N2kp-s?&vn6S7)&m>BjbZ_4%Gr z1CGRBNq11nNL~pTJi=20t??Sh$PECRxYrt~UFh~v?eSfHZAR5lq7ByjXW&hJ>Z3Lx z7{eVLD$k-qYw6WUEjNBQZ(w)`5^nz+M>Phb@&1scC3GU2?d@eUppy~&1l9i2{^{Mn zO$|y)8>b=FvrJO55Q}xSW6vxvn>{`#wd%JgAS}jJqd%RtF0_~@yK?26b<&QD(o<9B zP-7ONrJZrWmnE42zjCJX>UaQ@69MAk9cK`G1-r(0#k{gu7VK#ShYDM8E)@O>Ha(fy z;0EfpwIc?vWxVQ_XHc_fxH_%6CaVAs71K-GnLqk|uz&d@=WAP^#Hu`P3LBh zDnTi4_%(^aZ80{j&w8*G#Q|Kqnmjr>Cv#heNF50d=S1F6$+<&GIVlI4Gbiyp0^+j1al!l-%q)Jn=ZqC>Tvg1Krqt-%>AKtfAWV6pw!n>f;^4P-lcl!=d zOai-lyV90O$w7lq!uV)>9q$M_8YNwyZ?0QcNAWI?P59wv}h>U8m{Ybp6yV;$Is z;L+oT1{+l(=wSBq5$1_)t!HUP>eo7V@5aXWucMtQG5nOqM*Ye}pPru3*B=bA_`lG7 zzHbBU)-5T7mZq_(Ywi3+SM#JkX0d4HNA{cJS5ET34$lmUmT0XkOfpiub_IW&ZjRc> zlDOZg`;(-1&gBT4W`}C}N4lz-tb~(SHh>k>*uJ1rK>9Yx-qc{S$|?MxO*l#WZ`0!4y!YT}XxRR@@_js&!a zCo6GJ_e8VH2peSD;+zm1zXoL!C~|%@fuFPXtY={)^WM(lY~Ac`ANgX&rwwnU<;%gk z)7{y~d6Ow$eEK!i?hxs23YFDYO#U zN@%G9R?WJzt(td?AM6XY>1xz$c_}5!W^CxPgWJtb=2ctTShI5PS6bJ4m;H8|I zT_P(XpKr4m?@}WPpDV4QaS8$8pWL4D7gypvWhO2~4>J|o9s=|9$xkeVtkoRPVt`1HXK$p+%WRkKibfi( zi;ObvYfdPO!;D;m`egXN`ki#S|2~wvg$?0iS=@nZetyK&M1f>4pWPG3lgo%rXEzX^ zOh>&T{NNJyJ1vyaMEFzSq1JoR_Zx(@kD*KKq)rUKuKQ}Mb)TEeG9k@8Vy*i#`wlWX z2I`%9_1)<2>|q}z7(1txboP9IIi)${5mHMo2n3Xm-9`U>xrQ>NO$sk1$M@CE?zYh~uIL@VLFMs1-S7Os zY}Ee9c14U1C9i8dZU)$S>kg-jdh=?R{sVtgE)6o$-j-bckc{G6tuF4mDRv$k6o!Bl zuGNlWwE9=^50429x9NhO*2?WGOR?l544paS9|!O}B{%V5hqV#Ti903_C3c`eTgNzW z<>IsR$5|GH)$ETABy=qWK0)CzpY1nlNSP5d(BS3l53byWWTl5IZ5U7~cqTx$gCfA#2BnZjAEXAW8%ThZ_y0ajPx;$ z+>6|AcdKIaP{oN6%Z*q=gYoO)6Y|?o_>X^!x`j46QWaU4DeQP8`U5Ip`jhs)+U%g@BJy_DLQeCWXJ%>5*OU?D)CLy%&2$xh8%w;5 zwkQYNRsmO90w6`LXasCx+v5>$LeT4)PR`G%9-wEhgWK0EIKUVtdEkAqwg?h_?+kEN)DUt?4{d6|8NnS?ysoZQH6%rm$2vMq6q48i&s zmCX(E$nEyf(7ED)YjA(ycI+}6g_UNo&7ygB{L2!?sppGDE>lE#5u9&yR4yX-h~lW; zvwsPB(gRYlk5H?}XYmi>8`;&S*idJ9{lVdyPhXKdriL(< zp#dgIK~^j<_(5b~#(68_dvGr4qhWif_&D2X)=Qh(gzXByI|_3QT0QeAV-Yj}=S(E- z1Np2&5z_9Qoj2~RKbkZ&WRaju_D3xgVN#b8> z5}m|x#k0|K5smvqndOneG_kiTHO}s-KsW7tET|l-rcr_NbX2{ckHCUV=AahyXsz+? zpcn+rzJqX3ZuB(C^9TAcqM*xpMQd&9)N;mE@Ihr7 z_Oe&kyMI-!wN)qPu@6QMuyQz8b1kjJ2J`YLrkv zF0ah$63)U?`FG{gi2^ve!dXx1ExnApzVHz%0~k-I?~*HbMZqPLK2~gnD`@3(@C>^1>>{ zgPc|~oe#+LakadBoLS=+CQDF#+i(*rQK#{J`eXKTI?G+gEY~9ZcyWAYspT%mrrTA? z?dij4Dqqec3sBGw%mIN z-R*VQM*-gE?JPP|OnbhRHQe-jpEQg3joY{6q7Ly!4O@E3<64plYFZy9*NGBD4GS2! z=^w5YWt&bu)wRsIeH7G^8dr+2CcW0tyApJ4eQ3BZOp$}7JRKdZiFXzUU7Gh7(Z(l} zw24n!LHm49LKC=hWRG zmSip{s;;aPUfYG$4t)KS&O?-RWfhohdo?i4<~n&xyfdAdE?hMZ1Kk$6@<^KF^+)B- zEEEwR>OO}kUop<$lSCP_O(XOzDRogJB7t*Mya!P1lZ)Kajun!fd_wgxwyST19;Qal z(U&~*J=r_VPTKyyok*1O-*gb`P{^?3EO9XF(Qpj$7MA zu?6&eDK32k=6G0bq#*oCzh}Jic54|OFR!MLyWyzTYKfj~;x_GcZCGzn)$bss;_~84 zUz`jR@Afmapr>iUl&S?U@=pCI6jjDg*5Fnmw$(`lj@RZo48lX@cuVWio3}D;I273w zNN$6pd~yz57S)qkQ@P-09%(5<6X0{+R&gTs2QMdoS&zBWz)j!Y8PJw}I5wa&izF{E zTK(azK|PNT`5gFSb0K|&QIsBt@VpoM;&tT*dTtx#@Giy^;v+v}Y8ti8^(?8XARC^r zT$_sN*9i;MdX5_sy9wUoc%+Ty!g$Ey>%f)q^f}wdo!NM3*s-kh3VRk0hGIw*ar#4ISd_PHY4eozorJI02URBd58Vb`xfRDpVXjFqEdkrj zUB15deA_WB2MFij5(tWLi+EkB3s)%_cF&( zS>+tzjIPYPlXUKWZ6(g46lk`_y9NavQCi(qNPd0y%jaQXV)Hc68MfYDox1U-VrpCk zmfX?40u#0+R9Vu;oa5%vr|yA!iQ?&R@sJhk^ncW|)Wq>rm+xQ(XdFiAZQj@PuEI8F z2c&s;pP;z$Ya+6Hl}hh?2qbBw`QP|pu*6L2_HQF)+9fXR+SVVxI&({kKW~yXqGl9? zYn@N$nrySQ)-#P@?OWLn3G1R;iMl|efA_6>P<48hTCCD6bn%28lC9qn2o~pMlMU+z z!lJlYw{-}jbQvAlx@Yd#@j~cz`ypzz+?3xHUz&B_FM#gf_M&htnRp89NPsuwO1dJ6 z*rUP4orMNrLx~t5e?|mtO1#nwHed zq7N=!!O3)u{BTnTOdobt6eghq^t9=)=tRI5#kZ zUOC!9bYMJX(@(XaHtrzSxROe$1`I{yJi5-L7DD6UIxHY7sw|;<%lvfNqSyS!{v73R zA^37n)?cC^2#MW_?1_d6_3ZV2CF}SrE?(Bdskj>7eH>3<#!R3A?m`U-yGIMkW}!)p z%M9b+AuJg^aH@Gm@3^bFH{JNw%D+8@xvMs)`YeX3{pnEC6EhO=aPID5hw#6M#r*?G zdV-S{<;2W9m^{y|<+zE|iad2&q@0uM$FX*xgd+50K~o`0230bt2Pa%Ylc2s)09xVf zzOswSsthDrZ0HNOGB%0H7&q@{x^1ru!jQJ1=M_T5=LkG|>8{VE){gUrM`K*1(5!{t zV%LTU>xsvtNJqMPXFHQQL44oG^h0WgX~n_hz?V#6YVN$op`e_dN5HeqyKwdr*pWG; z$(?r^_b3-VKv|pSW%?!FL%_%0-#Xm}noTo%Qd&77H>5q4#so6sFHSecyDTrn z?ntRl!^}DFGNk5sX_I7QYewm*Ajz$eEEcuR&f0$No-%ZT64MV&o4N4f)|4dq^I{pt zU2(uKE?VQ@K#jwpl%LVogifpIUxiLVD|Y-oJrQnsMW5+K!X%8a-_C54qqXp4KPW|> zZg}6PZrfRe+i%nkIjDxkKY}W$mm{Vuns-igkQ`E(q`{?A`YC8EE8*jb;en>*bd3O@wK5-8M*DjE zWaA|aSczR+pPh$0nX(Bc1&a+(74A0QaFc`a%3{_5&-B`<2d99yC6DdU5Ug9gz3@pq z>ZAR7`g!>qAGfNNWN{x_*<6_(-5}IeER8LNa>&h}j?*uCh~2|@(NSdW%dE2_7=AK(fER0aOS(UNtA#pBp>4zk&TEFSvt*Jw_(@cGcE@SYhd zQ;Q^_&(7C4IGFuX_p_r{9empYLGk7aR?2K)w9sembetNB182WsoN!nswA9?6;m&5> z*^O`5u{Uz{S{x-nc^ph!AzFQ%1L2Bi$$+ ziB2{qKE|L0ywmY~vP-%ky}DH<0u!J_;#+fDY=sXx_Tj|&Nb!wmuJ*G>+{w=*On%1p zQMEXg5@Wa1xmi|npaWFppbJkzwVS1vyfd&4G^%mx8~NviZ7$Ek@7B%Xel=r4P;*E7 z-Q2K$@<+qisazj??mf#DoIKK}ojMa?>nIG3uq{GZ3DCI?hGLQV^e)5-ua{9~BJVI^ zBe99%50{VROe`>(Z>&u^_Ypc){aE_N7c+&kn)r)7g|FzE;$t?}WZ`lKPdH9t3Re{! zcQ0lYLpB{fc>*poOiufBi?wkZynGwom@yl*It{NgYa&i61kubNpYg01F4lf8@uk9L%i$YkutXD=<9SCz@J9w7 z^WV~625{E#g9L(gCNW49X7?n}Z*d`iWc~5@W5>@9m?s+h7x!BROpHq)o*o<>Rt~K2 zGEe3dhd@u%j}{0hu%PQ(K0s&_HrN3b7>I|P+pS-wrVG5Nn)pP>4-DEE?4N&!VEnb5 zWnZm7Af_JKY3{gN_^*%Lg?@#vjdlR^2v9^2(5w#u)PF#G4#URIk{r=*8#}ME3iO{- z$iPqB(lxCc1E zV6`toe@qRy6YnYxv?GXSK144U7%*~CGoaq%ubv_jQ-Uzv=?M(dz(P=(YL}s z_&HyCO>#*5p%*bVH92GeXFz@)0+&ABqo=N{{NBJkU3w27K0MPPran*}kVQBXVBsHx zx3++-d;sKmnDdi|Uf^GP?9UHii4O9oE?|9N_wP@6Oh`Vf@AB!S=m0k$sh8Q6KY&-S z&yNq2(Bvd0pzGs1+}Fz&P;~RsqY-o4kJRT)S`_pE((WKIBG4^2A`l?|=V@pdIbYvR zu5nXeU9a`+7nv%CO&|dG`vT2-+V@iZhc2MqCkq(aZf-L(yxEc^EK zm#^fP>%@=rUT?)`@89no7>YIy&Tm-9&zK)P{W_$nxeGc#8Vxq&b%1m5CYaq{dhGYj zP|dlBd3^l1BX5k1ZVh7IMx!ysjW3|X+t0^7r3`os(YzdxkMH73`~c?rK4}p{&#nZu z2l?@2Ens?g_oWJbMHdGA{;?Oad~^ekY@O?SO$8TY} z(2L(pNJEInmkI;mFqla06dAxngwGEKNc{0a;|+kH41II@3GE$=-xBXMDky*U0PQ}u z8{bBZc-^s=#NXyn_hJV$RFEehz95|frntvCck|HaHubmY*g82rBV?prz~@=VJ_T=E$Bk}{IK+m9@F{_%Uu{q_M-%LYcT{eE{lTT7axeDOO2?(<}w~_1Lx}H|u8Fj2!p&)(~_?!W~Fl zZ=dNV%h-_j3xJT%f|2mnzJ&M}u|uBFD-2tZ!?49Nhw1ogg^Ev77YRPri(MZ!16`X= zBhThf0yDz6lK_CB*1kEHK;1Hbe)GWXoIR?c*XFZ+aQWa95@>%2S zk#!!o2}(V!GMVi(kw(^Uu;Gs$b^y7+Ol62quX585B&fzb2fa7p~i2OYH*%N1@1;`^GKOOk*u;HSSYa=}q| z0FJKMI*Sbw2bh6AdvDe<#XaY?C$zgpA#zX9n-y0q-J8sm~p^7bpNCjy4Ol@|87**svPZof;w~StfQ;hY`#azHyh|T1?j1nWb5!;zFSys+ zQU~i*oZP=DAdOE0jA$0@%iXhK3)h>|^~vIYa0WWs>6>=WVvIPkZf}z*$X9$p4=FJ@ zsaC~{q&8E6>m^N!|KO`nMh@C#r9~42Bm!?M#!cH#4v)&sU;ag*#JGou1q;C22K#*- z9}>9$OB%uAf}SxYPfJUP(W+s)wUNpb;ow8xUo*Tw1h{Gdx-0!N4A(0og>R&HL_!Wo zj!KoOARt_3AZ_dwfegGUOH359^)37aeRWD68@p^{iZM8cD&h(v3Z0|{VzlOSu1fK; z?G7&Z?6(jJ?BxHr^hA40c?Bg3&BXT!q0my|hfq+{!a`q3*|K$HI=(fES4E(fdZ@zs z)c7HG#%|zkKb7%jcC)1Fm`GL41_p`I_3}>O+vN6Oy-btzbj5|OH+)%yEWJuP?y#gK zO|P65im3^~ zf0mXCGfl8{f_6wBb~wrvqr`11)$%h3^w z7%-WR>fOL_`|S_yv+11A7q#n$`i{@_inP|^pTTJlx!H{^j)1zWnUsE>6pBI7fqS^2 z*7QWz^=$A}4!C`#jPVdB9y1VikPyq~XGzr%Ud9ya6D7C<=oqEno&WQdo3bJ=dv|oi zm!_#UBBy?0#UsVU7D^m_DcDqviqp=ey7O?a4l=KL6pHS}o!VbR)19{`6*48wlS&Ue zHmM@7?4Il-?yOZ>%vB6KWhb7qYaBODv?6G4Er3kLWL zn~sR;KZ4QGzwZ-b*`mZ6Bel+{NroduMB(MjBSEgk_Q! z-n1nYsNWZV`VpbG9_d~rD0rNgWFwHlsxaqL-`?$c_atoX*Y5;KMz|X`>D)xTE-p z=9>aL3WNn;$LNjXTu5~Eb7}OJ->+3noXdeG#}bQ$JiPdNSLA8$nOj5A6C}H!0`BCO zn*xo-q0Z2n#8+H%4^LzkjfC^rxOOOxG}Hqpo+!`VPpN^YZ>YaBiQ}1ym_n^bl)-i6 z)@+S)FQiSDX!=30gB2{vj*8@rIs#l+8-Z)sX#x9(nXvXp-teE z#+y8xb%IG)8cKACHfy(u(7uFkDPCkrb>kSa?O|@B9yybVW;C*>qTGEHcdmD6?D=c7 zy}JRa2o|$Y2_p#^+i;1QP?Py~{=(%wJlah81eAU+xf!!VNn`E`D~?`F=kCDj zY$^nbKufUWwxa%1^N%~zs#rioa`d#?kg=QXb}U1Y77fv-AC%?!Z*PDT!IwavtO~Up zo9;21u$Gj`In#so!FW>W1}rC7>ZAL+Y*5N&|~!CE$Nhe=DJ}_ zi|KLsb=tjI{N`d)*GnGNea=JiUs`+Wqjit&RJO^pg~nIp0dX{irM}> z#RztdEbr}*9gL1}5PT5M3Z@(q3 z%eE#y>FzyUI_&X{pMUdb_xY)W_u5VS7rRcwCIpOH_Gj-8TjocIFr~u2ffdcWswD)j zahxw{MGq6TY*S+964JhXXqd10ht!v3-I~bpoz1hWBGUQ}FnqwWg|T2gCht=C>TCwG zHmTFXrVxLGC19ki=PJ>Q2a2KUiotUnq1@{aR)(r}$sq!H8}=DIdLw#(JR&(3AH2F1 z#U+TS%?$zMbWT=KCLoY(47$b%oXw!6)KWV=2|wSILqK2@aEXJ@EqBt7xmx80JzX^E zu@WPrJ~G6)1T{YNLSy~$He6{*YW(-CtJ4{y_att$#*a(Q5{9X12hg-p**PU=@1s}i zESQ7dRfvLKNU5JQBCQhYC5hrlon|^D^4_$s_xc$Gy;odG{Ima5qZw;5ulLc?l{td<+nl7`IhTTp ztIHrBO`w~H4i;Ih138vYz!)B}GK{BW&>S?3#2w2%;V6Eek63XIC~F=A+T8u^l__WO z+#w7YtyIt0cE!-NoYGx&cCKv^DMcfNhVZh{LyR=90VZpcIZ@;GvIxi)!OOSIOa z*I#0*`;)6~qEECBZ7YnqZ1STYAg#GrbU}Gu;vyDQ#5&=kI%}#$KC<@H4lEIGF=NP> za37@G_}A|?sK##cSf+qr>*MA8L{f6+4)Kr$ie3_U{6I$)NtAlTYEZ)NvQX_t#F@eQYF%~yz7kOq@Olo0mfPVLLFC|bRJX#^ z5_qL2x=Z;dXb^k#b^hNznR@cQnsR=Lqe#A-CGIPWdD|4N=F5p_ZSP6u6?!AJf^UvD zwA~NJEn_HlDWMpPMx4wf#Eu2FWm1TBP1z(^Y-0GoW>V*+Vx2SLH4Yc2?F0A^v};4x zcQ07l=M=Bw7B@odwq)jUSbM4zA53VJt-sl3un`pZ3)mjRVkwZ)*y( zMG?DmJgzLXJ2_YsT|9c-XV1cskR{KIEiso-N!c$SkVZ>iMAV}AUO1hCB<}x-(eL&u zT^A~??asv?&wD70?l0e8mbv6M`qmgu;EY0NB>jA!$g14jpz52`+#SWj_#hKXHr5bT z4EM^zjU~dngqMrA&0&ur*pSm@Kd_Lgf_|;0bZ=xgU-N7%G$=EYFghT@Gi~&r^pptM z8mQ|IVm}-hv_vwcbP7zpoWEhQ8_GdOk7p0Z$@@lNV-C{2>1y_=+VwtmU2G3}o}XejJA9;3rf50a={vY*)r zp$K$K7f!Xlth!?erA2x5bl?wOWo}20&uoh}wEnBzriA?{3t3gBH8x99oaF?bFZWEl z_rf30;tr*78?9`i$qej|YqZrvVnR#GFcFiwG^B(l>X-3o4??HISoqWVPJj)?vWEC> zg^7EwK}^}g@eXz~d_`y?1C41LIaSBCvq7xOrX2ZoE1^Ubdc~i-vp`3_>Bec9OU73f zTyELLyWJJiHI>JSp;yOJ_N$eVMmFss<+AZ`ZhUBJltLPBdI~0sIN8{vLY9Xu%Di%q z18j*&3QJ)X7CS)e&po?wwkw2Kq6-d$$}mYI>t-0Z4pNfMIIt6IuI^dMQ}mbj2*Uez zLt}&Ws_nGzX|f5-l(u7(e(uOJi{11k+WQosO}=r^ZV36uGa=-gpaZ~%m#Z#p8<+S@HkizmYlPwUa;7iOJ)h)pY%4h^Jp{#>nt(6o z>)dN^pMlxQCZToX5log(q9|WbDZ)Y_L>`}XEn~9oSu>dHK%O%sBQ@zO=R)N zu)#D@L5Vh>TiWETp+)06ZH1{wmm~ky9__*WY$Ipyg?z^Bp43qUyk1v*)E<0E!Yg(v zk5tGl`ShKtlalG}Vx({wmngOwMLa&5tZLMFRI3Ha`3Z-bu?cxRpNC&H24OK0-#-&N zMBkWB0*-tR&_|N?;?T-|!!}~KzKi9!(WYtdto@2TyBQQjJ{~s>ci75|J&jlu0Fy>} zM3gyCT>plj-bIvkSM>2wq)X!B#5UBEODh&zh>Ado1$J5wP~zZvu3Tl z-`Xdt7btUPmpoI%bCTa3_$1cq=V`Lx!ZF%q0ZUsssZ`IdSlpR|Bi|8 zbe}L&3MU$7GGnCUFe;)r1)fj?nwhjY4~BT(#Hn3H*FeZo&D_j|K2yR<+>PGbg}}H_ z7i^bxylz6Kzo89aPj7#a73gYc?|JP=yH@UmKfVvcs{AfELn>GEbYpZCOZ)Ik(XemY zw>9PaK_xEdoqhdjdGs4rhKE~mdQGG^_eB?%8xI|R+X`Cj!u82+$`*(lr?Jm1ur`(> z$_TnljPUWtjZ^06rY$_1ta8O1FDNPCNdq{<0z3R8n@G}xXG@S6&LDo;-v`E zy{y?lz}e+^)($;hQOs1etBrf-E*ovc@dP&s$vlts1_&f(}5s*6vm)$hfRnh?hP4YMEN@|DWgdBz!pZUbP>PqmBSe=N7NH1-N9#) zDsV{PC}G!GImC&>aliJW87<2yQoD_o&uu*fr`C3#` zVuI^43)Q~WV$21dtv+r`*PNkubwFLRJ4->cXoHwNX|kLj`|aSiPGw4C$(|#wRQRvC z@Q~**q+(YuU60%shL3P}le8g0T2eT(%ZWCK;fzBv_73~FQBuK!_nr2}-5ly2i61h5 zlw#zH*Mkt);q1eGIWaT27^*UwtPj&C z|4V~YpNf)l{KURrZ3c-Mr2VnB5&V6i96Xd!VG^=g2I##$!E0TVKugIrhyAIFt(XkwEb=_@ubQtNGRgxBu(Xt@boZL z8D}4(W)o}l{dtEK#(#Q7sg1)4R8BHyeluN?;kV!;M;^m&sn$$yfJ zEhhzx1~y=pt=`1peN$VBMx{}cZrD9#@)(=<6~q?gm=E@F?P`eD!;mRc1RBpq9#cx+ zFDs4U3UFl)lP*`Xnu4K|O9Z{&T5%|55+-cxTArG-E_)&OU&JJZZrys$hl@vkRGKys z%ppz^ld>5~BLo;|Qg=+DC2U;K@_d(V(FK?he^Ve67>Tz_O!5feL#bLykH?iYqi(AB zt0`csi<>oW6PW>hu{t};L(V2%PKWP>ot}yvT@_}3wN}kOU?rS`7v{UXm|XY!UCEkP z;6dN}w937Vj5T2W9(e;f1uIS2T|Bw5n=Nx%$4zj`?vrS=wt32<(Od?l zHOMp%YVA35n%mQ;|3~0*Mzk8wMq+HwGIOPf`_+=~xwlxmSktG4t!bGr9}1iEoYRXA zr($BiX_bW#ia!=D)w6uU51_|CPqqI<<~aTnnPX-CpT=)i4#xlHbpLa+lbw}`@qbI^ ztW%xUkgPsl^qoQxA;*e5v9^9`oY<(J{9rU}ya?wX5aPcQ8gVJ`AZMs@{FrCguU9_% zBOmTNhCi2%*-t#PR4!3(^)0lmQ81g372vM+2O+n9!u}mCn-(>jm~vQYolNl1BGvx= zuTxVV^lW6OeATa0pmHFHpsomCgR-!I%}zqq<^{|RtnF>cN=xBoWu@a-I%80hxv*@OqAkIPKWg#+J1@dpsb7v%r(Em>#@`VxhG zrBxdqMukOwYqh{~UHPGWd7brI{burX+2wOIAK21cmc!q`bNtjr6Luvl^({C3P<;M5 zFg}BJy#F4&@x_78_q{@oyZXVa**7@@X-u)NcYN=pLRUaI{?j}c(yqP%Y)z9L_s_TX zqH~oWL53c!j1?Q=;{qPAoxscM$8e!BRGq7XKVEF{_-7Ktx&AFT0g`sv4l6AZCr*_g z-YlG7&Ep_Y9&3sUAK)< z?_jz4I~@Pl@FhJ^cE0ZV``bEQgBKr-q8F*G za33SbS$z$TV*14<&{xKv$p>GI{LWU;0{3_`_|!V6OT>TGMl$~$i?1Zq;)`EF)X4|G zG@mb@M#yq5}v(7|{&`;IrkZ?<%>t)ns(9EPs=F830F4=GHO%$wtc9tH5eqI>pVll;r`gW17w~ zeQX`M;_L_!{utjsl2a=#^Xq222`%smPzhd|ic*)ZRDOIToI&d=QQqfj@Vv*%ZA)`p zJC%k?_epaBvobQ8hmGe^4xJ0F@zb<>2geh9b?;yYk1kR!j*m4^PG^_9FyODu%X@Hm zeL+Rk)c9kFRS{zl!%-_QzU!mim+giRzj$w!{Nj_ZnIUgzWl8F2c-sncI6meag7qbE zj#s)sPYDF>NF}qZ>>D>W!%riZ^-a8Nk|_5r_^SBsdc})v!@H^rCYaHIrWlltr)n!l zH<}f8i#?II@M&-U>L|!a)7&ZWrYSaETm)1*&dRZesuMGaPsvD5dNH08b1=X7hL#pF z)4j~AD)5phBcNxv!0`Dpmy7rH6+s}8*Lk!aTr%55nw$_nVjvg6E-k_<&E@C(=Gw2U zw5w=9VBGP%VSX4$oQ6LHnDOVZ)1PVSfyI*`g@?Z@Oi#e04@_m_UV?kWwTTmMMJYms z;92ymW-5izsJWLC4xs%RE?Y~MGm2xP@Wo3us~3h$iA?T&>-f>tco~LG?>iDE{^xGUZet@71#I8igd3p+J~yh5NQrl_&e$= zBG;NKfp(BGleIlpklsCO7L%n$K3qECPy3p*MFQdQV|8kf)#uY2-m_<9}w0mKj^ zRXqlx7QumCK1sx8kyw1#i(?}RpMatw%JQc*!u!2taYb*oCf#+De;(AQY91TH-Y{q9 zT+il|z``>aKE5$Xgnw38^rvi~w=CVUM5^#Ik)x0~Zf{Api^XUW)rEZ7JY7OxaXc>!->9)7Dq$5R-#b)07n7UR;md7>#3m(YHT)??60j8)y>h#uO2u8 zter~CF?^$fzuUDcdi2U1&AQqiXbaK7)Sy2a-RV@)10H?3F86(%-@+--7Ib&qnUX3d zOuRv9w-@D~_GW#$R8Gl9fZ-nU*2*=nWw%u1;~Y`rn7xdV^Xo_6YT9~_oPRg0kOUur zbd(^%gu^!z?q->U?DiyO8iKS8)_7=LdssQ!MF?0Uhx-EB4R!GWGy$c3dP1B)g4Ia>5iv7OLLw8nmL+L*Tbt+^r-c+a zF3lvx43$TD0=OIUH?n8p+#b_&6Ks61)>YERWe%peU4(QQPTI{RehZz< zVL+bGh5+oMR0}CZzEmIGw%3&`{?ro<164>Bmpe)?@_4Sxn&4k}qN8$ecotP%UH2po z7s%SPj7URlv4uvo@rmm=inC0&`<{&)+v^RQ-+oGaBaFyA2G$MShf^@N%#e7PyZG4N z10_>8& zsgG-qe~cSvUWz;~9rutJMyA+$%lXJ9SDdhp+Qyy=ge%u9sCt-Xc4kY|BuvG+k`z{V zq3w!#Dzc--;AUB43$AVR#-eK1O`^VXivMsql>OCz$>Q>Jp7KI}1->v{Y~0o{v2$Jz*q5!j-jHQrZH<>j zvmAWo-;{89g&DVkqH}oAzB!vS!jN*1K92R;Je;mZmnTpl0hdyk&fq@S!9r8)Ak)!x zpgfeBG44Dn<|Tv&I?Q4S_GqVRJ3nuGuB)A5YxYpen&k zwCcfePd3Sn# zDo8JaJpbWJ9&3*@9$B-1T&ZLh@p1lm>lW!xxD_0npIqniU5TsD+<~{f0#hoH)vtyvs}HUpN0J_wyksjy6lwdKqkm|B*1zlA|Bi(0xNcmrxZ)vL!E7uNBL zN=i_l0hgWf$Ob1!+v)u)Noz478jY%OiKS!noa_Hm6^bfKdMxB)yXr>JgPZkmwx+W?!+c%gdVU)20AHq?&N72ixF(ZW?Q4^2SKm?8RAe$6 z(rC`Rrn3?kjJW8ySyol0m@r^b0;>rnY)Z0NL5@7&>#pxiYNqs+b;Diy8&TrlS~7(g zS+l&`Rr!b*-Bn#h0@lD9`*J%(GejD!j&@K+`pKHpy*NC78Gq+KGeNd=!*aH8Q5QJ7 z+5Ksu7s`UU`CeQpp$>2+kCcuRu<3oTPw!UdP#wy;NfHxRve7)i=wzGt@5k)WsM4EEJ;l(# zehnBwNJ{WI;3N4Kjn})xn|EMKU@c$xR-a>KzWp?`LA%Uh!X$r+YhDMMlm(FP-H&n3+zy!GjGk!sFpE&{)eS8rK? zG@xT`ye&%Yrj9!XHJLLr+$CI6NCCgu(i_)f;aNxL6Vq@BiKcZqdaT;gmjPloYJy9X z4sl=*tpg&&{m-Xf;{9tIBPHMVgo$x5&RVO0w&-jzNs^b{W&a!KgIEan+_RVgD!s}1 zo&cYKWgvEwrrDUgl?4lV=9MTZ3O1v4U1L>1eJ{i5#$!k5^e4E43kF=CM}Ljs>?x+- z8%I!ah|>15N_E}iYf(0=yzO4M-H-STQ#j=*@rhBa3`+7L8sk6&?TA&?Nii$OmMrW~ZUrHRIh&0otwTS8%d@y^&?BlPSdaEao^7nz>hP)Wg8~ z1p^Jtk?98w*+VHDdic5CLOF`ds=}#Zz3$lU#G7lPHyuTWH_bf^Z-va@MDVhM$0@H} zDP`9XQervR$*agsooUnJ1${XhZ%&QP4%N0I@}wF~b5sc~8bG$& zeOjw;(DvA_ykNm4vD(qjC8v1m>m`c zWBvmcdrqR=WKQfm_)1q$=$tDNA>A0m-ItzkoW|7XQ@CC7V{7E0c}T1b-WPyXj(#zK zi8x7o#K-*0bKMl2ZWmb(z9rR#373w2@{R4qh1ncG(h@@#?9kdN$9Ymr`?pL*-DI?x zXlicClWdv(l!qVQ_PS`EMx)XmyQS{;{R2eWGf5Ob9XV6Vu&CDub^OZ#l&2M2{AI0F z=mJP*vGN0^cT>Y4`;-gTG@>+4x2i+#hkduxp{j2-&J!Ku<9QkA%Mw&OTIN(Ic|2Sb zld*y>92SJ5?u;kiC1;VXpFDzli!P}$XgsxYf-Tqjv(5b- zn|%X@>zUW%C(%jPif2ah1gtGTN@QSaCGhZwEdPjMWjXB}q;Ii~a@W(nwOE`C_2Xq1 zYHVFMuZ3x^x6+KDeT(;3!4QRq`Q*o07Z6E48BVFIL2&;w=eMXoV86fWz>I80XO*CV z3`la6hqY=fjIQzK-vx?!U$c%}2r{V2s1_I!?A{Z3_@skI3q}$((yUUPzbb|}fhC!j z`nNtrHEP04gbg45-SB84>+o)m5M5{EIXc6_PHC2M7hEc`q$Zlh13ehj%+!NqQWhHN}xTs7cyn8M)VZJ=6YZmt0MAc9YSIZQp z?um1ZZwav8?}Y2520dy80FWdrcGb>^j#Jz65WZ>o$MAfGx$t`7%K&yhhY8}clcNDo0iKtOHNqK{qod`A z@G6@LZNLSYVf$@NNCp>K@?Mrc;QFm$~#JbS_&w@M$qPX|E)$J+xQGlfnrN zpJorqQO(N}8Ijuo<*1e%*?^iZ+c=k2SH3&`yQ9OEkr@fw+Bn=-)aZL8SN9%=3-p1& z*V;djzojD#_+C}*{lyhv!bxc=0ksXAh!4paxUm4Td>N*u!f%-2l4MX>8%rM9I80W& z99rBXmACc4s}*(I9=`9NN)E2+rB?g=L#sgt|3WoeI^$SGGPTsHr#Sa5zsGC3@!&b+P6#gjg!#i%6J_0CDOI*k(_(N%tYmqF9mr=?Ygd}+v zVl8%my^??>*(7K`dK`h?g`1hTSW@raX9Kfb+UeO54;i_|+<}F3oDofL-(m(VV4eNJ zg+qeD+@gt4P*f&4bClHS)XK*1wzNq^{e;XZU0`zyph%9l;2lOKgv0#0cI;vFebmec z1Rr$F;!FJIRSCK}U0!LM@^;@NDW47MPR?=o$*e@-12xgu`5Y}sW)X7G3O)X02UK2v zC{ldCMw+40n)UEk3oV^??u;77`8Pg3 zh7zFcu=L*&7w2g{%73b$gj7IJCcv? zZOZr9Fsdsk@*Xsl1ud9hOODIptoRdPu=81D!`}KT=)=UouyeBcO%6jS5wOy(9glv( z1oY!&F>@!wzMfj~EMW5h+GcW13Eb5>5U#0>H84b4TRYX|(?USo@vOP}En{U;d*xTj z8MQ>GG}4e7@PsQp(c!5hb4^5d+5MN=ynr@5+sLec=pP`xu8k2Nx?oUWVmH{hXhC3g zIO!Ce#WUW57ZU5VqN=742lfG~odPDFT~qiPog}T_FJD}4mW~}gss-P(0k4U10%@km z(j7C-U%w&L(W?}xI{`Ht@k_VE-PY(;@pn#uDEOPPk)X$6rfTHogHtq)fF3SrZo zkq?V&b&~Ir66~yWw9>%Hxm2*DITfl8V>g6YGHCP9&%KWpkBxT_p}78pd!o2?5GG7a zR@d(Pd8ndwML)gexwQQ>^jm)Nc7i6jQ^|}ekmhZOXFr=7edk&x7$v{RT9oY4c6_|F z$wffb87b0SMZc_MYWN!_5c|_q1u?i-H@CVoxls10YPQ>+3YW2@!63f-`{R=JS+@PP z;OhG!W*?>>DR$A7mnF!{(4b_#>%nF^1MG2LotLKO1}-IDZv~Yx>IC1Gv_hs^&>^E2 znhM@Id2K18Z*Ebvt zVJ}%;yq`wHf>VTF9I;Gv%vX~SlC`dylURq20QF{>hE8~7-?wj5d@1*U2Pd*^O0 ztyfO><+qI#tS}I&>vLB;2J@>GbCn_vm-aFOjIh<7<(rtpF4eDr02RP2QN*|sJQO0FdXjI9Ydq)>CaoLSEF=gH~|bUw7mFYWU^xPW(A@SD+@T7V+(aq50TF6 z7?{C=#BTE3khX#<37X{U<+{>WQ#OQ75Nbf|1x@Fy-t>;rneR|Auu z#gr-LDXiE&oK|PA5~W`hNn~%XQwf96$+ZvU(sq%(Qcq=LhluJX=UFWavt$p$DT)(|lka)}=NOUATnx_b+#{!``mN86OdTT#oR6n1iWXqeB`w!8l*rDwu9KwC6 z<^BfXC}-xyCF4zI=TlJPeT+nSk6li@M6^|$v92=EE~=MWt)##mUPUU$52YL>Bx}l4 zstIO0KMt=1GvH7O4@j0&+|4bI%L2OL>v`oZ4=qlPgwkDKqnp7jf^U#@gK#tN2 z+}Ls%EHhU@ecY5=J*Y^%=nU8Z2ZZuGYLz}gFvmC1HV%|J7IN`C-$f*et<&_W1%s@h z#7Y`naM}-s5)F@mI_el;8trM;#?gFsltt!4)IFl+mIh2{PeJmb82Fg}L5Gi>!gxyTfr`WznVfd142;#d;s38bAU zK0_Zn|Fj3_gNe}DiV^yr%LD6bXTRG`0~X_OB(+EG;p&8@(N14${ec;cjD%{m0!0Em zc=SNjEFSE+e4rNi2t|(@MDTvJWy@X@>Upu=Z#9amuzEOC?(-3y-=RC^9y0DN55f)< zKVl5RRf?#(iZMa-;Knp4j+#Zbo3NaiHQn*t9PjxcuG{Jn@=(wPzr3^q@t>h7f#fyl zbH9t+bw$||Rm>=Lv=xJ%wS$lB(Lbd1=TrH@C^n22KfiVs;bnK;_&DTIfqFEnOlHH5 z^(I9oC)Cb#EzeD)9+tw$H5}TTq_9#f-UzjVFk{z_vJ#`^4U5m5trmKAY8PGn{qNIi zTw*v!-RfzOhEtH=ZvfM$J2KNfb4YqjY(J#Y`05yLr6@-JrVR?s%LU)`&XmqYxT5vc zDCT(gwdDz zL;(zwrd|pZ%ah^hD-1=L$@-Znf1X04F(|?K;iJiLd4x- zr=h^6CuaCJ3~#2+rwe+*n_29Vj&I$+b_?VJH=m(=sf?xm8v!!E{^D$WA>u!WpZDx> zxot?=TL%~gaE1Y=+;?=(jj|rGi0E9=X{YdHuq#lr zL^Vg~6?JK+_8ez{9I2jzj>5wBCz6X(70TXj)G(voYFEh~cxrBlV7gi*6w?{o4P5(!ryitfV%j`+EiD(yX6 zO>x<+?rgOLiZ&SRRa;^Wn~(Zu@^T+ zk|P&7F2XNJ(5UHCFY_y@JEYewM{p8fl^ai`;@hBXH+DYsOn5e}sV|pww@0%P>Nqoj z5w*sRvWco|HpxdpeN*Auv{9p-u5_P%4v#bc#ejM>-Gb1ja!*G>b^mx6&QH{>=@4T` zB{s{&1aa(`Pyl=g;6~86}b%ag0icT zc$k2Z;P{85bVhP?FwCy4tPjEU4Bi!u3=* z1x(RoxdHslgMK22JH2O005Z0RNaV*fTWN)d80MpT^z+N_Svu z6F#TyK5g5!ZTqy1w{6?DZQHhO+dgf(=iG1Ro4IrU`>#9M*(+6*O4VMKtV*)8^E}j< znHO&87*k*T#y$ctdQ4!NxkyBhIc0-ZG9s6jmcGrhdLYK6z7(T_ka{r8;A@2RUnE86 z*6<+oz|wxk-`Eov931|eKRBg*k_Tb*-u}G4%Us7;C~;|8JbxEVV6FZ58A%wQPZ_@6 z_?@=1gN=Z|#pX-K!^B19n;mp1hfY0d`NP^6)%V%woC4GD>nP;xJH2N;eeGxKx7o(x z+LupN#|IUDxlfQB?28K)%$w>^-U zy**Db{Ey#f-+%ccVHpvcSz5k4wDD^}Mqy3MA?z9Jexzck2l#zgR;;B1;ZzAU^NVoN zpVl~lFfQ$?P&>#Wd7vFsNxm9OAG8EPp1}0GTEa0W=7;EX69O+-$FVL)Z z&W;}rm|tZ`HfH3Qar%uj=S z9oUp!NJk!>`cv?_s8`v15I&pz>;MWkoBH`d{rdTx2T9nIKJ_x25EiEGqWkpWT^~-+ z3C;%WQAZ~;torrz^aCwsD)^3Vs3`@Xe23O`-BI@B!}obDCtWkU+qnAM$e)nrjEo;d zv}kBlh`;qhY(>SA#H(&LJx^5aZ<=Ng-MIfEd>EehqC>w=@0w%a5SwzLd>?|W=^V2j z2;(1>rU1(g+hWp-)vZuPzhetMUN-a0=8U6rSEGkG3g#-EB0D}T4m`$&K}OV2N?Au5~B zcG<$|-+<4UN*!%!jhd5CFry;}sAN_DWuG#G?ikGwB%*nr&zig`-*+(zhy|ZIUu^Ey z*fj6CP=(2IFw$-S%ot#WPDe0egZ>P-r&SGgP3;o;Os_sur7L4!pGiYjux-ih^T{5B z$f(*n;(>VnGvQKZPY^w%I>o3MgUA-E6(Y!mwvXKq}rv8 zn|$v?O{pm_j|0cU`s%fZZ23pAA*nn=LoUDAdT8Spj;BOT?I6xrQIq11HNG@y4 zx{%wck1!#y#sM;6oZCjAF}9xF9D$p2gKs=Oo`RibSr}W4pftQ;_#R2l0pR5v*ntYC zVp@r-5^jAx8-b8E;?E=HsxK^bZvY+h=u{tGlD+q&L~(OE0!71ga5V1)3utL1m$ld`YZDxGoI)AryT$-362Q4M|MKJVsuJAV|Obv#nJEy|s z7#lw}VDQP4qH6uBOY$L*FolyE1rM`cW;oIE+Ber(g2j69_!8c zp&IirjSLBuo&Sq3ct+U7dWI%=^IS3I#%I@QSJIkpMZpegchfU+hxHLFiZ^x%5J=N2 zxxgI1msHvRxyK&jvhZ$r`wPX8*o!Qm4GM?XV))NmIKhN$|Ye z*G9vjf4C#}wSAi`-{)T==sl@sjRjk}?{Ob^(Uy*2@BcB2Dw;HSX_P1`qp0le3h^F_ zzbgfchuvv_l#H9r_90K$#l0cbf~ud13LVltH0{J<$e6~PZ8y^VU_r16JfS~DLaW9! z49kR^ow{Xy^)CCY@_k&?slh*qV9et28CKV=r_C*x_ zXqUe@yV@e$+s?J2yu-{W1M73rq3nikDED(>Svqt+n5l1nH}-ra;I{M4kQT37uLW(- zd1M3IE*`69EPP=PuPm<@fN4r(eot zvJ3?jhAW!EMX&g$Q$P^)Ej3H=5|L39by9G1JUQ&Y+kN0bE;<1-+i**06y8$gZX|IS zPF7GlLdK_5O@|?rzlnvaL%sUNF)Ehks5-U}7+7_JU75ZjHATv1e3QqaPZHewGco*Q70krf4ZJ6% zio!a7azMm|PIII(EZU}PYL(KpoFVeUpQE^ijrFpwyh@HxBpm`jcGvR3Ji9fxg?4^k zg8Mx`Wzv^)0@pF%(}K0qvK8TZh&&Tym<*URJA5%R`Tl?xhtXNsd`iOPcIMLVck^Ic z)(~X_IxhP&)x6$l*|c~qpx|Em(Jsw=4&f)FTMzt~=T49?Rf^=cw0jZzdsi551$+oR zB~b@3ru}c2$!18jmkuaZbD&EmSU2_iP^B~i-0nJ2{jIz|lTB>%gW`rH<}Iqws+8uo z0}{Hm^0DqU8~5f*=Z|eKuAulfbeZ>gM4U=)`s@=_>%}^{dM|Gf&mr~BQZi$I6l#Oq zK^!id`=>Jye=l4X`}R96136fjK-`#Ck0C2pCKUI$zSsQ%+oP!FK<)kd8#-S(WY*)x zucAva8I(gHAWUdw{a8+>>S|-j^ zy7eLK0B+?zC#=DFt-5CO+Vr}rG3SK5xtySPq+rCE>dx`__=Di60h-+q#zz;WfEK98 zrotQsGu+41!G-o|oy&w(Dsvw1o#9LIRLij0_{s(T^AvD>&_1?40Zv{ro^Ri7ONay= zsT38w$zG$78h}#2ZZ(SM-5+~f!!8hpSvJSO$(rV;mXPh?!PpIuCjztZVjpt0!?oa6 z>_k5j82+!O6f2RoX>H>d*)fUZz4Hl9oVM=l1EqnW`Fz1G+r1pdt+Z#xn&T*GD1&#F zCSGRkg+NtjI1>Xe&+4$dpjV_&`<~Je5bwm*EyHZX7>##*b4HByy943|;|dX{oSWDf z=#PCDsyQ(dF#|ox+FQS3xchii5apGMKND36EvL)#RIO0s(PN=$ADtjdd)d z4+yOMKbIbwfh_=??p7|hHWu-wZ9p`fK0x$=Uf;y*f?H~C8?&M2FLo-=CQJ>)t454q zP37H^Mq|?n4BROvq);kjph#1_KrCW~7jEhxFSG|&PP$dkbYp?ls!BHTipVGbL zZWObH!+X`F1m9jKVQGtIacWfGN<|+H8#UlDW=An~R7rKK4g#3ZIp1%k&U?Y_EE)z^ zjb^c0CdT3kZ%*>omN_pOnCfpl?7O?o*=opJ=FoEPp(ld7TbRkt^j7_Qf=`C$<=sYo z!jTsOsW0nJU?v&!%BUQP&m44GG9tvQ+Nj63-ov6Bn2o`O<4d{Gid9*5FKaV5CzL4j zD2_;1Y1$$=89n+VWw`Z-Ma<4fAdQNU)vkR+t_dsBA>%LZO3FH7(jU^hnnYU(OpP+E z%M2bI5(e+s)x7qg=yZ||=e~_l;2|^WW|nxFkc<5nrthC>Gti;Yf<8tmE{+I)_VWoo zV%LEzpv|dXH%BAzDCFlUP+p&~m^Ux=X&^*G!%w$IHJ-dKy6T47S1qQ1;?5PuAF+-* zOX^loaQr^@FIlSk&M|(aFS^gSeG7_co zKGoOkl@Uxdp4Qz~E5?qMfu|rMUK*WEq}1^O8-oyL{Tzm^2=;?St=uCk-W39_I3D!s zc|NB&^e6v7k0iuOtvbN;Nz3U|i||I#)BR3|KWI(Pv52Edg08~$VA}Ke^Xz>5t_R(% zD8opn1S7dx&fFsIb>EvO<_(%~I`?a19M~!8U75+~s=^XH0NcIz=us*fgi<&>W!YJ|D2azMI*N-xB8{r}x(h-1dPr6e98_m2f{eg8m&csN6yhM*2 zSYc~vy0*jv@t1SggN=toSjZ5PD&IS7)(NWZ{AX!5uUCxf8rrM+?G-s=cbMlsh zqd&<(Un6HH_zlgX<9@++7X^k zw3M7KR*}4wNd857aLS+}=A^}e(378_d7-Eh>O+|t&Vl&3wV3Hg8X>L`T7^bv1y*aG=vMZM?v6$Vhuw-}8$PY0HJqO8a+{mIv+X!~Cy9)anOgg5 zUn&Q%Zcn+6sV`{(-yh9d-EZ21h<9zR&?4JOE#zmfaYSk}aqh@!>b35dnw^|Tf;=58OvOS){ zW5tN3cghGE-=GbffaMKCmV~+W5&)04fR#b0a8(tRHH)JF+FKpE;FDtsw1v^2*){8# zx|lgEi|d)3`jthlZu- z7307uWI4j&4lZqyV7!|S8zfR0_*Bv?%_;RTbv6)NL)m{6^sSC6!+A{9H$AyB0|y7^wqMT_9pxY8=|(3Zf{eYe@c#nZ^vN7r~?v ze@WRQrTxBb^E`=WOI*6jNtAEVYsGKUO6iQ1Q~*8VoA(oxz+yZRSxf#^2?9-+KdA$+ zj-nC`u=AEO@5dQvs^gRsYf7(6^DLtlP$TzIDm!Jzzq3r+VxKD3Bxrl~31Ax+TmBA5 zVR%78TEmo%`k2>j;HiitONy=FcG8fvL@wwaxJHnRlaQwad!NSZ2%xlX{ zbjr|O>f^JuKO>D$q}t9%{xXVGy@6m^698mAkFz^T>k+J1hOHZ!OvU+^YW|3Xd?O}3 zg&V(!4iU(7)nWtV{Du`I_-#htX48k*RNz0x6^v?6tmTA#Q1b0!!0 zlFx|k>sRr;LX=FqAxnw*JG~r)Zhhd5MapuRph^=xsk+>w?T|$iQQhs?O`P$e@cti) zk~&&$QYql>AI!%k*O1~)=1V)somOyIctj^apGPO|s69lOw%!q`!C}%lPkGoi3*fb6-sibHU&D>^OvB`CQIF9-hvyr>`QAq*7}7` zawQtohlwFexGVm0ymLJ{$py++JG185%A7_S889vCjNn&XXQ}#0E&8e3^@I}RAiH?h z{pQoG@y$kqr@-uB?zZ9bcXy~-t9zpjE_G;={d=QD?~PPT*rC+LqEa?BKJe%S$lfAp zljq*uXR@u9Qhxb+TSe)Vw=K1rn4+7HqdA9e&)1Z)$cBfxKd^ce@Xo#m-@t?v8Jt8t z@MEtewMfm^i(O#Tt7LPT>d0!V@pquX%<|vLd_nB9J>{J4Cs5H1 z8rCbg@SsJ`zX|Jch4Gqy)S`dr&f(5kcJl$%TND3 z5gRueh7g5WtA9>tqtd{fw9%Z_*M$yNDUT#=h*pC4kkp95-wvw$2x#xsAr-Q=(OuNa z^yPj&iZa;pu`W_?n+W^)f#4sYh#fGfSu%6pS_iaYy>zq9`Uod~d+Rw#D(1!wAnQd^ z*Ha+eO;aI}X=Y_iu*HY0V|k0c4oVQIoJ^dTPk{toHgnLstRv0gO+8F@IW4TgI~rAS zGMfugUZGhB8jqPOcIH)IlfVR<&f7>$Ijkgbeh~n_cA%F?h#py{;pM`{9vjH-VLxV1 z6T^*C?91L4f)C?OHYI%x=wr$`s*}MMkW}D=OFFrDpnaygrkHL_)PRt!?}3Evbf27= zVbQ&A+9Hh`+#rkN84VIZxX#jR01-V6NA!>J(>tMCAWRHQDM2VK;RZ!` zse(J9PcLL~L{Ablhm5655pY(6VI@DQAZD*G8h}mwV-A@hc0E+4CeC@5ow0i9A{o*p%ZT_Kz!*n+ zrc3w%mLHAL!BiT_pbFJMXb=F9hr9HaOqd{AA-A!;JrT+lVAo68KB!stUQ&ph5@6C7 z>X(;PVYzv&$~Us`qLU`okW=9ik-`#bERqzUO-o2}@S22E!k)&Mz7T$F-SFs!430bI zk~GUx<~dGC>K#-!KgeeJ@{90ueO|3y_3@1va*RFV5PUCChPC2tOy9G+{tW{o@SNr} zr5ZREyY7FzTE$4Qy>5)a?f62(v-9go8p*)5IgrD0qoNWah}M=JD(5Z3+^%(a{h3gmZ; zd99k=#DLx?@5gG$9DMe7Me^jSi{-sHs%(}4L!yW}UYWuD3{B~xFsKwppnJA{d&5>y z>iewlDMF39hmc9N!0nk5j>SEzsh_i1h({OTD7G8f)hjtp@&|W@6s$`392rH2K`*@noW)VR}8$wH@PmqQ%o%Fb=N(X2F7}L0Ya+^0{1~1I8 z6W5=8b#doxlAC9^A%{Z1HK2QdN<{T^Tl*{BdYt`5G90KIJ%P5(htKUlS{7|vRK-V8 zgL>xW=?252@@Fp|lrnJPz6|g?U(|B>EvN6NSm>tL&it0otLh^%yG*areP?czR!w3= z6zvZUM4xs<%5*K?)H$Fj8fo;yfZ}I{xzvEz<3m%acg@KQW#0c>RQp=6{I*rCDG*tzdLOT&e^Bpk@O2QEJo&_F?JBqKzF^$kQ6y(p2)qsFq* zT)Ch#V^)Q;N|@2k=SeREl_MG3%({7hi$?FHxSxGk9yzYqF4%VKH@k3W1Zq&nQ}I5@ z)0K9zAi!!pu~Z?6lDgHt&_L4 zXnftv^=1o9JLt{8eFc=E=txoJR0KbWiag>>X(@9_f~m`*ezVQk^)L|Ux}&Xv0p7OXMHL#P=jbK|@6ve+Hu|LOpFnk zb+N!e=6H}CCc!@XZ z)5QZ6J7CkwV%}Q*jJ5;R_1=q%{f>TSR0kQGv>$Yyh2qa-xmIdnLi*JY*O0RgZ;!L6 z_$$n8xr3VEfjLFh3+qT&pP^X``OiTTX>J-n&ZhKY8+&ua*V zz`B7U83Qtx0SPjMb8bQPDN=oV4XZy}?NYgR%dOM8xo~!`T+??mq7r7~#jG6>pxG~) z!63WO&?OLP%91?+*?m2+x&DH~Q?xG!A^giT)JplOxQ5Yy*%*mE3z(WkNvTB2E69U6dN22+eDV_6)!g7Ki%H?PdsekrEVyh@8F zcNZizTSL5@M31?O#quEu%lXb!+B(**X2tJ;1#Vg37;DU1Oa2lrL^Bij>l}`CxL==z z>Bc%F^~jNG(JLv&sO#1c&2S4e-GZe0FuiI1q0_5zR>#M~nc6D#6`Vnim>$)e8?;OP zHC2ca31pQ(4Y_gJf0FRdfS!DWu0-NPW3;mKv)v3Kt+o@wVz)VEcGKRaxX{iwOt9r5 zkY=?TX9!Oa^-0yp3U|64Daf48S?k;MtO&>Q9#J~#>{8nF`2|2m8-Is0@|Z2NswOPC zK6gvFC;L&+dhT9G&q^KKCC?i>C_->H-D%ZXm%a^KjUwm08=gjE!w3J>L|M@0G~hrt z!Q|cfl7CM6V&byx%DnMYKGk^Jh3ncBogVfLe*l*#$Vfzf<@3Dr@DJZSEu=o957?Sf zoM#72dg+2r?+XNcpOe-~H6@NeQuI2f4zJCcMEpMi<_ zf71p0b6g1n2kZYcL4cE@2lsC`tQ7MKyFY~C+go@n+X_(}OooMdo6E?-=*KXZ2 z&#&G&Cj=R;?n*d;_57(sLUxo}KnB1z2um`uPAcPN+-lgAM}|NALqR~|Mvd@5Qu@Ea z1qt8#Q-R|0F1~+q>C@wp8SLEIjm!GW)d_D3{kVJj=kG5ka_qmx<;`AnZQ;EkU`(;xbTV+fR6RKsV%WvR z(h!9e)gAc(f)ziu;-`Ts(vtDtlqBVN?{p9!RI8vVZgLM zRIhZgK}Yc>?ZZGB4TPWsgGol&HALsj1VL!&#fKt1`$3SJ^g{(v!xXg?hD_3z8#xAS zFf6WknZE=${Zu>h0kQ@kc_4K7dRc_|^9Ge5Pzhb7A83B+52K%qmb{tPV+11j0lm2{ z)qrBjt=azSh0Jpn+V$ykxLtjg=kTOd`=0#HExuX3$rt^>;l{WgA22!luJvzG#Eo5J zw?}D(-D|3X_2U{hj>_F&M%>n=C9Cae;UI&6Ifu^TS_Y4%w!QJ|oChak`0550E|)jA zIwQwrJ}O)dQ;TL&vMCKCtEt81$O^mBYL3g7hJf~hWkA|~nb)6!MIT!*GA8e?e!VS= zPUTj6%=rv`ZstNF7pw_fjSODfvGGwW4=nkFYh8PthjTK?Nj0ZUTFKn}wR?Hf=lcgx zo`ly4CN-mySZT#`y@aqr-NN?Mfvw%F%*7M`Xk@qtQ|=|1b#!EaB{6a z{}hF^{qr;*Zk3p0*N~cL50(v%0Uuw7%So+*n5g( zn>{h?UBqiyd|Z6GOskVgM_xx7a$^Un7IOzO+s`b=#Avn8Df}W#{uilnTMgdBVoX++ zOqy;d$^ww2W^!}1Udr7VD<&aLU-4Ts5H&_sS=)pG=si9*7UZp7ZT*&eYi!EX9y8sG zDw7J|yY9nzN`)+9D|!Yv8{@-0`lSQI}G? z?be|6G!d#8$86hL7F4WLT$_j!jg&7jhO*l?o%0@T%79&0Ls_U^R&XbVJ9v@Dh!TW8fv*`krU>9)+$tg^rx7+Yx4boOsXRLa6J00>9#Pe4-+o2h*hi zT6h@7+wq!K6!7p*F$26c zGff_CO9%h9<%M(>JNmj1{kN>M{3jL)UR9#%urif6tl6!R^jD6Pey9!DHEk;f7uTl( zf#M3hcC=#4UC4kdT*`Er^KdBzVPsQ^h8MO4{}W{w*tQFDo3o5kN|t6_xz{u4I)Tfm z;ePO%KG6Zx1*$fy`V}7_ zn7zLKfA^5U{7(-F^7b}HPKE$`d~#bOF0&7+G0p7-?Dm z+t&ZG5MSEN8G!%SD0(^pdqdN|S!*X(3VaJ&eMeIVfIhzS|7wDjmWh^;0*aUSA0uO9 zU=GE`^3TDzzujyB_;hjx=1PuMP;|2R?0;i&Ma}FT9P!yW{x_N%J~QLrgZ^vz$6iav zzc$l}TK*jvVSu5H5#S%KJ2?IwJ}W5K^-HZa`%Te$uM^c>tBadb=q5C4c2fU!QOrw3 zvE-vU;8oao^hd#G1BtIU4_OsD(|U@yM#AGFp<$I$5+*t8B}gU>-9(Ybx>?p;4HVLJ zLQd^g#(i_>YwYT72*^(@@_13ckgx5!zZCOQkZj8O6Q%I^D?v`%sB>78aopCHdya$T z*H9;jHlBMxCyzhby8CTAq5PN(e^ak1?g!UcQfkdF34r*~icDJ0wLx_<1kv%Rv;g*C zLnBF1w(Xse!u6=6O&t*oe$b^-5d)I~X;1?1a|GGta=3>7@G8s^b?EKyD{xq3M@(ei@z;cqQp3du828uHu0+ka$Rl%Yk z0cns);?^%}q)I90Ma2Q6HaTeJ&9;9Ar4~*ZhNZfSsSp@iaqoy$8Vinb4Rr9!viti- z`w_*HM4;t? zhI*yJ4stfj`BX}CYHhde-(SAmf^~-alrWKri6p=TrNxv@w>8;OF{WSyR_pOAGnj@^XKUc<6cLdl~~?*CN+J-rc?M zkv46NKg~RNbEL;gnRlv8V0BRv{TjK^pUDE8Jt@tnlYKr8z#Q2(2nI*saE#e-o)B@C zNI3ha&Q8Y%ir_Gu*)aA9F*I}uiMBE$DV^;Yw6!*^1}U!)vUGZyk5lk=TVAv(@(Qchb7ORTF(dQfT?EpWgP0>yqz_a)f_u*-T~f3W`C zrtM7tb7g}s@?-N`2p*ZQroWNOMu6mmO##9QHZdCYU4eB3>lD-k`Vg4q@CR`ng7Qx7 z3%;6QLhbWnch%5o>!uSx>jXWy$sGuwh40y$8*$g#YjZ<)#d5cgaf0Qx561>h->uji zvK`vQJP@b=V7athv#ecbY^TI6t_CA2#vKHo^VHgq%^w*y3B`*?tmnn)Ua zZ?eBZHMrF3izAiE-*`{lstucFn=P1x144RE!X*4>gaCfDU80Z#ga*z^z%ESzwqW+X zQ7=uHQN&~BUn=lqBI-d>17UXJM$hKRhfJITBw#X67f>;&QqW@@G0HPk#602$Uz`zeQx*sO8T0@EPU8x&#GIaK;gTc9ay9+K zWY+FB#$SlUh>9--ZZM+N5qzt<&^cU#$FNq7u|60@6zE8rp~{9N`l-6=c&et9&l-nX zz8K$Ca@3HD0F6T7h+J`e??Q(@4gH?;aU^+9e`pbEbU z5QHYrdqGANmFIE_(o#hmNo)m6A@8dT@-?9<;V0d?gYHk~j{Q3UQjBFKfKJ$AGFsRJ5pdc}=}6a{nQm$uN5_%j zN0??Zr+iD`9w8=11$7`#x zcbS-?9}X33lX1d@^C9ywJMtf^ZugJ(^JOV)*v?TBM~xj$P1~TVwso4QHoVst<62D5 zFv3hZ38zN9QkDpP#|~EnmBv~!VkPysqvoNoJjHVY(iF3YL$Jo;`LdZs_F7_*(-Rzr zZoj&Kq>(nPl;*#Q>(dH9~uY@qacYrP!LOdmB*#RY~a+Fw$jI_W^m#F zupOQ{5e=J0Ucz#@v`EXYF&rH5mB&Cn>%BY}oX z)7FAslH^%qT#jEf`B(8eIv-Ye-TAfeWM?uj82_Ehhio(|5)$AyGM=g0-xR0#WEMXx z*O^za6hxGT5(TErvd)=&-sF9BY%I$}FI^dgEPtOYI6F?EWGSBrMVBucZCaixlO+uO z&T8~wHedEuX*iBChIuWsr`V(T+EqrytAtQJz&?5-iTyX(9DM+J1no0 zbXM8OnZ5iOGnE;kpVQ$!Np;RxMu1Mf^x|Il2gE$x4VFgbWU4U>X4iEIc+m0@B+buV z$B2hqz?XAxrlGv6N(J2(+T(Y_efv)7v4f9V%;I&#SSJQH{E{mJr*(0|lVc@V!d`85 ze6}}Jc7=OjhdK}L;dK9*tY3xu@Jd4rq4QEsq-Yc8yS+EqnDOzVrP|E2b#yQyI;(G~ zK2rujeDSQYtd2U=!uTHb`n-+vx62ZblP-@u{1V?1(WBa@6pw=364Rqrmpt7P)uTq2 zg4p@adDWXpmr_spv$oa}gEdo`wrihmkJbBSV-I@Skn4}K2eJjy2$A8XbG64MU$rtN zr(%sq-A4u3CGn^w;jD_CrQcJFS~QDz=Lv6>-KBhhAmg@kWO{pkS}+2mV2a(4kzVSFL9>htl|67e-57Duimx zrB8}O2kxMGf#(w^-9S!L0TwjZ*by0uU2mozC{Fr%p(YWxW<1)F!H)*jq$RT_G3B}r z<;KMF7ze+zQg}UmOG-%>`XC+Eup|8_SYNFYR82Vx^G+b3YSATCOO&S~$h;OmlS#N( zCOO+j8>D+pm~aH(Mh4bov;-e%21GfXr7T1vyN!lJt1V(<+scJN&Md1|XJ&uLrCM8} zC~#p}#QD2ZUESoz0a`qo;;ho(kGB;yPb1aKA?25(8o5@zaL9M%X@06jd~8J=eD|M* z=lIYr9w7MiGALS;-{^E@%D&m8yWMK$>1_L`Y4x4~ywGxFmaLb24ry}U=K9vT=k8Nd$7zaH+pPH^6m_@}6l{kB=@Z({&CLwit&wIXtRApJc z0qwloP7T37f6pX}rc_H~qFsAaPVJ1}*_=LGGQOy!5Vb})w8B5u;!fjdrij6BKjQX# zV6Pl7aBy&1n1FswV1IVGPSArb)$?37)=1yDNYhoa(|p|nm-(ziZHMNCEPP?$jzr9S zzt+9D>ded-%V>YpWfDJF&V0BI0O_0~n?^QeK*_9Y_d%Zt1{Jse?uBk4M^2-~s6LOa z>+nZ=EE3!=g3@Uf5l||rpma5J0i|n~3e+m!4buG0y!97}>*7~^MchGX}3w4o3c{3NEt`)wVHYLxMoVa;ahak zvE)wsV&=G4nVYWpc1rql(eZywDr4B{8f~McJ&PQB#ku`gvd1KDtyE0Jai^3i<@}Q- zeCm5ck?H$c2d_uNT%{(P&+T(}NbWhC$D?ury2y8m?)5e0^W+i2rdg~sWZ(^XkM_Bh z3iOm~8QCS$5;V&agb%xPKwbBIh8nP0F@p!m{~9-OgA;;XI&$y6`UHPQ5zd8q-<`%* z(83RSFnvye@$!@R2~w{dG}yTa;~sl?cmL~yA>qDuh`3HeHFt4hK((jahq`gZf}w*& zkF3Uhto&F`VJB#*u%mK$_Yb0&^VD3%v)DBrj$iM}N}!EJuWYnd+uyL`FDR*_@H}}Z zjP-E0E%6j9R&cejaf7*0#Cn{Cbr<6wh%apVoFjIk4;N^s1gEskB(1dI+Ytyjk+ktuu>nN08M;r#@y8yKHukOb6Y3yon-i>%|ORsf*t>uYraGhkKMnT9@$2V_O3@mWZtarK)3_l$UBp zKPM{jJ0>%sYv#X|?{Y55HRp{><|R7p%j+4aNNMW%T8(s;hTA^ww=+_%Qw+SeGHGiq zI^ecW^E>&e51^=iA{gq&mdX`4YJ4X3VHnr!i9 z4Wm!M$EA5>@nw6aV)639qSDucN3=rxfGTiu68r5hj&OIPt*bep)g;R72KPmiZ8N1% zebkYt>wJILqG<%z5V7LH5}T8WdpNfIr(otA*eo!N@ZWicSpLZ~^glfzYKj13C^`vi zBY-QuCjH;vl3BH(=#?eip-+6&BH zrz6~xBS6%HgfMyx$$AvY`W#>kf%=ubl9m1Dl>!k>Y9Wv4ePEV@q>%IGgAdsK5=^&?ieJqZR+vpjW*?FRc;I9n zbpHIga-~VD&Jdk5aa(AF{7f#9#$uSct26^X*3@B*((^kKS#YOr>@?R15lJ?YwqVe6 z+g>!NJF;59r0!F!(PpAy+M=gn%VLI2Hi zChN|8i5m8pcs6Lmusfm&_1F$?9cLX>t;eyW}U;nPaVR>-PJdzoowyF)b5g*dXO`~2(2JJEq@YFY{D}yzsE1+ z#KSCy#?NX0HC`5hpU&yKq?VbEC;F@`?)1;YE;+S%ePEdFjq`_w%#Z^P=eO1G|DcNl zv!Y2N|0+C*>2zD6@AnUX))qZ)57f*%&vVTS{*&?svX)c-tDFZcdVbDyy-P9OKI}Xs zs~%j-d+t}^SqgUofDuJ!Lmp2@I41`*CdDE^)dGUlqD0h!{1!d$+_b#^uS;rt@#96! z^8!Xx>3)ySfFpPTeT2etSi-Uo(sIboa)7~dMB$pPGv)7G#1eAL~gnNjDyAQxUjKbZo%st4$-Rrd3E3?^e zwb`e=Ip8&EK+A$h=jcO{{q<+@$qxwgb? zrPsOmF~`S(Y+?OZBP&CdjG)E${5pGMGi?>D)P{xOQ;eMgSE4iIg_MS7{IYdn6N1^L z!1`X|@OBJaPXBPC=r_)U411VDW-ofQA@)cuhFBe_SS?CO9c)M~&cdo+z`srmis>3S z&(A<5O6eau)HAyr#y2n~x5y_qASbuzXg3gOx4%+uexxvjP^AtjYYqJKsryWv{vQ84 zLYPSDI$CbsQq|G4nHPsb^CW|DCTmf$PQV!hfNB@rq zQF!frU*A962PbZS(IjK#1yn{={s-j-wK7uwS2-L@>~3einpv1BQG6S3F>u4=999_b?v)B3?+q`jZNP$$A!Oj;$`s{@0 z78TNwh~o1iK+W10ozu_J;1py&EDuSXELavl>)#f9t+@c5HO`q8EQppw$zo-(a#}gA zpEl0nh@Y)+r6+#9UE+S@*eLF7hvBMjKe%3F@p#{4;Nnd^y$rZ`e0(mv0JwLoX&=3k r(-(L6=0D)u{j|{kzxQefM}2!oSNp#=X9f;7W_l(l5)u(PQKEUw(T7!72CFLJC#&yRcy0j+g8Q4D@Mi6mpXl(^PczZ?$PJ_(LH+q z*kjH)cJ6hrnKj0~Ft1InARrb;R_CIS^Pe61ap-7?}#8ioh1j(ocn6@*G+uD0sA4|NILuOP~&a%t#nhJCnax z`W*e~f*tTr?WlM(8rgNd1yp)I{UtFo=N1*5aQtCO+m=gogEQ~&*s6b#Kxuz zKJW3bI+Au~_9B+XE=24cpUo)2FbWCTdk|?eeNNc8*cg~O*oin<0Sug6x-g7NrvFyd zndr~{3ESJ)J1ILD8k_!Y>R@i>;ACz@q|K;c=<>OXc8nsXZkEQTO5#GgpPTsC>YvYk z&O|+2#Fbq>clqygF?&0g&*A6Rv#}9z{JFZ)=lFAjI9UEZW@aY(?B(Cq0bE2JTz{>z z5pgpAwa!Vz$@bSeD-kE>Ut<6f*Pp%qQxm{J#P#Pf_%mi^BI5enZU4CzD-nR{-!A<5 zFK1M6vNu*Xbs^FwV*GrDh!|B&JzR+X+{iy392Qmp*MI%UY-npH;5H-sELCr7k2pc? z@MSu+dY9;!4u{`U>+vg)k;?`Tr-xRIRm*e45Hk(HNuF!f?G=n17)%R1EKyFo+eQ}p-=kHN z&VA=H^c>)$P2Yd0?SUgkpMDhyOIQz`ve(>hhJJ|2JUM!l!MTe?sf+)xvt|gPoc24v z|6@&YJFN%HQOa>2ggjt%1}(MMWV@H+l0qjcC3~|YP5zeCE)0D4J0^EQfC8fTO&KMn@mP*4 z^{H^MSl)4cj($@*5(nEcPy1%+86;7^HM)N)5IFxg@)Bm9Illkf+ zk6tN562`_H?Wvw6{3T7c4@txARr4`6iJFU2rsX2jtuUO$pmvoD{D&ACe>KvgNFaQc zSpgq#dggcdY5-`L6K?~uFrIBNR*4ZejC14h-gk1b&5_*o5!V?;AQ?OxbOmxX(TqWf z-;+m&rTH$eY<9V^}F9zs{?(rcy0-UL9D#g#}pl zf&!(&oUIyRSkv3p;NM9`u4dvS1krpcr194gqTfZ2Q-UByc`V%+>9Ls&C-x0WhD)S* zBE8g(0C%i3n6NRS!ZNpwa79{`f z;^P=@486B88VZFj*gJ6K2(m|roOup3Qr@t^;)-cp*wT8Vj>782CG_A-hZ997AKP7qo{j#rl!)DVa`32Z|n+%z< z$yZ>IYfBaY&Bc}ZTSNAIwr%Efar4ZcxvU9N%2a!z8eeQ z!hn0vS0Kdoaj+s#r9bn=`n~r_H0_mCT*!5(jBm&(f*~u(Oabocl;XE@(rn4EJF_rL zglknF{3(~-dOItyblwRu`T~CqySi8pN1F&d=CsJ>E+jBwaI!dI3@|1Az9`&?l$+Ox zphMGQzJv5Y`Z>|y-9b0kTWlM>lNKtB zXbN%vKw@~49kg&@1T<|Pk`?LdqgjzjWySNA%_O!TLKS6bK$J2u`k8n3ccP!QL2D$m z2O_?7h0@2c2i2TArjn&4Q@f(@al5Gd^ynt+6BH5$lRAzRtI6*Y+goi6$Z7=#1sN2M z{TttO2R0u<${R4%cgyR*rTM2P<)tTbNWe)ibGIrIPew`A4Q*MNsUfhGxT8<->t+?9 z+IWxOn>fwsL-GTg$z1A`gCLfUygv_a#%Ra9-6!pXZ>lNda-fefqfEU%Aov09o5Ez-KAPLMo+^ar; zJDPXowr$XUS@lq`zUF}#YZJxeX4U#fst>~p1JQ^(4!nYPsL z67MXP72+V!1-2@JH;e_^0xPjU^}3OdgO%F{2bm}vuyR9TQ+_ct7NnOoiJp=L;Z^+t zV-$OF^BTkni)mAeBeP=kmY*-!!URCV`63?FVHRqT9c>1xZGtBDWH15>yQbEX{DAf&k5=I0 zFlTM>hIkDJ_+rweb+8?J`5L!%KUxQ5s;>$ZFq_+b`i+85OC-a?g^x@xx+-o4|$}lX|FbJ7X4-wZ881@V! zsUOoUFcWmx*IFY@3rb9mQ7SjDqWqbWqj7e+z8jR}f27Gi842 zw@J}L+O51WyJ`AOJN&KT0apFWckJsD^+$B)7tM%o9)b38SHm2(V{pfJ8JY>|yz1vk ztD*JMN-rXoycwbQS@&H(zb>9N<6fq}Zp57>4~J`c?U*5=(0qq~SW|8n7gczVyQD3n zY6eMWaZYf{kSYyu^u@|5_Lq1l*RbMrN&cuwCwJ|m|A~USDs6%Ye_w85EGK_GZ$5Nd=(QBIz=SD5xufZG9 z?#Eh|+zt*^k!)@k&UGSU$76(}aO5loP9}d4ysGQr=uGkEH|6D#Hpz3_)5=R~De%_- zq-asA21lgM0AEA6?}dJYr%f!9(GSCrDhRK_#T0PpX{AGonkg@=M#zwl?x%`U!-HBQRY_PN zmqA+K!NOESo(ENZbmL0ZZulke#!$)*=|0pf%Vtc{i`g}83Zv1i8ul@BAy@zR>`zg3 zv{*4lnvK>WlcJ&1FlMoDr@}A@^YkJKU9<*f<(J&}@6HVhti4*WZt*xg1(2NmeEMzZrLy7$QFl?%QL*5LbC}U#& zwMAajT@*&nAe%OCSV#O-hXm&Bklk7Cqb06qNBgb^fkJ-u9UKXD!@W>Sb->=}+?#1W z@ahBuI0j?Jy&d>w!gW^HQDcA0lI-vTS+K5c#&z%a@vT=^tFy|}#Bo7>u-Cw$6z-^2 z8(f72g3Q5u1n;~-T5AtSrbgYpXjG_WJcm`cwW@ENrIBhSJ$NIfD%|YwZ*wgR%ly%J zJ@1zLl{Gb~XV>aSMRJfhr73MV-(A0!?qH?_bSg8t!r%qG+;`5W4Tg8lTVN_PvT?jW z*L?i;EFad?DyqrrpqKYXz(G`a>WBq(xbtPAaV-A#bQ-|?hadh=(0hr0ruUqdKwwuG zX#Y_^f4J*k{rnH}d*;7W{{MCS{y*dN%>TsK|1*Bi{7*dopZNMeiw6H1cL#8Au>9BD zeL_RqevKW?XR3Nyo1D(fvm1>ngx&g!3w}uD5W(WDV0cngDqVXr+U?<`1eq(#dBd6? z0~1MjKEl+~q&owd+y!c8M{Car)1&luM07}`Spa$H3)%Z_GY4i41C)0-YCKY4&1|?C zj$_=q9b=oJAU25%1%zU0f^gir?kf!Ax)tLRro6s%yo3qb+~_ky9u9y3b;1x|D*le* zDfazJ&zx|{9<_>GX`mxZv75;vrQBCR4l69k13lE&*qq*8vB76`h9N7qI0^gazi&EkSfWJ+ZB@33l^R^ zer&Q2T^)>?JRV)ypuGMdWej>*hegoJOW*VSo(Rc=_nYjoNKjuG61qdnP-2^8y({+) z$xmwMY6CF`Et`i8=1?AG%Q^17x9eaIlZ-8HWjEE%hHh`8^0v`(ihS%DFhkkCI$06M zkRWWAZWofsUzx2@#Bu|*t%>qs{c*^6LDH!!Q~hy`pDG2&)m{bA&p_Ad`8%M&0n+C7 zldkq;UK2O>%G9o;Q zeDkQU?F9CV_hneWQ@m)k6#Ti_C*qwkI^PY&1lIawrp-D*T+vo;x3N)jFA24}TVDxD zwxf!hxMgb}(zxT%LFGB*x8ie&6U zed6(yWPk*ZKU31MerdI~+-@_-CYK|+mi9>w%QFu|vXICT6UTQbPTw*UEx4r%IspB`Jl@NGL)KVcK4mH&m-KVDNG%H;ibsAz)!P&+MhWXCB z1eN|R-dh7&;pjo8b>6kc02-bR8-!@TId+Y&k$6UIo-~NqW?(7TcTDPA)ca3Pt^=tq z8{!k)m6BF&wS513rYl*E+u+{c%1ugW%()pHwtYYbvdayrziN}9#Zv1vx!w>kO3);* zfD@DkM*MzVq*J5JAs0fkoOsYd#;3=Ek_q40e1l~hKhFbqY28q_wel0_C|`vu%^O`; zRW&ftyFhTYknLD*kCLF`ZSJaS4M0~U#L?)RAOWUNkA*H}fINAyUKqSD)?qg$oiaO} z{06*JLL|;FNAbRp=R4mc8^kG*cU;gV^#q}36=gD9oM(>2&Ab2dP4WJ|HzCq%hn5d6 z(;6x0w?|Khs51;{7gun5{lsx@zF=ltYYZS@oDZ&}XsRB)fNoVy?x%TBzqmKUnq$Kf z>epf(plR!Gnb(2oGD7Wnm{!?Tz%Zq8E+T_2g%U^pZc8e=MTe>WJs@7@r@CCKk!Dvb zMK@yIPyTTkx~E%%p4eY0;U|LiwuJ^fnObLbFIit8zK%;*&-IXfuf`Tu64|&&rDn6} z>%x=6*wUe92fwjW{7ppdv{;1YZ?JaqYsNy=`(O?_$iwn9rnP2AiLpeNJZJhvrAawX4D z{Jq4n7>-03^#+XPn#=yoBE&u9$r6A)=A(83T*rJ5SjajF+wUE;->zDqm%2!r6ly7Z z!l$3Z3Y@8SWbXW_CYSK2mL#0GmpCHW(Znf66&*8ICsPHD7*0-RseiNhot^tjnKZv| zURsN+<{0`dsWmUc&%gf^DePPU!k2{AjyC7(%b|}@&?96)=LsY(fCeQ9rdcZ=zJit> zrUM#8^o73U=i76_nfmEo{~5YCQtrnElNb0m z^oO;myO&19nW5R}?|M=%Z%Tc+Gcz72_gl|c88o6wClEQ@?9hM>Dwt)En0AX?XhWkN zNP#>1X|=Y){{X$P{1Lf0X*a`uT4{Q_TOWTLNJD zo1gH%!Y%=@{N<5+Vk-d4KMWA&&&glz#wVfzu>6x{0$}}zAHqolVEwDWCkO+u{-eNW zHP(L=;P{;UqW}{TfbAazKCi>}Z;r~p2EJI>ng12zL`S=RtqIxZp?bT3waUQ2(Vj9v z5|46DCZYJwb9^+AZWLhd!ZkDK`f}P11O<~TAXR5VSvloF6}}C!{B{rH*YMn!zu-P) z@gS92lc=63L5!^j=P+7Mze&IKbm%_S<>PU`t4&RtD?%N+(7y%)waF&K^(mH%SLb7 zw03eef2(4-*3yP#&PB5m#A?Dm6ZaRKUpsrGenLKev1Yd;)bQPQ!!l7Ar%y(>UHrBP z6D0>EI$L`i(^h(+`Zg^x!$e}2&3AQqQ=-BNGw!mH!on_|%fa$5)bX>;AC)$j%OwaKCMRt^E;agv56>+qc^uwmN96y{8=H=v&?zl_h2>W zj)zX%Shj_3?{U>&BC;{wrV70;aO-~0CbL4=eGaQtzDyGhgj~ii{T*r69bNb=Y^xRK zFJJ4s44(;EuBd)tZjnI7v}8dc4KShMuvGOkJ$F|-b_B$jW!zO|^E*j`-uG3HTei5F z-|TAp1+fYfK*KDTmprkvj(&B29y0=6Li8#`TXdb9L1^sZAF#QOWg1|{&v^#lnM@>j z8`PaY@??pX;lMuWjzFvdk^Cqv(!lybCbPP{ZP`XIyCkXa_IV)^Wai)Rq)80|L8t|y zHaB?^!kTeNh6oyFx1ucq{$xOg9r!Ofu&n+TrbeKeM8sii6<=tSsg2lHJKR+8lFEUR z(ApG5^3b!%Dy90IavmK65;3SO^F_aqYU4OkOe2b-BsV$x#H@p2L9ZBCwqBrq@6E1G zl(#Z&9~(xeOb4dP5%W8S$R+bCe)c4x#{ah0VBDyA8AxFl81m|NbX2IGZ~L~Xo33r) z4P${G^@9|0lIGB;nNd+O$Q2z=1OhI|o5WEogpggz(b4^YQ(I z9rTs!G$aA5Fp1_Zzsg|`2R6EKRL19*zNf$Hh*U954~Hf$&^M4*mw_;AVBsq?M>=t=XE{VE8uK0ks~mYQF~1-7G?sV zB_b!I^Qt6VZe&TRPNa6d@!t`5+W0CuoMeW-HW0FKYvDBsshc3&k(@#sboAFs?+hKM-RX0u@^V zpn%rc5f3gSC7Ar&o=LjNH{4(R*3V84CmVBSy4{)#PAIG?Un!%czSd!UT~}W6 zrHv4BjhS%XgDE$X-wllC<7}H{%AwIj=)YCIj!Hg$Xt(h9rx=z=(o_L_G0AP`$z5&@ zJXzp*1OuocYARR^wHeA{2$>pA2;9!2{02EYj>+q7m$t7gvD)WKRa4&QH;)FJh#lvQ z%eBj_r;u7@ag#QXBb{7*E?n^YaloZ`lRdy*To-XvoWeJQYgG995$l~??KB3hpa@ML zhZ^`qGo&XIF4vbH9#CKcKtzVQ3yL(keY@}5B~|f^q(LXVF5r(AjNu!y+sb3-53f4N zKjB$#=Vt8T8WP-b2)w>Y+Gt-qBu^TsVFFpi3QURF$yk_kLdL3j$twHZsp=VQnSbNf z0}aZK2KidEe0kGSLhWv&W6>bT7%H&8F@Ft)ZC!% z(GSA9c5^B6pbiR^It=MrD0SrB6buqomprJcM^M!ll=UP>6_N02KbYfAo1PYH8; zlxi5NXkWTBVf-$Q6iA^BCp~$zx?bPNQ`-u56cBl0A365c2ZGq+VSiXFI%#^oDyBPd z_&7`O5o1vPLCs0}(MbVi$+S?u!v&yKqKvh56MWR!4LMM_!0Bfs$uE7ml=}WU?L7~e zg~F%2%@kU^6D&miU#|m1MxrqqN1|t@S$CMD31W5&Z|gKCrW?O^(}Q|1B@3R+Ixp&0 zaB(p$&Jf0H@z48dCfM%DBu*7BVI0RL6%|1sjPa$Zss#q^L*d=p85RctyQaUSWJV%E z^Cw|&A=>P~H4S3vZxH5OrG7H$h6sf>9>aX2R2j|`*Vg4q0zjSQ@xY)ean)Qb#e=9< z&S1jJJdjGD{yblYsM2_R%0hBUSB8$%WPnS0*&cG*l1xG=`1u01M(&ls81IZ$FNZmr zSEEy**bPt?BR!pA^TQeDS{&`FN6=P^8YprSvmJFeE`}n}Ww_7;3^Sy$9;0C;n6lLk z*J%(NJ7`VJJnAva?f_=^WyNa2Crg;7^!SSvsxZ7g2+JiM>~nie1x6Qtb04s%%(Lrg zq220!1vdU+^JR^}!VE1w>^|;VXkvIbY??D*sBk<}4gKm#4d+qyIEHnWSo1YZ<60YC zB#?rQ3KmW|+Vwz`)hQ9Z|7b0^w;DO5O$AF6dCt|U+-6U!jLDwjk!P+Jit(o zmL%2~tF>T-S-8Uu6=xptpg_*SHKqwdnHk+e7+==}s>Zu2Ai2pD!W+RH(@s&2OBA!J z!q9${K})G>0GAk4GeDQXoQfg~n-Yhl+5ebeFRF0Xv5a$acS!kgS7|92jaZv6Hw;7g zN1ZP3WuX^JlAV%`M?88nFGd9hzXWFPICX-{t&xh8Pw zeB-gjy%vXQpa_Sc2Oz@9(bgi7?<;cDUg8^Wr%aecuutSs1ScqSnzkx2^qc)(-5+TM zmu`CL&di!y*Gt%3I)<8XEAI$oP{DmA=c)(je?8iAMtf0x4AA z!3IYX)KBnrI~ooU?1kq$v-aw}xT#;@3G&GG+`3=Ua62f`_k{LC0D@RN-aZ*y83o5-}t2>qk#*d6IB-| zPDSraMbD?!r;uQk;rvqmD|I1bBCp?w0#|Y2RM_C`LjI|A@apvB*n{sh){ZarA#y8A z`e(C?`Eh68&+PDWG8G-4T^u>=8Bg#YFgWoknzv&5@$}o<5~es+{HgnD_ICl-b)Yy` z5nSy{o6Me{3;9K$AZYlDWxUDs;_dwj$_Njl1EjfihQ)YnV{OZW7&pcKTjV+Y9V-r0 zq=doBfxibj>v}Ga4dlT3G+cPPR?apW&M&DZuT0K9Hg2a~=+~-1O9_C-sSF%R46qTi z)w0}qG#=O?plrgaoQ7Wv(A7@z$H(FO?DVViWx1^6^BL-oJ6vYp;P^_&k1+Ar>Z564 zfZ=(|T}p5gD&+JQsrwt22vh||thu9~W3Xe-PhQ3WoUlphS3tH+74Fn60r67Y>12@= zu(yeJJB^;{#FdP&+@iRqR-5E?oZeRuc8yd=O4k&yn9Smn$ zu$%4IY!kmTB0J&&WKYoUL069D}`C)6s=A`*VJu>wq87G=E@68aA?X zV7fh$>dO$^&3E%=k(lXq+k^|~UOwvlZVwTjO|)$MVHOJ}G?5{QH@%l3DDaX%^FEAO zX)r6Y*hx?XZ`Un??1U|{TnFCzte;6U+wdQV1%Eq2_?KAl-zi>*{J-Lb5C+D7(9hpa zSN_${|FC%R@2sHzHR8qprC0nhbU6Mx$@zKO^Z$q!|CcK9pDP)k?$H0yD?X2r{-ulj zYpMi*i;d%7u!J-(=2pj-Kt7}n=j5+vrVTFg0NZe;)h?LaE$u`)(FvYav{__0mB+^$(>5nTkI3X;^ zW~76W-p`ka#<8~h?P=nR?wi}qH)19+l|UGu$5Re|pS$~ZD`75%ZtD+Scl4t8>+590 zGjVzJ9n<?)EjZ=xaM-B>y_HYdOLCtC=VZr1I$^O;=sVI}U;lM-CrYK1Lp}1r$+PT4rL_&TCp=-gblomatKk$M9WrH*8?BVS)hCdAJQ*T^4>%CtCGzP z&CAF*JdJIM#K~%}217gCuwUD_IglB0ugkA9>LBc3)L@?Qzygzz@Wdlf$DIU6m*7-iPG7BimC9XXOc%@t-tC((EcceUr z>B#VWOJsIy=C>dp8IljD^YEU|*ut4%&d${OCKy1f4oD1=erV?R7-1HgHW=k3Ovc{P z(~m&foJ@oUn+dp|#+DeEJ`CeE{pWXdq~WD#%vKRe0V)Y(J0JPXFSM)(0bm_o<11KOz)T!k& zzBnNQ!cj~K-}yC}0VbfRx(vR6ZcUZpr}^}{b)WJ|cD|gvMcN6J-`q3Lo;X`tkezV# ze1`%sni9)#U9UJ5UOUC=hEn)awy}c}ih+IImUXq&oIGFq{ieh4Cm;C&XUH%$zRYcT zM1Ko|Ns_YPffrA5>NX`andgIugyQjkXo!0z$mGYRBy|R1cKN)8r<{4Leyehmb|eA#cV`IicPqX7cG|Wq(0% ze_p{~SHvZ8RIHs!irwo((l)(NJqSr)OiLQ!gaw6MV0oK7%9a!!Vi6<5pIK#7K@nj> zoP^#0ysU9i;^Hd^H?n>-x<8gNkuO^Zt>ohx=Eb#agMo-ma37u#Oc5p2>;FQ8axREw ze2UY%CzVl7gTVHk{fa@ya12~Zw z2AF|07U}Vf`A9o7x<#QQ7*aEFk@!-Y5V1LBZ%%apnC2dY6Iq+k(G8xwqm&qFaE=Xf zj4eL1_!%XeF-9i7ez&C|3lJzmb8^?Hz6%M&wG5gxa?$6-xfnL9`{`w|KP)1;?2L&d zPTKgzB+7PxBA^EPhFm{qmTqIiVarmTrL&X}^kdRx)dQg^?}uM66jy^WaImz?HJ*$4 zGKG&bzD+-D|JdKh05!I%{k~m7;j&VL-dj70umpX1_FmH+GwSSap7EBTZj5+W!@D5Z z>`{s;h>QEnHp-;>SA1K}dr1rj$D!}}vI7|MbN5@LF=#Y8BGh_EJ2YTbyA6Ivy3{2V z06(@Zy6$_??V?a5A^EnAnJp(ohZq48<99=i;~|u)@dT{!25Vz1^zU`h2E<`2SrB2;)x*==QDN{vwC>L#`CLM8vvE?BP;u z9fkOAgj2lmpy1`{=P7{$H&v~yuFuEd=8seE0#B=r-S#< zC@j;4hMHsynWOtTWo2Km{f-Xb`%@Moq<2$#;zgvv35%w$A>Fiw;dMr2;U+b$gGU?n zzUJjhc7*}dT*eS3zsC9~Ud!&pu~G3H(@#f0Y0gHlz#GH}*1N;KHqLSR5cLT;mwK=m z`~ir6qCjq+QJ~sv#-^Ri;R#|NZHB%>@y{sGM8=;e(A;Mf==+)(_P<4eLOFMlD0KJ$ z$MxcqIn8FZyA>K(%wFYRr}r31h{4&hxAjXfHB6;GDzj>ZevrttvTi%JRoX5g*{Pa0 z57NM>Q1JTZMyOFB58$K?d6!M*W&NZu{P7tDGJQn)TNJ3F;iG_=l2UAqRY0{kc0hBn zXe@@+5yD1KItj=@6nrV$U9p%%doEW1|)S#Ae$JgV5 zyM1?>2Ws)X$My!9f0wjI2VFHK>WK7ZlEkZaZOLpV$h8tQC0GqukJ&ZPbt71?Rf(6Y zPHq8Trbyw(WsJD9{cZ#uF8KF}@CI3+1gIJ%CVCG>E2;VAzam1S!Kyt{#k8wdk$}t$ z)cJihP%1LQKF{3LO}WrX#XuPCAx9M1cwB4)MbR1eTLouLka!yVDGSH$gRp`h#y5udOOs4*Esy(I`gn}+mIj8+&q&D1uy|g6%*#~!G(TJ&D3cSG~FTT6=R^)c5t9O|41 zF3xrR=VcF6-YV6YsQ3X9jWCREqs-8D-xz|OMd6n81}$;N1E7j2H;*c;xi-Fo-#EYx zSSi)#UeVX;tGWFos;ksW-Fy^KbD2jnTs6f|Jp@zhUvVz1BQ0&!Lbn#w3B%w)SO+da z*+t`^pOKteBUQD3tGP#ZR9+lPfx>$9u0RMLWGnp zRGLQ)kswY;tx!BKEelhYJnnJY%>n307$*gUuIA+AxRNkWUq_pz=@gd0NO>w}MwUr| z&v!V!{WA~?7Nosqys}E;aMkAzS?GvYEd?<;LP^j-Lx2CG+tYlFUL7))Xdn+o1ZT0 zZQ76N@}D?mTh~6#E>+`;<7-|qYx`zdUeI4aRIV<7kJ82E2Kn4Dm%5LEJ|qOV2?$Zz zl2=7Yjn>C{_@?8?tDUc71oVQkgBnm!J}vl?OwSiTpVEoC>Jo4xNgl(Mp`o%|Y0ULd zz*>zkPi%e{W4n28AL0{;`T^(L)x<27Fupzet9G(T)jfhOTGeiHeA-=QWKt;93$9Xq zUWo&lRHGB<=-O%Ic*ueR#H8;8r|BlWOR$(A$H1~ulyYel=(i2ZD}E*0qA>Ke9M;g} z^NWKYJSe*?dq1_ z4paO3wpMcg&DsjY!GFG}$!z(}hqta1xJFbdTwgu_NjWGmNPKi`5!@z3>%(hfu;SX7 z4If87>50BIKj<%hI1NuC)lbyxXP}k@`|B_#cG?g}Al&&0*n*O5(a*qxfs9-UerO=~ zZnNzcAG}E!S`y726S??>Z3O8vfoALF^G*iOEvs7?C=!pDc>EY`+Lo|OvXdgD1V7x+ zyZ&R!L1Yk^H%xB-@Mb;JDmkf(KK6_M%(b5$vHiEO%=R$vR@MYIK2I3j!ZtBp6Wb0> zlZ!QAQkfNR*ov{}C`pZ6gxK?Um3MCDh7MYg?~kP9nL z5?6%WAXBa;;WhEuyFnP*Amj zX`kU%DiB6G*=wRe@ffO|nS%r1KCnO`MOLmcA^+fA!WNKILZJUG11eT-RM6xWgt~x= zinN*Gx9yoBmMJVF-pjZZ>(`(xsp6qF;aYyp)PDSc;MC zA_Cf8su}B%j~h>Y3xUX06lB5m4vVg!98=T3Xr6M!7@0>$zywqp4t>XH%`gX3p2g9? zU@7JIwE+$swiu1oGHn^&?CuR5ofz7WU624YYrC5WI3c=q!hEgUVaOi08SpprkPL&8 zLLTI8g)bKL3jMoi-4X+-LvVwZI*$~Y>0w{oyh}1gZMQRT#q3;p z(sZWj8MCz$WF~R8Oh(N&({2tvetCJbf}cIxXp?rFSn`P003x=J3;~RImW&K)3=a=hFTFsPE$Ht}|b4U~# zc@g)FJ=?5^+*eXx`ikTjkn!*CmJHOV%&Mo3`(4C*vY@r+&9#ZOm$4r$nG~Em7{%ex zwy0~yflJYK0P$Jr8+tCq26_r-AMDRekvj+o4vbjC_We?=?92JDX+wYwcUYMwA&9ZN zFJrY_kiPo&;r9z+9}=cZOn$u>s+Xn+17%}4FV$hBFH2WnO+*e+NK*x_7PjH8$j}*K zA9t$z#nfcmvRYOjX$_B6@-@Q5XrtK?c2zHW_O~r@YdjY8=#=+1c947heMejnMMcfZ z9KlYFQpA4l0d2vkmwDQND1?7UF=T4(mri-l4bFoqblrA&tyu}RY~NJO+?i;24?QMk zs9Y`TSK$RwlkB+`>7m*1!FIJPWsb-S_otVPy!r~HA6!SUXq+i8?G#wE#!+sf9CI|f z&73i5?SA(evu-GUMyH(6aS4J#C zpyAjNY+R{ZIT%A1C_8#&C?8?yQ8r3q@0u{Es-{WJN0xD%z>MstwBJ#SyfH8eVpjK) z+=bW9Hk91gK*7n9B(ubCL*H)By(HO{2J>zOV?=iS3>EcBlX>*!E;if#-r;rv6B{TW zW+JO(`7T+K{4GNWe>gC}MjJ6P+__^Lsqyrhe*V-UlG`7c15NVOqI zvrCH$FfRYA6FN&a&&C!7j!OGVanG*pTvN2cR!aAeXuU5{URy3YvLI(pbBTz0^gcJ| z>mKbj$}z)M9Dg!JyG7tKV@3k1UJfXc+*iRE+E;#e=arr|#r}R1z$La1iyerRu8tEl zOpvqGNinAVckb&}9q%!CJ*Sr=+J^pEU!!>XR3BXo;;Z`9_i86qJst;(3@$y;`M?o+ zzrB=SeWr@kcV-xh%dgfS?@d4UZZL*FbBI?Tkkh|7^<|kHp~CD}Ky=<1(+`&2{yke~ z|8pMl|F&-AjjWViK7W-%?$1v~{NaC2&Mu$7F!6b+@$cdSEA!`R)xW*|Yj$|9W9^JP zob)!S57jqm1E$^Cu360yE&by{ew#Y8G^W3P6E&q&3Bi zNFS1s=a<{^dcHqTD-W-lk(H69mYt2}XqBvj?&Y9n2awjYu0Y_)h8K_K0on#A4u>?% z(~WTUj5w*g0D^nmY!q!_LTvzQ&CFbpnUTe++8M6QpdoNp>)2CSleF2#?U^8eEYs04 zmO;%-CKf6XMIL-YdMuq)S^(-|U2!#*?j1A0>ug)C{GW3$gON5lz7^)}EG!;oujv)&RuHvXC z6DSWTz%jOz)Bw_gZ#NmTI4mYgd?(0ePm#00caNIL&5j4$m}ftd7|XVv9{^Hv~FpQ66%qW%$bw=D_ z0A;zY*+#zJKDK}amIzLZ2xbc7$6Fy6QL-#E$>NCQS4x7|0Zu{SBy4dLwVE9oE~&wM zorrlhR)OnWIPAm`{={BE7@XuDY^j?O5;i9a>ljji{7~!+_ic#Uk9L_P+*YYX4YOz& z=(zFe?klv=on;s+G{HfXL1(z_6l!8aykK?cH?7%@T-3~3J~>A-N3w#rfNMV##}IGp zJSW(DZD~4;>*h(JA*yJWLrqM2L%yekDSm!M#;vJ#u}+JrcGSBAo3@kUa`GQhPtWJ! z&rRBsi;;%SWb)*P8Fs98-Km|{KJz0`j&AypDGVjo7si z+eL5Io{r8;ANntU_MG~&PUBSy5D%d)!%R+Kh$Sva~nj_Z~n2; zfnUv#4lAHX*T%B`Ugq`T)`Uf0Jsx8|S8@&m&-+FQ1s%1xUBgfs4V}Dc^zulU6*f0vO!sY0JgBu*W z`tl`Aoz(XINjv}J>uYhrNyFDVEWK@~HlK&7sr02AH`m&;)n60EahwjIFDprpWg*$Z z93<&UI?QvKKMwZ>o$d}q+bz8L6!n`kV5y!(-fVe<>W%P3U2S$OoADTioTbn@lFt}d zO^3A`K-msgTsU!~OAc9;c-b})L(luKiXi*XgX4bEWBEXe)ggu&KJWS+oa{ioI6i7~ z?lQz&IpFC%IAU$|$KCHqG&}6;;yvwf+Vvep7Mumg-7&xwxEq)_`*G?Ziia&R{q%`9 zbB7&bkgWe;wRG6EQ9L`eh-p?hb7CzCEucDPh)I9Ln>fIT(T%})bHK}EM4*FRV!Bsu zSk`88qt;pnPA0t_%o9c&_K8WZiR`~{Y8U{O32gi zZHVDkXkkj(pf>dvSc7S3Yn{^FH znVaTH)NjFcu$*DI_C!!G@9B;7uc|_SST{bua@cwte+Sh;jvUOgHHZ@?yanE7Er44; zr|5A#G&EeG|4Gi%F@(`pT>&cN@&Ygft*9K9LFhS24P^$#Lg96cr3Ok7e?g#eyNY?j z9TXAK#HV|9z52$h%MY*6yU_2sLMwuu*5Bu!)H2h_j~Kb@{}Z)xbKZ@q4IGIU&ttz1 z%K{mcJ5Yd!M}qqxTOd|Cg;(GT;UQksXB+4hg3MXRpuM%sRynXMI}8~YwJdoFVY8_r zX7zTKW$_>&DYXoP?UD;7L~bE+)eCZAlV2j5w(*i+fcOy2>k?@JlhUdv{Q*C%tnehy z4X?V#>Y~B~HrS4L88=tbkO}M9P zQm!8c26lam33?EjCscM9)& zUAMnuG`1TjjcwbuZ8tXB*mh&vW@Fp7o5t?@OXr$%t-aRT?|+@_eeHuDeAD*1o-0T9 z{fsd_!(_E9=`oCzfr`Rxk|tw}Jq72ZGErlxtmr;Hm()_K1H;0XwABfA*z^I>EpyxS z(}+CG(pnQ){l#sm@mo~;EiZq08b|}>;8oX%ucd{6UteJTCC#N=~jh5BVi?7tFoAS5)kXMU1_xU4k`f7 zlg5+J*sj1PEGo`JW0HRDh5=w2RLgCRg%nVFCkxn(Q44;B!wGQ z*NqOG!Yo64R*5K;wA48K9w*d3(b#6bxcfyq zpSK|Lqk#Pelc^GI+}&B~XzYSDvEz$?6hEOKybU{L2D>XI47{wfq zCu_a}{$0aV8Kr)<{LMDyd0AbRGJ?2E`~t2*$pk2`diQ$k44x+PB(>f%BAm}X4(S?Q_*h~rr+0A6;!J~6%B#>2Q zhb?iqcmZrd7O&vTT-)`wlhNEQXxVz6g2dgS?roFN2bXY_p9@ZQ3QuVb#`&yPX@T)9 zi47uPTC>RX^ey3p8mQ z-WBFLkzbE}W(1?{ORXShN09hPMI4!d++U+PF{2c>&!yZFFsgyw9c10zBqA--aQFVm zWNoD>^HNmw${Lxp-?`E35WCkuN|yD*_Mv(6NHN(9o(1kmPt0AWpg%8epW@a{u`d8? zbP<+w`jJtSS{ywwTZoDloi&3)*>@o9e!CAM)S@9YO&DKLXDQxe(|%P9>PmQV#WGlmnVX?Q(XDi;VP2WJh>z6g1g2_}{fe5ZK- zLahdRf6EP;fjXoGt6SL0Z%-fK3!WV72*H4g>*R=o`ppf-=09)1bIo_)$gW7;&U!SS zh!&x+=;(dBDwujyjx>#zXe0P$z@}4jhio?L!dV(R`s`deH0aYEG-~C9yq59h#~rTpF?6F3 z6{c{DFpS&Yfo;M+C7M*aZhSjG?(ThVT+x*%NmoN#UB(CyXGfOgg1t-4I7B@|nO}@ZT>Kc|hwwtij#r1S=(s$Hm!d`OZo*&Ea@hpgnLWNJ z$VFpxBJJdC<3xP-=zEBafsfqOH(w%#u>b014g{Gu|B)_$7#Fw4p#5zQG0G{D_(VvE z9dr8L?JDG8iU5B1)kxGqyMK&_JM4==G=iFRixk7f6g@nIA+I6spo;qT_g!{OoF@y| z<58n736rrS_$W6ih8{d(j;L7NLGdUfl0k;JUCd#Jh&^`E&$$2edW#i)5v6g(c z1_DS?Kp8CMgB-r~5ckLKiNtScIC2=ld-aULl_mx@&vXi_QB-{O)M{nY zb+Hp#S-0iWG0TzKJv9AtXCpUW*8PU|PAS9Brwa_Wi=C5S6mNsc2>opO5m&r7d}zo{ z{2}A7LKe22S3D3mEXxU@zo@O1jx4u1-y-te8UN zj|}<4*xvTyN)pjcV_J@vO%`K6cbNxc3XQ~P8S;-YXPjUyID?q+gwmo2W&Z1rpKg6~ z4>mCyv8(^}$%B#Me~Y9d{m+Jp1a!=Qcc1?SlFEN)nD|%w?Ee+R#Jhd=-+Ltfi}~Td zH%z=cX8*E9{Db-7H&BJ)Z(fZ5&_2t?#`^z$>l#;=vRh+C?0i-`LWgd^?8FBSAaeM~ zpH^sIdqg@Ra5oYKRN+#miS_u17n)CE+2XQ>F791jPr{P%c<>W0G=3F~+-{Pd5%vw) z%`k5}Cslv=jWtxx%ggibJfb_9oe&z}oy~mr&JN!ml;i*Q&Ke>naxNzik1uD@8@PJ5 zaC$z8#t9SUrO2wXLC=Rcq?*G&%g2>33?JUilV^HsbVxNPiTfj32kUjdJ#6=vMNHj@ z6xz3rd>(OlGSKoG|CE?elniUc)jSC$H)^VLasFey5kSSY$a1B(QmdfiGCa#0;-6XX zEIpr;8pxCm=xRmFMA3Au@a94#kSsXWJ)K_Yk^d5rU(3dP7)BuD9>)YurWOBYUha2G zijrSpi&L}?4;D~fWcMjER2~y4mm4=ZMX~MEQV|C2OIoY_2UD=3ebYs|Iy%P0kDONR ztDR0k)?rpwBaIfxcZ+hRg*>R^gnw{VUK)c#bYTGu4If*Pq~PZ<6IchLsBv)EqKEAv zDEMB|a@>XOp$!lu8sGZ)`KFx6T5Nb6}cvOuRT5`6L2^YNqr;_7pMXRpEe~6+78$K;1`JKZzQ+B8Cuw4Cl+Qua^YNA*rK6rE-zWrBc-P)LpTvh6;=z5(2|Ogx*J# znY_{d1&Bz*N~lN%TksUG0h0{42ii=)h)^{^TfbJQsf5QC#6J}=nb^Y~z1b)S&CqGU zgF|I0hD(y{HJ_h`aD&5ICwXM%GX?ou5G;H`#+t|34%fNvl{?JG#WVuUQE&Pe3F}Lb{s)a&+M@EcXe7N#6jkG-EX=)JJ79HGt z`s-N0i5KjvK~>|L_WY=+by%JL<`hPZ&j-t!?>&9^nNMPHYtkWssA;?>>La&56^%%q z&9OZpa%R12Rugaa@n34)>2PmNvvkMwcCqbX!1dAJvs`UyanpX^WY0)}lh>B5TwnOI`l_Xx@&pMlTiPjoA9T3uHz&aSA?Xu@cJ^?~RG*|r8sy!O2Ouir{A%X!?)Uk#Gs#Eu%tUF-tFfg^^ zWx(!I-j|N&S)jx&-AhbcU+uj6rg;*o3tNRz?;YW%07lfHCu9_I08|BuW5UL4i~uRD zmAy&w1)hM*(=W6%($n=2I~Lv*bF1N{wHCCZjS1;kpOs&1rq;5M3xE3pJ+NpoSQ>m% zzu3IjPt4y0@)na9An1YnNyow^U_26{u#XoVtzf9EK7WzOc(V-N@Xrg#OP7nN8Qk#C zl3Xspj4q}RXBV01gIqXru1bY7dR$iYAG&QwXd<9o(_XR262X04bb8~Vtj z+Jj}tP9u_i4GqKxn(qS6a&7DSH-ij-IR1Ar>3`CRs{PM{RR=oOzqt><3;Fl^{0})% zng3HKDkH$>2>`SIpKziw0!FAmAn|}Hi}5#E@Ha7@5%BS+T@)}_G5)6H{Qesjz{j6{ zQ-Bkdk?GF^04Fgr{pB|WoW}Im0c-?}%zqhH=>Z>q9`HVlG5>MEe>Q(HF|#oLzvnLi zjXoM@@SR4V(iCIgIDa2YKyN4oZ`d7%V)L!tC%ZX;87P_sL1U;&P6hw_g~4RZnhriR zn7_8HoSN&rnwi?{fsjyoS4Z~iJC8m$M_8hN>-*;%;kv-0Tk>B|tKn6)dhIWwB|%EL zENbKD&p}#5`L+>`!kQav8*F^ix*ZL(IHq6YkGPO`QY7(RmUtg(fN1)OMUSz*9u?}c94n#;V^7X9?OpY`RnnxoHdROI0WOzwN}GwaJv@1XU_{@!e(&cI_}gd^h< zLlk?TL~^jsLt|Etvgzl|-Cwu#m(uzX>;>$f{gDN196`tQ885eP4=FI>1B=+~4wZO9 zaSZ(*W&>BpYXkir+d0R(9jMoADHnu%|qb^{Gds13h^fg`qP9;%OCdX znX6~%%^sgEop)0%^_%s=wRf8apTVza4L9WLQ9D0Sv9%3x+E5b$W(Z9~W%XCSg=$?1 z^6PPr#f?p9k>6kyjfb-z2m5RpW=c$3vH7^gPaK=Ugy7C|YDo|TcrIcTdQGuY@b%qY zecE?%^?eNS8&61E6ZNStSbR5o;mt9EY*vw$QO6PBTI6EPJP6)o6P3uj>7`nN8i3kO~UMnj91 zkI2#BBWfe$O*P*8D4K}h**|5Gsfxr8i~p3p{vMg@boHU(?`##PqvLnB$}=>;gi6ng zRxc@f6ANmV==g^T^%gB-6a*9KQF^Byo)0r&cV{_q7qv$J{Hx#)=SP~xP*e@p46L@O_=UHP}!5E|#SvN*?~*MOuiRS~Q*MDCq*(?NkqH zqsR;FtNA?B9gmi+2xJVKik>*$v&nh_$7x}u17qMbKRL1ITIEwruMq4L;!jL`M$?}h z*%-Z?(S|GF;obYop>^z54|2)YJt4TnnJZ~D`mL)jsE~PR1peIR7kf3un!cjVb%(_@ zA6aw>A!_0q@M`d^St$;-9UmGq$5(F+*>bC7ksa2at3uAg7)Hqn$%Dq|{ro85uxJn0 z5y3j|k7o}I>ZEq~$}!wwJ9P^9%&uRRdl1eqtiiJ3kRpD;V=e4r)WO$cIgV64R!z{2 z?ETYNp59D!;x=Eay}+ z(Yx_1q?KPXtnHO%qxIv4P!6w-AVvqpbWL44qsX3wn=TxfP1}(uf;No6j&1adT-^1D z*t)>G(UcLViX04~Zdcc^wi9kOOHA{je4WR7;k<1>HzOb_NCAuV@WIdXS6 z{y?+Bu+4`&@}B}Sc(&bj-}gd_s9@2nCV9@jphNkn3<6pPAuq@gR!XArSu$pK3(Vb-+8OXVx>u?si)L7vluzlB@Y#=>;r6|lY2PbW z&r5VKBfw;t)JaoQMjGt}Nr>8c!G7$};GxFw2X5OeM&?tGU5p{pgc@xoh^VW<+-mFh z(F@|PnXA$081>CETa_uey_=;j&}bVsP=kv$8%4lW?^tcT^@_(4m}4M&lWW+>2gf!d z%EYDZ#_9FXSOO z8l@CZAW+cm|!M9U@WqWmZ2%N^xC`r8D=y4}JlZ+eGEuG9uzk`mi;a9xBI zGrjof)CJ|oxBRO@_OCQN%EeUjKW7aRzI0bLOM#cUHBN3{cr$CdvvHFxVTVqQ}7`k(j8+dF0hD8K-P@sb{ zV)r$Bc29_NNbXTwCW5bq%tdjS_(d^Mc~`-Lp6vvQmbAz$G``=0DY^xhXMs3p+fTFShV0Sa~-xi z)jk~gO5b>+tFrQkPt#nEy9Dj*Eav=F65xya9)iQ?sCPaA5_=FYf#Lkqc|;1A5Ez}n z5dC`LvRSk!4uR5^M4`jN6mf>T9}o*JFM0O$N{JA}$)mT`bx>77K~=stfO(@B1i;<-K?r0lu=dCNxws%gAEI`lC1ltV zg@p!2zPeXGR#)7inZm(M_Ej<|ye-p8YO1=G22#e~PVjWlIC6LGqV_VBh!Q^*Q8l#^ znVbe=V16@lBdjeIgXR^_SEy<6qsJ7FK)Wzp-H<5SdlZ(%xO5fwXe*hqo9 zy>KQgszRHq`owqQ6O`hZQna)O;s3~V$vm#SZP8^RIh0ZK<(UcN$hruBM?2A4{JV6H z!KBj?h&w#Q2u5aO$RV%IHmY`hLtZZ!1@!INAPq8JMi-hebQ3G7$EtVwg+O1~r|a<* z^2pI#jBD4=gdoxdS4G_#t&i*0>9nMMqNgseCAR=xy%UeS)I-+Qj><^PuFW@U=uO|g zCh><|=VWCekT-{g1Cx1^#k?o`nb~@&1l2nC=Be3+rgGDB+q%1h^(GHv8Z0qO9p5o{ z66J4_7p#LY1ZV<}VsC{C6_@bTUE;1>zN6X|q%qH5&Y9u9*60ly_H{PB1n*Oqpx7ED zrA*y=@zlG0A;odj_OS3G4Nj<~5^;1`t_4ZA15^7dXsl`fTvc=buzoOQ#Gs_0eEx)p z+4gL-Jc93|!-Jcigy8P{=A-_yRIXRgk*JC=qwm8_T&5QH6{#rwY~8)Bhg>xLa+#l2C&}E{Sd=NISDQ?Rkd?%$T)mnvie32Bv8Gx(L&W%qm*KGx&3t^diVExk4S$>2XIf81@sfo+$dD@_vq4qaieS6F> zlMZqVEp%iQ5iP)33cS_i=ZbVI1@`(`qC>ck9Tr!aE_MzE!r8|v9APn*n4V}uIgl`P z!h7tZ9(M)R5O?%px$)u?%As2iVcx>NR>-OSF)IbA?I+rbV4uu9fV0%|r^u5d7N_{r z2OK``matG+-7^FwxGCEv3Ujwb7aOc4jr||Dxnl6Uy!AY6ai}gW7Nd}M=zPx;rtKpO zR7pzG?cf8#QHH;G7b*>_l>yFDGtNs#bgk9uRC=A-0aG-n0RXQ4j!xrQUIF7i0K}2N zUHKT6Wi4r-VqkS<2)LalvKXq?sc#ifLy2*s^@SjRUT$8FdKHPPQnUpxM;d zk+Y8d=K=FdzmsDc&gSr`uh;UiLlQhiJMTsTxn95ksB$Ou9uUA;`h4q9@^7|pmUp1$ zpVrd<$=3kEe|`-(K*#=f_xVTJ=YRP%;9q2x|1+-v|NR5Nf7$H+`_}+~%<}i0{~tE{ z-!jXe4-Nm>n$N(-!t(!K^ZzTj-q4*~B^z^LwYu`OdVW=E7Lrs|8>IG3Q*|nKa@W{7V;DW%HE%v~=}ewZsnH+sot5EVw_NgCMdZ zLAg_Is;D*z+iLh*O*SkNSv<%)w?1)A_XU`)ywR*Ie6Wf{f`k<v_M?gIh0vKss!h z*)FHoKD!(|fBF>zmV$J9bo*yrm+s3I>nO$G@hYRz@lT^=;{?f(S*oBKZ^t1hxiV87 zyt5y#m5#2?CRMJN3zeEU&-vBKjGz*(kV>mrY7tziV7^XNoaFTvnx3xI0tu3f9UXbe zU&6sDNfJB4In=PH@+2lu*{w1kJ8D1{)TCn;tg+43KLR9{!Kyzc7DTmoiDhaQ2E#{2 zhZB@3VAitj$2=~?9Or4fk{*Xx<9?*G$zr|KuT!x?i)a(a2z60r0dgNH_SAYTf%G}@d6-a=-(lFs^H@d)_se_WM-pL#@o`5ULl?K8l%R*0Av|tR=GXKuTY+E*0Wn!rv$#-vY|s^HIBd z(!W?X(H-097W9fAp6j@zcWc@A(87y`ta4slTWXVAC)TTH98W&k~ttaSMsDyUmV0ceQ43L*>GTP zTbE&#!5ey%0~V)I3sx=&?q0ow`9l5`vR^c;g**RgCZ(da7i91R$AT1{hByYb9u{$? zsB-3b7V{nV@w&oD1lvnENO;8?^p5**N#_p%2l};Wt3hbkC@RR6iS@;Z|K2r^A;Ej- zvpN4mh6aFKFV;Xue1$r;VQ8_q>@YwtjXlKjf%s#aHu0wi689_^`lBDx%L~r*ThO;m zSRcCY*)~^soja#R#{lGd?T{*gUm3|ysIT1|9FvKkB?wn^c1!7u1`h;P_Bq=i@BI=G2&2CiCNg zguKglg~bV50-%`WtoeR?E`)#GS_oqMK(7rI#-uKV)frr+M5V)-tfY|2})FbC?lMUPvydD6|M~g7On6iC+crko)Ds zQUQ~JWC7BarwyX^cX-BxfgLUK{)<4#5D;PN98KwtY3HMOZ(LGqzOTDB%$$UJtqUOg zy6KH_JNiaIt1%6!*i+QrNi-p{DlatdaG*kRH%3bzY+T2u(f6&rvakuCg@78(cf%Q? zKFE?06FK|Err0^+Pk4P?g@U{>2lkXD6##Qg0S9q7KZ1GQ1Si*|pqFo;esgwuFcb%0 zIwdp_J4!V|GYjDFE*U;Z*?bK$hP{h_ur)ATSI-C~=D`*^RdGPs4AJzcf&65 zz8kB-He6YE0?n`Ty6uq)>TSL3$q#E5=HdbXSiM;eKvtO)^(=K}?gR#*Iv;bBCmyQN z!pQ=zC_-}G?{Q0CL3z<%_|#bpTBAPi%74H`AcXosTky!F$41GMNuPM)>?ROgBj1#N zLq=e`8in;^I(*PQEcnT`MGN; zt3ErR+G|MDxaC$)F=t`U3^V?@D;y*I`imFg{4c8jQa#nI^dVobj3$HZ3Z!=6kp7W5 zvQ)ml@G?a(em)qzYOG8`)|C;NeVW{|^Cy|r!FNf;9KR!oAAFTv50iLvLnwn%tVIB= z=bM9;_YdhhD_ZX#Yr5&BE%zyBjb{tNGpPp%Zrr9kuDZ{Hjj9t&_ovYfdX=(rjgC>- z{9Wh9T*2cou3Ay^ZHZLVc{x^U9SI}Aj1XgjyBf>BKZtEgQ6);eAC^qx5wB(PfYO-G ziwR|*P{P@PN`C<{#kaHlo0$dB-}}EaLn;2#3<3g(Yi$yqth?oIFic-sADzu+DFrD(APf>tuHdyN)FR;#ik;(AT z;7BDYA@Gx6NYmiBEBGEKT_@jsew{rwNwQ=hSF~7OY%&AL9?nJ?#4}e1J_|40Pfv+> zn+#$FSRD_8e7;^Box4GiZ?^=f=@Gsyzj${AuxMyvrUIbXy*mz_+Ph}mx8~w6v^LO3S_T7qe2!qS3Ter=`ZhiXl3A6QFNgo!l{;Jxphq&AYX1wOTAAFaKqPDQD^PMkBuEx61Y2 z?VB*r4FGzq{b~mBA;ptfEVJPP)hYn?++OS_@d8wEzGzL{8|`S zH&8|@)W*JKU!F^{f@&&lS_udP8OlFIP@Wzk2~a1VO+lFFsE=PJf%P{L(+fgSNsV*t z{dziSfg_Uv96diy(aoIu58`>&Kq#8d5yo zf0E!w&7i1Fp0hT3yN$3QfLRP)j9ivGYnbm=^!O;N!1;vzvqihgr3alAIIru%Q+3;* z-C}cB%nR&5uP5AC7@x#`f%{-p#|B+SeY3BbIsv9^v|f~oXtysLs#bw5_>keGdlM?K z+L8N7I!V0N8navYidO=(XH6sI;0Qh>z?~2RXzjzzL7$(4l|vvvHi2(8Ayrd`#gZaO z)(`g+DNe8m0rR(9#Dt&-MiD}i=;_mTMH&`M4#0=+0qE>s5It6@5Ou6yahdDt7&93blosGJOEcUeE@X z`Gk^ltsa$TzwUnArCiM4jEYB~r}_oj`E2&dUDde-LL2y*8?U2;{fV$?tc3`olUUUv zS;?Q8T^ttL)l=JOIO8M7q0nK>5+qSSSV&@&JS_M*>#$>NY4P2;rMNl#h^kNOm=j^0 zPoS|;!a^q7weVpXHN&^_)!YQ>i=9{F*{608%V9zU5Hxy&0XUO!_f(PI>stL_X{fcz zX_360d5@a=K=Uji$sW4&1TRK!*+`g`#R-4Iu6jBTLpm!+l&Gx}7W61BE#a?#!Z3km7=-{&}Q45 zvu|ShVPHOl6OYSITA{B_u7Ijjc@6;j8B*AB!fF+=a+wkOn}IeW>{CCNh5<|VuBkJ; ze3q`3iw><#bH&w-iDbScLc}RPzypKWEFUU+6qEpQf=5mY3LrLJ=9Kls1XTYDqo8UE zZT~7_P|J%BWn(*f-Ykf5lQ_)UY`vz-xe7GroqK5daAodzI?Mc_etM45mvb+92kSQ=cIF2dz5vquL2*Kt9_ z!Y%8ffh=}j(}oBFxg@Hne>LWkK#==`ChUwJ| zU>`$Tdpfr%x-%f4T#zQSjo*OR=DixM4#P#zNMq(DODct+`TUU`zs7}oP$;~`w2YW5 zL<3&kN&LeUn`3+s_`f$bNtvUTyC^N|6F#PS0LSj9%f@PX(M~v&5s=e2ZL`X#>^7cN z1clNHl4{CT2@$_dDp1&lk4UY=_A?vc-@ww61S_Mo#{qX)EXCW$7S8w~^dQrg@~Y!K zZZTP7r(Bas2Zc(apHA&#S1Ur(G$R5|KQp)PzD>B_st^f0UQZY#TYtVdr2meU30 z_Ca=2d)yE#Xg(!yG;~AEZfy1{dZWxcIloeW;KE_ns#5i4@XYdu9&zcyY@4P%^VHcz z4`{qQZ;bna+aQmI33^CMIfqvK;M@gKTXymh#CQZCt$bF(AXj|lQ9hvJ96~Rrgg$s~ zlovJB_<|SYwcD7yV^yv92hZc+!OsK#SoS>MMF|>uzojjNfu|ma2u}6KdT16Ol)zv? zij#c*wf_N`uc700GhsI!iv&wX9;9m?FVO@VISjuu5uZ9iw7*FKAIeZ>_nt4JYNg%` zMjwD~{GdorEjOnQkX6EJ;hvPvn0gav9u~>rMML}rzbfp`-d;y&s_=PiPf` zNET`ov91dHAeFV<*RW_)h!0l?dt=| ztrlX6M0{&8&G|S(avx>6 zt+9meu85L~+de)=hf6S$Yxj~s=Wxy3F71%US&#YO&b*4lCyHW>x3ou85FBvzpyd?0 zcJAB#ytz8P?IbrW%q?A+=Y?{4KD?s#eQL{jZj2UcdTC7ZIVK#NcI4czMU`JjSS#$KW+2sM{s(ov`QF zu&=Ts--MPfR!puaAWw(KOgK~LZS^yI4)Y;iC1Xr!gL3`quRFJv3~SNnO@y&rEa1rq z-gS@;p~O8-&qa%0nR&q@I&OZfTJ@{A+CAcEc<9Xrv&-JAsOraYth-&7a&Y6+#@Wfy_odvZXWP!Gp^+lI;j9zppPD!!~CR zX(GIGit$yBZ-OHpPl~XIPO~jNY!9ofxrI6TVq5vSv`K^ldXc#{{DKo-ZnYv-4Axc~ zF)ZVHXcufAxAtGye4DX;wB4?hFZF-@HT9@CR-1z^1+8-4qd?Yj_+3?*W29s9}y zqYjvf%W$dTjqLzONnF8)JB$pbXcRj3JUwZQjFz9l?yu34TwD_$hy$D2+mH{as@?oX z)B->9m;M4(&rz@X*PWS({=G}=e?bRXS1W0IFRNM9!L-n;C_gV}tZ( zD4$RJgPXvXR7T8K%&&>E%(Efkd#0|_2rwgv28;|Ll9{-pdv`moDfVsNT`g`;ihsmS zSeyPHH?eLUZo3I?;`Hot2b6Ba5>+?hbUqy)vUQno?6Z4kD#YqC34}!`N^rCrofSr5 zZChyAjpjXjFS))|P_AEpG+i&Pa3&t$;m4Hw5#9Ki?~elC(W;~NsZy&oEiFGlfv;zv z7!xGUdx7u9K!(+qgdKniqJCQLuEYhrx)Cw3F|XSO3I(Pir>Dq?k^>-_gOgM;6xdE1 zX6ZIVS(Wxur66S_wFz~N*9J9FA2W^?}}W;`;rPE7d+T7{`+Gf+ToXH}qWh)2Q zI|}IURgrIM&mb+jUj5zQOLOA%tW6&h^zFz|^W$Bl&AAQ4BV^Ge(X%{=@gE_RXo%k- z6On2prsQB{eC#@vKkIubO{hs|-s^iy{;cnf5XlYsUEhn|9{yh6TeNIS_*Z?e7NEX& z;=R82xk&+QWYdg;guqLdhB7v0w~>zM3KdnaZsF9L!w8cS&OTBwa`2lK7!9w)#y$w@ z6O$6HGaik)ppZ-u5Y!{hUSqV5csoHqE_&IC7R7R{5K}!ki^|YM z^K2eiFEn&-Q~Q^={V+iYr_%!)OrUb;bc|V|My4Jp$Hq@Zn}C=J2sE+2Vi+dY^qL-% zh#_YHvjG{N+&;e|%IB}f<=-;xa?o3N>iuY&o=aum5JT=&06CM!)aO?C2g$+cOcuE1EwQS1EP|CSwyX*IArleU**w-J(07CguO(L>+KJIAE(>$ocjoy= z0P}qPUN+n=yQ%$#GgA8MA&r7WWbQmFRq+ei+4Z*Z&+mzbj`UTkXb5qDoJkl`h?O3i zMLlKb9 zopR$WO2X%OKCOZam1EJMc!|)EI(mC~o|(&=3oMqs8qGTM(1psJID&x38ICjG!whpL zex&)C7o#7SDh8VRRY<0FE?*yIcOp=rFj)QCfMojpi^ASpCvYMK`h)+Hv6_#i} z#qu2u0$1CZVVD`IdGg_{>CcW)z4Wf()qC( z$tQ3G0DeJ7s3wDB#5I5mF;c_A^@ae3D-c9X&EL9l?N~ zepJ>u9+fronObkydWAG5*?Qk7QbG=4GIL^2_P$x^87UQrORjGz4U!QaK#Bm1bswX` zF%wFczW^1#!FeLL%KhsI!$kj&)Uy9UYss4YKaW&D(NX{1ecqD||HC5{>whYXFwy^( zBK}VVO_=EaR6+pr6%)f>X%I%h$De5sz(~c!@TU?2K%O)G&S$@;P5`n96X4GuNfp2t z#`HU2^gE9NIPH%-&HF!N1AP2-06pO2FD>T%|NL>le>QnBF|#xLza1#=K@;L8BtTEj zv|a30aq@f6B;ytsr)JmqaC{fCB7fb6e^7nUEmkk1H`4c3P_L+XZiguh$D1p|B+>Y5lV=5WuxUe`xW?W=6o7ks=7g?<#$;!GYpUmxt6j3`CJ zZ@p@6efjL*w`V_ZXVG0QM5nR6;hf^nGN9xo+tk5cJ0czA?+IZ#K*iG{aQ(923oN-Y z-`M_j%Wp58UEiq4xCc_g!7vY&A`p1kgMmL75shx!p}~Yxrm%!~8@@^FB0(EfmLbN`jkq)1Js+XMu!0G8W7;^SFp#$U{&02OW;l}W9HT1BP&kU zj{)UK*3;$A<#M~FUvz}rVUP34-TuV3DQU~aTQTdlDk0K!MsSl3o`2FkeXXQ!ZugL29{FJ zFZ0nruBA6eRS)ucav+4Mwu)1}XukX~O09C|5#WL*G6j*K--=deT%5-v&dyl1L_myp zp2>+M43KqkXm(Pf`#BQOhDlKUO+z;j@j2>6LC>$X$=s2M=TN_o0?GkoX(zoQ%Ms zrJZaM8 z5ZBRwmPG@Rw1|MkC*hS9DwKOmQUlFPUExDbqgss!hUOlZIdX7SV5$v3;=G|bS0ZY00M-}Tyh{--e?Wol5+H!96U80+8qIEFT+$=gLJeB9Q4~&~cfv#s9 z*|#0>Fyhaj_PYgVTUU&Q>(ojsH}NL-rj)ZN!SCcpnh1c+qS!etG-O;1`nj`17?PG? z0eMMT$DomdC-_%KSOzwHdcu(RvYMz6jV{Z)N*2V`sW*F_7WY@xaa^~xge(u^^nEzu zvni@G?O1|K0im+=*;}KLB(|IXA$@&T0MExpHzJnX&-nf*h@w%L8-jK~fCR3uH` zTJ7iLu{B@PrAQqYPR=KN&R3rDF^(YT2NAeSsUszyaUVw?B+9p;Y4y~a+US}HeP$s? zse#}OXOzd5h-0&BAD%vDm`C2W2s6rE4Ymg69`9HBgtPxQcY z#LQ_jeRH>>Qg_D-BD`hNhQ2WbG}%Bczw5W_{;JET@HjDxi96X z;-atEq3v?(98-mabN3~llbnUDim$(V2;}N%%o*zv{fftX4M9U22TG|k)Zns(yt;m;9X5^MyKMwA}8Aie;Xk2sE}&KKHJcN>*0^GtS&Ji`P%vf z_<}B6k(cvR7RacI-Atdq{=AI^DELjo>==h7)d_X(b(6uu3#0GUIlFh~N3pI^Os z)~H=yN;KCkWC&fgfp0UsR4*n`vvr@?Jv8<^+z1cR!0vbg2 zMN>$uUQ`I9^I${UYX|?p8aSVW1tY^szpMldm}s(orF#N-g#kk&0r_ADQKU?LrJY1G zhh#N``iixLn(g~WH0WNUJz2<7Pnzy~!EXRsClkGf7no;*`j7Pf&l+DtQ5z7iI8&-W zrX1mtb+#h6XdI>c8w2qani3VyI0B=9D1uzxtvyY-0io1HCh!vx*JO^k%|li5%tmt( z>xqM=n!1a2{~FvMrHlW;bE45QzeSqhR^|Xfid<`NooY@mp0@Edjy(|s<@>R>e6P5S zI3#IqNZjIY;(5}CZ{7+JaW~#A^4U>=Yoo^0m9Y$`i9b~!^5h3)Aq=eEw99TOUtCro zAl_sl#@SAtlgDLwrYkOfclmk~?_>LhX_bq~kaKIzO*xHF0!;pTCjnOcmm$kH-4KgODSIO?V{05^4!-1I!a-t(p zQpK_;+b=?s+7UuOA5EYG6KP@U332EuIQ9QAcb7qN?diI}ad&t3;4Z=4H9&ADxVt2{ zySoN=cXxMpg1cKFx5=J8Gv~}cx2A5@+&Ukq>ZYkx&A0!0pJ)AEGZ13h{4~pK^8xF! z)Qq`jbLV2Ik?o76c&cTW`( zXljoWQ*b*lNheVWEf-8xZcoGdDHdFe$RzRZ4;0)XCM26oD28~taFAKj52tK)-sZkU zIA&3hUEbVsF%|lJ2hOPs@D2` zbj`^3>&;aFnF~e?0r@sLpG{jf%T&OKQHwbY!Z)jhwzH9owD?1be2Jy(bd~F@^&^2R#T*;u_Th3ZoT)r90teBh9$dX6BV()f^>rvz z+ldn6icnGy>V<}L2%Zs)G+csG4_A!?Ukr3m-V~wVCKPGtezdktrW8^c687b z>T<|4zkp=a8PI`d3+6Swl5$6Iw*kv?u#3jHN1PL`37Jg_(oj=(>eis>m0~68VuOUN zG!+TxU;SoFAU@=%?VmZ&;ov^1o0bhQareE}-Zm=hL#ppnon*Qjf%>5Aq4cCltHaQY zHsj@oH0gEr&8}H92OapAf|jcv@Qiaw&vUCy6~{s^$bD2}4U&)t_tTbvW@&I$#cV4% zj2Aqg!Kki!4oKpCY+ogT^EJ{R%N7HnX=?M(6@dbFmf(g-W@1WPJx_C8B-Lt6v09*K z(K0FI{Y8|-2UY$()=lo|%n_GC$Ny$){Q0|G{4U>$pO^F_KSgJ0GDHxrv}8g1uWy|t zuY|gFDJ(|Igaxu1JlYL~dRg+3>}NYtrAK4B8s_rNWd-Bbwa#*z8IKZjCU|NVQNyPK zLT)d%ja)kR)KDYs_Kn3bD|9}4gCD4pMAXY1Zy`@nGD)Lm1%AA6tKi+^UuPxF7RfaQ zm>CIq+@3UdYjO`KlO8owgYnQyYT6V$GuM1fqf8%86<|!Wd#SZ;dHT(qCkU#HKW|~T zzBqXAc71Ji=OYN?%O`(y>wLVD6Lemo<_L$GWwkq3q2OOPI?&k!Qx-m2>0Hama_Q}S z5UEIY)wij)Ys@zY;nxfX`w)3A-9?5m2F=M-)>ppLs%l@y^O5xO3K6-|WT=aZ3nsK_ zsUP`Rn{+b!Yg=*JOg8nHudC z`FYZh*a4Js{*=1`(IpOcaVQ^450+7oeJS^sN7NQ_Sw<7Q8f{dkb@13o6$6$Xby_-{ zAv|VL%3vk(*qg8kQ8E^9l&vI6LXzmDm{4W5=qf+69@l`GG_;f%_+{nXNsiYBv1_xp zqG{;>lVi)q<{pBy5n)L6R#K1MnF$t3C=^ufAB6Rao3;aR^AQmXA*%uz5QdBzktEj= zX|0?*D6(>|Rf3Ki*8{=MrbPza`7p@v-Y%WH9mRG%g_FjHM|*ru5YiqiEi9D96b^mm zTpQ(JyRv!8Rds(%G)%JGc zhvdV<{x?=tpfeL(zraRW4{s28;pW!S!VOi_Irfs&1#le2w zwvUJr4BcM{Mzx96Y1%nMSm++P{065lY4zG9B8?%T254s*qCPqhp(a$b z9NYNss`f_M{s7v565p@~?Ta>4*|rH9%oJ_I*9ouZZtUI0#RYBNJ-ft0b6q^O4x+@M zTtg6V#j*)vIYYQ@VbHC2PyeBdQaRN4d7?1;3MfIIg$qdS7cARJp5wpXm^1&r$^5T3 z=JJ2Zo3n8KgEwac?A-ddd2>wwZ=T|H03ZjJ>Tz#h8}_6UEG1h*&O|IeMAk+U26jcK zV}X6qq8;w!JMe_}6$Yu12-eh`$t^Owy}k2XJU@DqQcV)$SU4Qu`k73jzL>0(y2a|P zjEb@;j9T7bX<=~x$R-O@H2HlP=Yoq(bQLvDSb1vD=$6ScS=P`}a8d>5L`#5zmEFv* zIT@M&`y7Fpvz?MG~hS4=ag;0^CAs05{nm z?$H7t2Xg|!R?LEV%C~-H0LuGY+zReYXjg?K{YPO zKO0kcQNAOPGga6&gm>_@I2z;#P=GO`49Tz>F$Z%fRt4{1h1+!N#|;^VHRlM&aG5KU zbfBd8S(Z}~egeTE=Q>14U_wp%&Teubp{S3rWNCni$Rvav1Dk4miu`Sn;y(BkcbOE@ zK9(2eXfLmRf|A`pW{6bK#z)oT8eGiCDcfBM+7XCkaN23iGRe%z)kVcIc#1g44X&Dt z)LCC0*Nmn+<0sJUY~EwTtvKt@M7UlGW1?lxP;O5)H#&>dl#*ngxTM`_q66L&1;ykw zl31>Ucf9epXy!ngKx#6xjr(0;vB6XdOs-dt!d|9`32UC)@}wVTm}&Ma$n{-^%q9CE zN~l9DsmGD_vF4-_0V7o*cG&#jjp2?)U@+5#|LgC`FZ#iK2y%GV*SKVE!^$euUm*JRjko1f3^ zJUw3=<#A#wZ}&dKaA3=F;xHceUsGO=T@w@@lX1xA1LM z=9Lu~H;e0&C(bL6xzEd=`A^hr1lm4@InP9`9`Qm?9hdZv*70c0ulWL{JrKi%2G@*w zf6SUNm1Qm2p%u%ZU%8TB4~^?K)9PHn*2guM3RA9q5#+%B((-8)EVxYb_C^vl%snu} z|G7r;^K0|+7jS^p`Y?+CYmRF=e_ev_QsTjz*^qR6aOXKMD_3aV(DCsMWAx3lfa2z; zP8(^mDXm<^BV?^6L)P3d$C07;Q>)S4HKl$l&Ljharqk8_F-UrOU-4d@w$4W_9H~BA zQY5xBz|-I;P929DGO)Jm_Vala+QpQ|4tD|WC7Hzs$NckOi}_3Viy7wCjxFv??=bI# zUK^jqyh?RSI!i9*Hs>CWFOI(k+J7n>QY{j`^6jwOjC$#J1z4@M&`r#l3@sxVNAFgv zD(c9))jD7LwIpj!MY|*=we-VXtwzyzjpF)e(RKjfihEZ&Hf3d^J=fT6S?bMwR7E&d zk|qljjO!b5N^zscLXJYRT8PxdEo`&hjazkL$*p^9q(O&Mi8<%bfqsrMUbwFMllj+E zi}=2M$4ZA}>8cI->gTBK`Fx(jQyOMAv&l)~pl9KP5@t%F!!3VY1e$lNwX$o84MGRL zE4^V9_hX~ZalEGEU45F|OQ~_^58BeOr&O2`*+*4Ge_nY;Y{!y9ZZDUO(|*6v(+}?}JU6cYv@Ill1>#wBQ zuRR;7lYAC)gbbuEy9ArDo2*4@3>Y_8jq4>(If@LKd^YF7hoT;Ub|b@nRpK&?1vz{3 zp=)l(QQ{Uwe}APA^)rsfk~iPihy---96jBzD5P@}mIeVVXkSgXYJ@66Y?rBX0VCB5 zl2JrKlPe$QZ-L8{7Ow64aizn{qvtQ1X)%kW7JR&l@(Wc~Dnu_eLHp9@t4`zrPYj2z z%R8kQylHB$$GJYS&X-Q6MQ=48H!uZtZDz3FJwoqtpMD&DRgb8Ik3v-OdMO52xq5^$=5}?x{E&BGYgTw>DJG?(b2|$0i$?Ub0?I7^$dtZMw8-x>|LxmcDXxYG?c4x^tArHm_j4Go>oacK(Iy_HBoiL(@&j zM+dh3Wjm(Mbj{8b*Ezh=yRYAth!J!lICpgLhEKOHc{qD|?UIRwt0HiKBwu_U@rmpp zCEPiYDuV>V34n%QeDd*$+#n^~IHOlN1L3GW?2NoHgQi{VI30k5*MKB~IXHbcqI%D^ zmZnt>Hlhewv*_Sz3B}fYs`HA@fkf-KtwM25y@`w=haz)ZK+)LXuu*;j1+9kVE#c$w zxF3(aFpC5MBXtr=G{N?rQY7V)q zp3Y8pYdQu&L=}!I7`E8NY7* z21yMR4e{!UlOae>k;-A%mqcTDJS#}|N?<=k)yDniV=a(DfFbar^e$CwonEjD&}c;( zEJ&sY1mi{y{pZZ>7@$tzVH8YG>k5O_TU))fsu$ zddJ|Ph(Q@S{9E58jO8!qjN+GwVm((0mksy01$8%rzR7${u@AuTAUFhI$Ge84Hw!0_ zLmQY+-|uT)y$Bi(Pz{SQf^;V{tP4b=$@TaXFM^$det2{!FS>>Sk3wfF*WqQRU;-oK zq!*cXrPowwAXHyV&R~@N&{|M~%N9S(W=qNG$KIx+;}S^sxljNW$5Zh;{1DaSBFYSv#CVZzY; z1T>av-{7)~gn9y1=DT||c}i$jYF&ifgg!%%qp|h3T~MpQ0+yn53s)l&mJHM{UGN#$ zjm>T&5Fqo0lLo7gZBQzXq4A1xxr&_n1-+SlxaWx~iYtmO=zks}b;We;B2>Z)@!Oql z8{h~(Y;b8Kirx+vz@2BldLacoXI>L{iNuf9>{>;-q7|=^Xfzsze(y3J+4p^zx3`{T zjg0*&Hm5-F1d_M6!;Gg#7C{=c=!dK|3^r7?*fsr7K}?xfn_z5Mc>KwH&~|~6+5J)VW5pc$3#mV&uhxAl1F@sTcD=M*?i*GBoVZO2QyEpqcmTa7%Wl0 zHvE}7LgirGN}niCiTqos9re(=Uoa|8 z3UH2#11QFjo(`*ivP#9()lrhE7gO3J|f-~xaA#KU~@RS`gby_JiCdxU#*CoU=jEY*8)!er=7RZx>(bx_< z(OivJm$Yo6JS{kO)s*PB9@7VuiUxFWo4lR#3 zp~lT);!;|td`t6V#X7;tla8>B_l6Ej`it{;c}3$W`?<`_=Apmr%Frl07a!Io9Yt(o zZvI-1hMix`uAswVF$o8*%A)&GW|#>0p{#C&v!jj5d3&w3cZs7pH`#^P%yzO(98X7Z z^Ra=KC{A;SN$;z)T_$;CphPRwTDi2_U7^-wH@t$BJL-bI7~dR)#wk0@to~$rmBe9i z8PG~FxpcZjES*rU84jI3Tz^cXqN<20%gD$`i)-A*etM;!3btMpxC7HIq$45K)z2Nd znzj6h?}pv8-nCm-hT(f!eOR;x5)v~tR&i_$bLd#kSjMfpqEl=1jI0z=@#5<}#visB zb>MhoP`i8Af4ai8aY1Z&e)QpRYC)v^xsT=M5Z=Zmwt+`#6B)xXIFu$H+-6rd$5YL5 zzM{n6)`c7RRtVawDYOi21AWBXqj@f{>m~gWNyCw6D)%Xy)TWB3;Uc)LdHsiBXxs47 z)=(N20n;_bfgh=jf&17{nifK2TgV<0sZA&!=QTx&cz7H2KH!gjY;atgAZ;t2cE@l~ zf7JOQYX>R5kq?SipWjGre)azPx+8`|7;hW!x0VDf*9Com3j!?gp|n`Q1&6o)ieW4I2`fzmr%E<^juIsFQ=9B4uO+wX+yn6W z!P@&TEp3v2fzxC-C;jW7f#o-6_~)SEKiNo-_-~B_a2yQuzxqD^Tsr*^l|28aM#8_8 zJpb1;68`5B!hdNO{LhU9K*{qTy#qkW^Urp{?~>=AWru&SYViM#U9^Gf3l|%`F>36JY zkuDMo9~E(!5|*sdpd_5h+B`YkJ+|tB4Q!&_0%#ZWt!kZbF?;d5x1Yr9+-*{8UgH&M zsO2lM2kzI2Nk5jSIyqH!KD17(&nL8R^lG-6Tb;)B=#0RTtrN;vebr$(H$wS2Tz;57 z)nakBUJa&5qy2yp<&7YRQ53CmFSoB{Mph(YU(ls}GLaR5Ue#gZTW2!Md2&yLWW@Vb z_(;aTCm3ljr)eO5Mbsx#r|Ht-cm^BL^i*B-s@zvFq2YC2a4YPvkF*@sJQ=AlOL|+J zl$j+M-N&j9|KeLkp>xJ$fGM1dWz|_nQo1XA&K&#^x$s1`WQBb1O}3nkU)DK$)*ocI^PM-hnipX zXh(iq(d8Nk?TyA3sS_2@)5V=a`zc)ud1`6fS7ciym6;{hvWpsp+4rG6=xnCJ7$Hh1 zlCp903#K$50HAnv@pu7uJj>1Y_zD~Xkkq-0ab?tgruKgSDLidoV~Wf=ETUhMW<}%t zmFuO3%XoSF%Np;EsHPXwSuk1Kaobhv*?1AIcT}>96KydsPJmEs4N??ytce2@cs|sp zZH|Tfl{8K5iPTxQJ0a#iEbUP4Pg$@K^HY@1AL$-i7x2cl-#u|mWZrlIX6eLlpNfd0 zFn(7(vzH{8098-jzg0cGNXz?jjlp7l6M==E=RR?JVS`E&lho;Iiunt2=HJ5d_1OwY z9nV^${sD^9{RYLq6tWn;gW}e#fkjcD5#XV+Sl&VLqI)NiOy46-+B0sR39LX#&}K3H zA;TmKFz_rgLVI9{*Es6c76gcoIo=e)z>jbH9;*iv94od0I5PwUo=LRNBRh|Dqv!z$UlzyRepfvaXPFC9^!&MC2aXW4)0HH8 zppxTB#Kc%#7G+|RBZy?t;vx#|vx}j*gqY3U&0TV!;3Mp9 zVD-0a<*7VEd5X6mGyKGWrYEWC)Jz1m_|EqMiTfkgScr)k;pR=XdZ*}@9@EIjOLE~U zVBswSBrBG>ga`Y?9p?do28 zlJ0QTcl$%q{BR}5l7yfer3hvxJxCY0)saG`m=)w_HoUJzz6w>uV53|pFH`~&c(A%q zeX@Jr$rR-ar__=+)ZpqDN1+bqa`2IMcB`zu?g5|%Vha|w?9b1%nn)QXkDAvw5P&lA zU={kxd1@Zr$nql}o6!9rkmd9MrXe1Bx{R2}F%T)!=00EM6D_+7hJdSSg zS*||SA@-aFUGG?h_pG1~H1{3I2@At0rB`vnexFVCW?xY*&%1(0Qa3Xl@WT;|Twi&F z`@$R1#DF-kI+wWxSu1uWiXYrx(gDi635=bqu!SPT0BfDL(h7`gXHv*O3s|BFdTk8@ z6O>VPwdBayX4(bKf7d@ehq>@c4N&b|nAB7Lzy*Is{&Orlo^0i{{URJ)!auiyz8tv| zbZCMwS<>X>9Dg49$TkyLanvTlYpUf2H3q>N)RC-Qh9%<{6o*+qrx~FgI*DISo+NFI zFEU&5AVJ}~cEO`C9+lE%#%H{k!)ir{NMZM!=XHw#f^NC%sUPm?foNBPw+HbF%wxdn zuAO7NqWQMn!Nag*zuT~;wMLUr$~2XK>nizf&Fu_!S%YhGt&q^NQzs+S>HtsB$9r|z z86gexyaBKD;e%SPxbR|yJ9Pr65nOV>KyA&h4e=Ef>R6?h%jR)Ft20dunALPeQ8*Qe z0>chSSX(~dij2aV*7h{6VU2p|Fiu0-s)uk^8)YZu0I|D`UAUQ`Maa> z-s=2^qXB4j{@u}dKX?7j(fId{S}d$wfbGR%X8(8WVqFWshjXBKKU7YwN)3hXdl?~v zg*X5K+n>7MQ^!Gmjy;2LlyT%7czZ72nI_RZP5hCvv@DBMCnj61{z*53Ojz7T%<=Y> zWyR}VyC9W{SAin{XcuBUu9{zODlf9UydF-UT%;m6$u%6*t2(RlO^^k6X1eY`tc>(@?dv)D^_{zRk z{k&%ranRxef`Q0WJxfG}SaKoTo66UnbN=lii#FeAy~RrmRY?64e_Pac_aTe=B!E|Ye}f0;9w)gOS?Fx>U# z^bA}obHrcIqKZ)hrA!a+ntWz{iqlhmY^$lD2$XXBmPw}Ngx=G(Kt-`V5fZvOAUqDg)!S#a#({!?alJ+R6>RS)$dTth9gK1y7e2N zm4=^oNwmRsafz(!bEO7GhCRK-TEP~%_ok30in_qYNDn&?@`E{JI&_GWiIHmYG|uk^ z&tc2TUucSpfR{p=>@z!@0*PBvzK_B=ZJ)g(gh+QA5-^YqxU+*nm90fguk)N~fmnp3 z(0q0=Q8TJ}eO7*)pG0(_Gbw1CBxPU^GB@*w726-e($xeN=(H&jaNwI|vejiEGmDIpTTO;4TM1Mj*`g|yKOVI1!pylyplETC@nUPzEz(x3RzY43I zpN4&YJTiw=OjcmWZ0rD?28l)#b}*~N$DjND;Mr9*4Hc-1^94;#N8A4Ter*`B*$5#3 z++-a}WyM69Xm~k=qw_Fj5+H)>uXHyV0XLL~b`}|-!r6Z)kU!3;8)=H6+id}16ZSU) zU9LG^1#lOh>EB!A>>V5C62}OBq>sHl@_DX|?~j`_6JA09Y;cqpan^JP>rly|l(ag$ z8cx*~Nv(-ezT4Lw>9n(6=d5U#HQJk>u8neEC-#Fvd>K+-`%eY@rm%m(!jzFRnBc46 z>}%=VM9~9ma9u9c5?Iwc=tO0>qcTT711cR3$;?s}UN#$cVIc>Fit7`j0@xI%52RJ6 zX6)wJ_S7!#S8zQtYqL`6 zSgVQacI|72xLf)b*RdIY*J8jRFrm~jAZ~{}og}66Ts$RgNZX$`|12j68CMq`>(EBY z>|6^9egr&rENa&(t>`t>Ns)V43szvFpd9|p$1AGf{e!&b8RbP8ZO`*IQwT&P01pO5 zTU0^JpHUJ08TBB>>qcoui=+GlnO44&P7h!0Neo-j9HZ)1P7pIFB<&k*AJkQ96Q zaB3A8fe2E1GEt_UhQ#*l0ji`dOa(#CKaEDBXBC{o3G))HNGyP z5|?o^{?8`azCrdvrto_T-AV8trZ|VxaHLpOt||GR+hLKrxAYa>2tkNL8v-P^zD`M`1HZ~v7Q9N z0*Br+PLIgu$4-b};t&2q8w`r-h)wfNI!TiW*-+fLr|QtDUBJBYY$wblZiOb60z z11s%?uO;}LXSfX_+{>F&9R7X+wSvV1<`13OJ_$y58GE%d0KT&+B1>@EE2Cm-h zGb2YXzbW0s9)m=u*dM?S~Z%zMhTtexGe=>ws28P@2N#@@Uni3;UPqb;}lm zd$9;)x35~VYmZ3mF4onn+2w|{m0*vxCOJFN^^OWT)&l((gLKjBDy@6bILscT6m#<_ z!Y+Byg81F~V&GpD{JWxNLFGV@x*)EX$J%#5W< z{oHcBGVfpbv7@;#cjo3B8v5M`yo7c-4>1*fY*P&JY>e}{Cf-PQx6IZq{$!hUWm&@I zGIVCQVEe-L)ZnPb8j*!&7z0dTN=1=zP{F8+H1o?4xIer#pD##HG6@X2yPwpRO8H$8 zT){Wba0}>ria-?z43gXI30oU*lb-x>V~>Sb8b88EcIN`-r#YIq#-daAn8 zM&LMIT7u{UYI=BvaU+ItPmJQh`uK*J1PJx}c9BT2c#%JIv_p1o<(i{_b}Lw0aW))c zd<&!B@bXXnK|kZ^iL_H0#QrM2MaN?Qt}u$>swZsFl)vXpu|}un2E_nvpd6zc@Zlq@ z**KD3mvPh*okAJcT+d5w&A9@ZmO={9xNO>58b4w?ywU!oO_3S#l9#`V8;Et4ve z`wU;k_qBJ`B0cLMCDbl;&85qf{YW;(N8E{m8XrHPygfFYnVmKcHr7&H1XQlD%p#f= zZrz8>xU(ZJ)~wt^^?bxLNjICW@g2W3fi9TlZPStjVjS~ zsnQ_3)XfStlP#+28ow;)_kpk_SZ>F}Usb8(4ni0vl2B*V-9Zo+q{fDF(hP=mU_sKW zub>kZnyN@QDz>6joVP+Ny8X46l?{WD!6~67=Inz+ORt-wVZ__3cfChQuS}atpKnVE zE4|Smccmta=!}SKW}7bfEj$fs9Q^D;$y={Io|C%#I(+g`dhgYm`(t)F%cP4XD%63>>ghjd;KHjTBW6tP zqMFQq>lLO0fp-#ZT*`2hFxBZAlX7%OMxRe}j{aD?>rZN2pTfvL>FnnkP7U9MlL&U+ z+lG{HV@tr78e{MtORLX?%D8y#^5>bLb;~8o2U{=@MTf4b^`%Kj;MD>6U&r+-7(TFz z<}rz;Zqi0wv_EJtFyNw+#y9sQlj&6MrO<_}CHfBtAScy9n=);+0<7^fX|Naj;kI{c z{FIF$W(*dh-p(S3fkTl5V2$$x0<3WoXQ=GhLwy*g$W|(B&4>69>6$GC=c8*i05%@L zjSb3-mb4()IWZm8_7p}+^4bh@;L-wtOPHzEFIq@--xvb%g`+i|wat7*n8~$gd~;?X z7;m86j9Z@!`_z0jp21t=ZF{n3w|{6t2Ye~$+gAXx5%d&q759B5toGxqV0x|V8j{GS zPRd}OP;@v~blsUw%0qE3{dqC?wg7M0%z#VNOJvzV>jl8rc!>lU8yF5Puhw z_P<->w?Im-4Ejg&yMJ-3&iT)qzW$T(i^zW;9av&u{?+$+zbF24l=1(0bnvh7%m0?q z!T&rh_%CCC|9N!q9>4s3K=4mvfIs4wzfC3ny_o#vV)6Kyr zM*ls2!G*^h2a`rfBYWG4;=s&efbtAMjYaaSnh7z%v5Q%=W_TX-Wfn=6fy-5*3}S9> zeZ<#Mw_;Gkl-HGxl`wj@#_9jr8uyg>`jlNOU)l)G0fsI2ZjFB$uzP-+Ok!XTnEjNf z{P>hh->G6HR-FH_-2`iOFev=8&T?U|`)%Wb+eIzu-W}2Ati;JU3(JF=Iok1Sk@?F_ zsvTwAR_A)?1ax`p!UjGp()SrBo4do4ts+4&rDdK}2XGzGST5zQ8mA*KL-4Z76e6p7 zvvem9B&eFqjsiytA$^hHYg;Wtsk2-Gc?PXVHm7a4F(|pwvko-}D!@ipo_BDZTfCva z{BPhm<)>MKu>YFB^!x_L_pXTl4vt?1k&<#kB~{t02a&dblW2fk&e9-`c^T)Jts;kh z7O{32FX((<=vpBN%HR+P9xF!11?&q00LMZ9X`$;oINtCMjyL>mp({*^DTrp2j#c1b z+_%zqa2&AE)#)D#UBUem01I8qO=(!nX2X`|<_kWez2`42ICwzuYZo&*gnPg9mk;W} zHY_PEm;?|Ejp{a|yH{KF=c$?=56vDsaSfHwq_LMJHv<<99C_A{yaq}OOiCWC;lJY- z5}{fye-J96Pmd97#rOM(NwqtUI_=SLOkzp7a`V5}xr$`X+IL!%8agHIY3<&A7C|Hz zFd0Uvg2BH2Qp5Bp4}};Tk^HWW&jGaY0g%D#cWs;;ppC}^v~gv%qgyvP+JN9GZ!2VE zi0$YZhDWSkVCrJ|Qdy!tkZ->%8q1KFG)Z&PC&J&Mjn-)_DL!K^G$PLlS^%_>x1xsZ z2E$$TdBv$Ag9$DJqDd@g+HjD~*H=C^su{@d?fB&``W4+($V)yD?DB4Wv0*ZUp$_@x zH?%=_m~{hyHV8Q>545NgNkv*qgP0cwG+3uHX9#<9D`kFT<3#{$+!F)z8=L-(iAEnQ zYB-~*AkQmwyfVx`u<`NV*tma+<;Mh2QQ0Bn*lG`FYk$B#SHkywuG(ohL`WB{?84^h zY%a39*q`TGg-^r*`&{WsQ8XsYPb?brMaP1;5^Za#1j2}o#7ahEp8YBs);8uw^(}Wk zXLE#u=V$riymF>IaumJ|196}-Przxku*6*I;1W(?%`)ZQwbJ{Vi!|KPhy!S#H! z7nIhkHB$=FoR6xflY^q}*8r!U=(M>5Gpf04dGyj$ar0BgMHZ`OF)>X$m<4*T!m zGwl^CnSZ1&C+0K)EYGykNEtPc9g_NCdElp931G-$Ihas=^|-oAzvwxqWqbllzCSHaZ--H!>s3OIL{71A zd`gD~0WPFSGxUDIjb&Pz+-VIkJ07@}`S0mViC&iF%Vko#*HXicHKG41$6o*H5|jmC zg)2Fq3l5BufL+gyGF8UHZToblIsOM-Abpy%lB;a7Xv4;ekDwa-Vr!T|BfsO9c0l|> z@E*T_FzW*1m+1HS1-?=AZ2emVXYDK|hEa?v=ye6`-{P04_xNS=u3vHy5Wge=;+L5} zL?J==}Ya9!eqqs<;iY zLO1&a3cvyyo>z_L#|H(s?%6~sZC17Cv)gkJi z^PvCGA&T?g&R@8GM;8A(@|S03Zg-Z`|#-oxw%K%J^sG0#G$r8UKu2 z0Qn0m)JeQGqLmOEiLHlN4~b78Y3`NiZB3I zqXR^^Ng<&j5ejsEx9wT~c3zVulaY=MxBYGMLD&1&yer7#+iI_UHSVv+N2?l$;sizs zA-jQ3FUOdQZ!l_C&sWGnjt2{~99>tz zUfe6EOGWMDzv)H+Pl62uC!pYAQf<$vpc+A_VAS7|*kVvfhMpK_lU zVAPay7h&}6_#bW{5w!SV4tp!VGRDM5cGxfJSS`F{i?4pW$U?-AxTdKp=Wj{c|GGde`IDzq<2Ru}QdXKt#H>f8hZ>S(1SGPXjfUwGbWd$Ct;$t95CXnY#T#oh%m|jU zr5%d{3LKB~P~b0-j=2sw&vmVA&}3`4hOny0Ak~L804s)g^f`N>+jGPw9#R>6EX@+` zn;g@{RHC>bh;gpvcSTrg^S5up@hFCA3xw{QiD%I17KSx5bM4ob7T7DCq-gMDl)j^k zC3z62(HLHF$`~O!E!be9#*&_e%HM=twFy;qcnS=8SE8`-=@3?l(SfzXXH2)~$_5+p z1{z@=6CVa1s0kHYO74)q(kTdr* z6B=uhJEgM})n{0MopDl&PQe(wB)K(!t}2=V22Spk%-HoXLn)Eid#5UWPrWEASK2o4 zMg&Z%QjrnUSXAIVH01Imp^Z1r=NH8*CgN>vTfoG5l7?w))w)2vYnvFSi{k8t@DMFL zZQ+g2rYm=t69zRCzL$$XHqJCOtwWu`I35kjjZ7ic6C@B2dflcW zhw3*S6k@Teu9`=J? zgud$@R>x;vhWB-@{6(Cbn)zxoN%WLmUWvR&2A+*e7dO!*)LE9Q7c-Nl!_J2F?QfhB zW^2|COX$59N7s~?P3@}-dq!BSgQqq1DxDZ7dLsu)BI?t+af@KlIm6ilbHv_dBQn~I z*s@$JxAPP`p~uQ$-OadqG=kWIRdD*Ts2lZ|pQC5S`sk2=+}x^2YGn^=oqoD6y#U*< z&MRV>EIC&#Ed(Wbdp6CiVn@^RG2U!8_uSfsr_C9 z2{Eav_T^k8PjHf)ijz(h7)P`R*`5&16P+tasG-i8qI`PqUabv@@u*s%veOD!3sBU9 zOJBtidzo4Cu%w$%S;BEt?WY%|b(gMSkhJ{ef;3twP}YH6y&~GSLm%w~U5#Xi>QXO* zg-pWWz!jF8t}B~V+gqdA;ffHD`;@bh6oz?>m7=rn*_RzJq9Y!#!F_Dp_iVmFLcWjC zEuAJ^-evs5^(wr3YjZgJ$)x?fX8A+1!)y5sj(PFME&B4WB5pZ{Gn_h8ha2N&8c}t* z3Trry;uOWu_Tza<0SlnSsF>>?P(nI^1_fE|e*3nCUVa+R!*n10D5#M2A9sDg?r>z>I7`NBVpa#$j8jLqpjIl zig>%0u>zVyV{{~T%4T(=TQtyC5qU<)>FZ8DtiXvZqE||&M&CAV>AS%m6+rzU1S6JwX_KfbXBW*UXq9m{E!?7v2a0EmOPat zC_5J`#Ds!EBGkLuRQ_O`{Km4W?F^Y&uZ-^Ioc0Bn^i#;O{reT{!7`<2W#VCT@$&6V zOJaSdVW2lm1JnysN2D-`=- zGSuWm7uHY6s6ry2bcQ!={W@ewDbcozpg_|(A%k~SZj%`jV!yg1N!Ca+2B!owx<^wK z)MF8uQh_P&@Cm_*g!W?kxvg;x^l%N(oS|P4gj*F#VU@y=k(WRwJm}L>_`w`B`BYN| zre=lFbzNnRG<*k^itK%$kh%8hERW1?ac8iHR3s?G!T4^|D%h|o94`PLLo|{*COa8I z6*Pi>Pv6$BH^d3v0cx{a9C(Ik8{S#efoQ{&5R>c?Kc7EKPm-Katq(#)g)VoYeCR;<*~x&#M-?=?nHC#93}$ z6YT~UhfMkB7MGYAb8gs&=v9o(`MM3O1wOUQ^$JOjy%>#E(l%k}y>jK&@v9AUL4~&u zUjspHttID5NQCjLN3tYK$|{2MM_o1HOj;+O`%XQ^nA zSqV1YjaSd-HE zxK7vKHqTQ^K;_5P{RzM8bge#tl$3k%iBgYIQ0UhocLlA*%o2w_X({){tghA1y~8D@ zXyn`ua?&MEAMA>|@4VqGC4-+l`ZXe*gG>wY&JmFr{6_*)?B}RX3^2vV(ttZW_=4PK z>8MBv1C;%)`gpy&I0P9fLG)=`@cAw8^;c$iLRo$?&-`NKWz9F1=9ZZ!)x!p-l>?*Q zWt%IxX@ijV!U9Mnia*YuyJ_%l`cL|r1((iFKGji+pGnRcvu7k(muGb!)PcSFrkOO@ zi4q%Snb5H}TlR<#sc#UHrWFiVfm`qw4s6o)Fu}wwtNgv~!ZPo2Z*?-R z794L&>}7nED+xi?wW4EHMxo~xCA<5@t}A{~oE2!c9CPs8V1aJ~{jon!9?~lX?IpgkLo+YOT1cg4W_D!0 zo%=n7PW%w#m^dD23U0NstZ8}~IPvwc^hInspfG7jqA(0}z#?oD?`K`WEZdqYjpMPO zV4Hv(vjevH;V)&`CYhdqlSQh@oV1thE7jvznWjJzL#E0&5J+L(ixDJ6B|ec#fs@M& zo?xjUDO*S22M@sm!iIHPoy>xTSDoDJpZpE{Ff|@ZmquZt#)=^L#(j8%AZbJusHpC8(?KG6~wDhVScxSfKe1VK4ab#jxOcfSNY-%sK=z zU}18S!bEVADk^}O2pC8hWy@2bqFXHNT4J-H3||m&7bUpB(9;5jSAwvaj?@6& z!(WkIz&h)uh@;~?5fqM-G)FX|*tIRv7mJMN9LI(}xC~?or57hKW#7UFo7ICz9@NpJ z&QIm2uGSDPAucaMKM!;cBjuWdF$XujQ^2qQC0q47SP;AHQMMyGJQ@<#qRS85{bm9J=_!Ad{{0u3YWv42ei@ zD?iOzkC(ua>+1LVJ=>CH4hnM}EuVS`3BCzG=;;j;L^ctMuXS&`*v1F#R^o>0(R19U+I34V~STyRhQCnbNd^h|~hI*(sUF`;PGW!mczbZ)j zg@L#G;alTJjP5`yuq~(^`faKLR31Eid3OzU7ms*>8f`c{%tIj5Gc~^gm~afJTmMgd zl=?D2Az-*zMDm7B=3k_dFlTrkAko#8uKwYU zg@I`76vG=mSl{?24@;;`!!5^i7eww zo&M*Ypep0rZra38#_yM7PCX^qjcSSBcq4NPN-&`rOst43j%nQkO317fm5*l4PFz2HCu#w<|@))ILmLZct zk6sFrh$QoNAF`TMeSRVFGv<<*?PZ~?Wf2NM-G@t6Ui>iLr>ZMC9FX)C_DzF{iG=yX zF4@P(4~F+pdenh{S!`GNaNpM}5>#ZEciiZt4JbAi+EI5Tht+HdBgJ*dT&YRk z3tS0#ELu*0|7AuV%^oP~AcjZ_9?)l{Zz(v3xX>NK!Bc)yz-XcpqjBY2>LJc(AG+0Y z-{-y0qu(VnW?$*Nq(Ou2`SiRY+Wf#6F-*Q@tCw$IIk$DsVDLVP6iRDygEoH3_`SwT zN6>j!HjE z7!`mbgq~a}j(_AMir9!YM+(Q=Kq+zsck;s=d_04tPP_}VRm34}aM3QwhPJgXt7Qbo zHp^6)OC(7nr7?+o(2Dph?ZE5#WRoPmFXk?b9&{vt!$heBF6Km5pT8h<+cIKrEs#lEM3qB}0}XcCVykSw&}XeP{j zGSE%oVFC_^7Q&ZV7(K96MVBrq ztfUECS&on3m2%DD;Y5|<5@M!HtZ32lrbpW*y|SIBI=L0arlnr2Gn4+zGbk0HndM^xo#WjBTpw9*M<+C^>`q*9oLQO@{oHBbwC^5p6F zl#$cLLU|FvO!ZKD_l*s8H#o2o-)NAiddZin202D(PTo%9T$A4?e1Kk~XDr)P+s+u* zJk*=0lOWt@pnPLGplVGksksA6K_O5cpB-`#6qnXKbt_ob>XEmInoye~c=x0$ZENfL z@a>^{#nI?ws<}!r@y3jTSOxc~f}6--BUvnRY-3~3WLW(A!?opPGM?ObCwkA&Qcujp z!5Z%Ci*NX0A=FhNN|~}4gyQ7X;p4q`pn7y%DCHn?n(8=*^fp6^qmjjKX0oos7=r<6 zjHRl0_UI3q$sSv^>yc)ad@7yJmz|#D1mK{;&E4>nmrMF4wC`?^d-09Ff(j z$n`=*?<&=yyGhiqh2!I*QPq(5d85|UXIZws!bO-c48T8QI!?`WwX{Dm^o}IGvR^8- znUkFf`USGE^p1tpt7V!+lHOXR20(>vI^ftsWk#xZgJp9PBLy%Wy%UMtj_Oy#Qn8Vk z-J@bq$7L?km8l;z4{!c*v}fWy%ONGvZ{r*2-_$9|t%q60>sQ&Qi;ZKvYTM}cwiiFR zSyENDKa=BwYky^(dLBiR`CWS&)G9oK{0NF2EI?Z{oU@B5{W?8QRNi2(h1sb&sJ~O$YGJ~uce&MSdF=0yZxG?br*k6dc6c((v}YCx{3aW(kyz zBEV&^osH-zytDwQjMgPOxZV)e4gO4saLZa-ayHkUT=I+BaIXOZLpb8Orp+r(LTX0ecf3k7C6tuw^%=1pA8xal zPxkg+GJ4E5nCBs!nfDRPEIoRl1uO2>f;DsKJ1&T|k_uPb5q%R>Z+I#_M)U+16c9!f`YG#OsAt)T$tRhqG3+449SqvQ*YarS!n(|+ksux)A%ARH3t1-?? z-))}6p2(m0&L5t@-W5GJJV$yIy_I(>=~XP9*q-3tx!zShhdyue=`Apqqg&>5ac#Q2 z!zI5?owoRu0F8LW0*&@EK{|t;y4k% zQ|(f|T#&C9ZdrHM$nof?Drt}$ndvCckOwMdP7>W-H@XYL%hkF z#F(HCSIrpCASd7U4({l`(r_K}S^43_D!T7g*X@y@$eBaaoJgIlmUxlWSur|a`2IaO z;Yl>f2Y0!kxIXBf2PO5@ITKIdew*5>cF2QP9i82_Yrs?$AvMB|m5&~E>D8?h&mZgZ z{BDe{KH)*RXB)7Ns?e`po5Cxiyk$+cyGn&sOs`#|eB;&?IwE>Gb)gfoa`y~Sm>X;X1!sH|VCXtsGh1J6#-q@$#aGhk-I zC|_RKsJ{4omus-c4W`eUn72`y+#=wW^h!;jZ&@B?b3y}~*`Spjh%nNyAS@&FL_Rc3 zd+EO#b!8(Sy;3< zHjHj>$VL`ii~GAnP@zu5@Nq&)|evKw7y5T+DPl*yhPp zoYonx7 z<OB+OSL%DF{s*Fnp7 z@fLhU06adXM$N8&&$UgROey0wez6r)VjL1wLcDDu;f8~f{qG+xSV%ZOD=262CGDkk zj1!lcN|ZnSkSYhR);b1$(Aou+t9@cWScJ1+7uKALQ)Mk&06hHh)|f7BB8t_(UlQW+ zyj?UuN?6RzWJ_L>)%gjJAil)`HobF`0IDig$9x}DzKr=EQ`z!a*hiF_{ktbyXz@JS zgA+CT#$cebrIcHL5{~U`A2mDqdjqLx&Zn)Ubfs*D;K2+Bb1C?q8h)0dgJ)YP_Xry z#B>qj^wd|q-Ugo2Ds$*y4!3OYp3|f5z18|U$*Wh6ZxHk|$YK`aiw_}=42;QMWHiGo z1+3SSU4U}=yX&L(7^82GBBif7M?%AH>WBoQE&s@i-AM& z&#r@?X2GjrNQG43lC)$jAiTiuBU>p>TKZM!nem$tS~E%6LnU7NFFH2*9IF8rQ5|J> zn!UvsuX@s)dgRvQI8&Gh!?`$9ZbVIi6~H046Tl?wO>O>$jI-V;5m9nscxTT^B0L?0-_zM8b5h*<>duW9cDZ;aoBd4BFZcd z3wxb}ISD45q-EoaX-SnQ3jFsL9F-?BT{4HM1EjMJlFvwdR3`OLO8(8i9TW)FmWUE8V? zfcz;Xich$MFlffkuamYMJxf>Tf&5!5R^g~|5QwW8W7hRNxt!}*p_K?}Nb+vJhSndP zeh~9C=Yi&|_}*|Lh>_Wzoyvc)z~0f}vK~3bCVelf1N^0gNR)qu{OwD;?_v*qP*4np zL3;DLlEi0mdQFJD31x5IkOs)_HwKJCeWCs(&!7e%1hqB`8T}GRvfJll8%|1Jh^8gV zjbb((q5|}fCoBi3CR{$j-eR*oq+h8tmmHN+0%jhA>CZp&?uxUg1=$GK%y%jPqbac- zhm9UfY%jBaxk#4kyvGYnOaSsseARXTkl}N)()2Lw#v2mfF@SV%0~l4D7_uQ$V>d?o z&T25)rAqk*zA<@8uq0d(SdTTdaI}4$HPP`X`$)VujbDqp8SHkUd`nPnZ_)(IzZIb^ z-ZXOOG)|6aP-{&#blMHWFL7jXTGFg9&3QG?aqnPk@}Tf(b}5W54Sm*eggM*CCG@%! zKEAbd`A|y2m2prt&GSRs_MWsUIm>i^ui%|b&+b=Ni%|!&%|cSmju5E;sDnQ4JRZ{@ zJcq^wpq8b{2ezJ}H89EnU1F*9?Z_B7;jnT<`ty~J(>AUUX_>DYZ+=XitEqZdq+Ms? zsl_btEN_K`;=Rp*vN6Nm_iy&!0(Dv{ufjWwh;^q9+EsfzdG z>Ni3f4{^Tq$+@xyd>dF4gK(;IepJZ$IA6vyATL0%$2%lnsoJNg+TaFc5+>va3r_~d z7mNMv1sT^q&kYu_p6WcTlhK>^t8V+DIx=MGGVGSfNAJNE_N1%g5CJs#B|NGn35WC( zX}4}J7Rl*|-C37mIFzzdwI$tfLZCf;L=}<_*voBo((!8;(9Y(z7N1;LHHv(^DTpJ9 zl|h~@Cgw*os+yTJnC!l|FG2lAjvVD9SK!izbU;IB?)hGI$F%+vQjI2wmoSW4{=&Q3#b_dVeSxzU8XKCnp8AAJzbQV;) zRcZ@!LRY%h6hZ*x2HP+n=JuZ8*$E6^Lp7 zL+?jXAdRTh2_*lW6N;g`0-7CIru>&)K+1O<(eETD8%&t!ZwfEgzZPEq%|cN7UkkxQ z44l8)&;JB>>HuqjXvbJNiGd8s}u%?%1Q?|A;XLPi6b}%xb=l)MqzHF?&;;;WFQod|#f5dkI zRUsSOUkX9CU$((NQod||#&-cJU$#HvyMUDMZ}+}_id6vh;-AizpH<z)!R-eB+TmG|pkrfaz{@?3G!0f!lpDEuZz{G^OeWZSGvV8~c(1kX|HKZOf&4{Em+f+*nQpFQ=$L)*Bp+Plv3lKgeX>(ct{F ztnkrcO0jvmY5Lym^5?wnE;Jl&QZ3j?H6E0^-xY5IEGxLXc=5@cHOW)*iI|M%PQyus zhBq~gdR{NPDU2noHp_b*>m8yUIeBk%nX&mU#y@Kh=t8e32l*rn6e;bidDuqS+UtNljoiwX>|ItGz5+Bs7_D9ki(4 zJt?b=W`=Q#uJFCP`JjHWy?kTx=rPg;5pP#^wkM~6Qcxw4^-bvEm=Y81kI!DLCLZ-`3^C_6FJX7S zaJ!OIGd;l2nf5%1+9(qO7I2k=rM<5`Exk2`i9F;b1tnW*n_kdw5$b1fsJQxdCJXAPy{REEha-x@K(n@ zqJ;F;C(aCnmdcEA8}#2DHbzrS`;D9&py}f%zIF?I>a+2&nkMn2j1`4utpF_ zeFiGx%Y7HsU*NXcJret9-c~Lt!IIx+#XJ8_HPpx&LsosWzm?7jHgzINjFx0~us2t` zNj_#;`m=urGK}J(n^W35CF2z;w~y*M`TsDiH2!8-v1X2J!oXaPey$X@mIEkOKH;-| z5@5)~xQ>vZPDFyfnXhJM%5XBIBgmr!Es(k%9Z3!#u13F_#1Zb}wo(S{IXIA8@PL#E z=$NTIbQ@a@?<)lfz85wUe1AE~`$(Oz4dutL*&GC`w`FN~B~fy!C9hcB+)M>`ltabs zE6m>pOQ9urqo1^bVFsnXtgJmONC@G-SZ8&AV9^$kcPY zt;l{#FoQ*yi@Es-+?*A`UsH$*mq1%Q15m59JCJsKs(_h?Ll$$I?)puwf}_fFv<$4u z!vY!S$nr85dS%T&VtK)|1D{E@Lw7H4&XrO@O+k!lGwUF+tA0!opS2`>^wPJ)(ebiQ zOnlj>vk!gallYd&7^4i%-xyl4;t!F>`UZ)nF0VWJj*5MLY4{L8S>wz9BtvPr1;nIoI0ckCkaGh;VcNBv6Uj0E#*pkOBLaX;kwZt^;uET9w0KPj zjKkMFss7YfoS=He9#QUW7&~|p*E%4=T%+(0CqJ+dO`a}6nDF{)GvvVi-rR}eXy?x&1y?w?6qdgj@ zY|+VP4$5A>N6;8*=nEW|PS+@GbWFW^po7^xX01L4o_oVDur0D`BMq;pPv5McxX~#$ zEmK$n*6$bddB6B%kM|E;IF%OP-ri}+fazVXd00$G`&l;Ks{N>H-fZlxl`c#i zSoad&OuO#?rMEA29&wt&TdJAguih-!_td2ylST04c7G+ss_3j3>EU=#NI>`Wp8hvSMA^W94 zKTOs$#bqgFi&0Q;Pn?f}$l?}=TJ;fCH3z3d7VDSlUqd%O-^>%7zQTAXZx6%~+X_Mu ziVVxz6f4j+&zs1>xwcwGPPF9O3VGW?4)kxXE5P zfRGP&e9AUv%vjLxyV91BD#VdB1HRknfU`z%QHGX8b44_iK_neTvZxh1kE#DI2i0Er zt}xIcE|%@`ku<{<+)R7uriz}vBgn4 zqpW+3u{-mmK)+*7-rmfhvV)P>-Y?>0l}+X#)vDPK2+G-_tY$z>l?tufSq|UtVZjLZhrSN?%OFAE&ES2uyN(ETOybWB)T}BhkHu_i zE#fFuRom*D!9}f*T0#tO_aY>3h}9Naem;N?B`M&YRH8x{A9bWwThfq8YE9O+HIy;a zClZRKj#g~cfN(UhJS50xhqrwM4NhC!Q?`=bFeJJ!Yf`1!6S7ik3@GuLG=hVcR~H`d zEeh(CLM&KDrneU#!c{~cF8_#PPH9tSSUwlTiy@nZn9K~<2gX1+L#7yp7fWT-UPeZ9 zQp|F&b0+PQv=h;^wt=1J^F!Aa^hh}=Qd^f6tNP}8bR41OsqIq%_xIgs&2@#!J5*Si zN#;5v4HDIS1WQv|;{kB8UID|(518`!2qy3r6bL9X+jA;laP=UE5$^Fc>u|V^tXVHd z!dV`cPjW8>ERxQmx={w{cVr-^#pM!}zWOqw+J^FTjd@F-`HlGx&Q1qWFLK=UDhQhW zNwPgagO%+J7Gq9Ozmd%+UgkX2-*?L1HXv^3)Shym^Ewf<>BL9-{L z#XZA$9lyV;hfCF2B8lTxwDoE(t9E5_ZNTPqy@lU8Aq$pU`84JTPe6EIY}dfGn@CA9 z$#>6|5>GI`H{!WZaOmJg6km|kLfH(lAs+)R z$b)vf+oV_$pstVMF0Y>85khu8EeZ}^4Paaz;CD5Y_h*E^bv#igsNx?pE%@E2C}npl zWJ_TRrf(F9i(O~xBS{NE5iB2Oe3l!SfS*nQZL1@UIj4AvY%nn{u1#gMQtPSKx77`F z2Dg|TVnTIL@mR=Zs3Nu^=8K{l;H3%tLxOVlQKO^)=nn}>`}@6L5)|WPXCXC!1ce7@ z)0Alm6FnpUODf3}X2l%jWfw=q>F^+wNi`EiI3|a?sWeFoc^||{5Yio4Rjh;~I-`~1{m=PGyUV#V$+yVjLxa@D-0Ut?^{P% z@dvphA(yYP4BCUD59Nul16fcaW;e(`=Fpt%>?k84poP*{hlZ@px6Zp|;E?wU*EAzz zq>jY|1ZON*6p*Y}Rv&0~Wh`7pN{4@aGIf@M5i-B$tYD2rwN)+9li{pryABP1jh*4) znWiBL_KvLP{Q*Kpkb5JV2N`$r1BkuEt@&?G(wu+wmHszR_Co)1vWGyz!2P@Z{5-P$ zft>zJi09v(?EeSi`9E{A|M!Rae>$cAq&k0pvj3;^`(IA!za%JsG!6c!b8mgyTOXCw_ydS%jh>O1EMQ$ojz4Y6%=3&f$Gz^~u+o?9_H{j5}sS z>@Q#j?+1^t>LQ8b5u5ciby6Ro^Rw?-`CTfbYMi7*15YDX@%% z#lKMl1oXprQ|lyw@6!1qkMh7q=`=u8^D=qU0l);cKhT);Nrga3$5KXhUEkm6DY_A* zApuzeMhXJzxU|CQnHM5iNW{FSISeY$PU0BTD{9*>X})BE0?81#_eYbKYFKKeziJ-k z@D|qR^>uwX^c)QAKNKi|t4ja{iia&<%jriRBdmAucF{tSBQd`T=ve^*`YwfLCw#cS zC{P%yepjFz?s$IYKP=)C<+qcQYg3vO4>MJ}GpP=5GS7X_`$$dqJiPa46i*F<{<%6s z&H$*E;^V4JWU6TZ@&TQBNspg{lz$L16SZg*ocV=KDhV^LVEU*yuKd1$BC3O*@lkda zZeGCZg}8v$n$A)&H&PhDghI?Nlh)CGA4ONbo_Adkj_TP$1aP2?-?6XNk{k?xNxSjU z3N#QK3zbj!KX+9Zf89{MHTbyqPYx8#z&Ver(XsG%s*#zC=UT?<+@2 z9O)ah^qJ`!m(Mq?yz^?l)xyliOJ!1HSEyc76R*W##py9~5i&$3lsW5*-N{3`9T6si zDgBvJvM_ywE&-zI^~e4<*FIu1obu$So*0B2_A(&Pb!8X7?6$HU86+q!_Eo&wjO@A~rry@z{)IhhV`B%947Gg~9lN*#kt zX|EGDv_ij~prI0lch$!p1@9N$;rvvfSWnq0kdD^r;Li9B$09!r^|@uFqkhj_qT-tX zW!75wAaFoSB#eflEp%iuZLR3JWJEfB_AMA(qp(r=RdXAAJVgydp^8Q-AOM#H1V*jAYMK7}u2$r6H*CsRg%+uJ~^H1#6x@%We^ zB`c%V!UpLK1Ts6{)LxEYemUq3;co8e$Eh8AeyG3P-F!3V*@Z&+HX_%|y4-2kvahbos1rc|uhVf> zq;em}oJz-*UHCe~H(M+fpR^h(PoEK#YJ&qF#l0JYV=k1MIs~ln3b_c=nfiA%3-@1Y zmj7lArSz{g6gLLm-|gpTbN|0wLoqY`$9RP6ry@q_{{|l6V*R-n0NwamQE~mOeSbay z*#Q5*BV0fKqQBk&;E`X7n_uq$@Cf%G3;Zm+xc^)Lup0MIM)vE+0C z*qMHP06%{z8{o-r3;bub7C=J(9|-5x@mA__M($pHhC0Ee@)lkaRK`Co*Q2V9*;l?C zoI-+0q|Rm(_d$|j7WVpL&azK55ZVl-CDCl&~M*@_YOyW67-P7hw<1bx2e zmkL6k=aGz&>mV8ykN4iyYLVBBv740YP~>e8LC)e9ckiBqk#PkrF z#DX8#wcampg3n2qtJ)7jXId(Dc|NLvpeql7f0Tq)bg`mg)4$A3CL}N69F?FM*k+#l zqy%CIAL<)bVtvn^^-?3BB$W%bFBF@NHT<@;o_h7g@V(yI_sz8_VlOR*?}y@UCu&nx zKO(OQ=a}~kVmmyr@6CA6B(FkicaS)A2ylK_^9NVWn{VX(xKr8+6M$k7Qji9Z!dhGa z3lnTD>8m(oHYo@WbbIU)9X&eXY;pR) z+%eeQQn{gy-70vIDC`J55^SUe#s%ByYZ!Efcx$)(_+%rqXWo!~emeCWa_bAT6FUqqOe+w2Y&SXLJ3KH%&>k8JZ#x^^ z<_RC85l}G8$b$=1$}Z64y@w@CXrO_Gjh&n9j`#S zl_J;Iy3$eKe^=0;)3|u=cV3POt^`aSPB&UUy{J$w=R`4tr4lelO#gtjyLKHHKCSLP z706|C9$$v$?>ALT?90%*E%oKu@i3!-RM7(IOpO|DTDJVmJgt|7DM1ssjoVGVrMy5A zl?EDcz14OLwl~K89mXB~^{Z+q!keSFIyZPm%z`;Tg z)a0l9UCVdbA`Pm;K2#otA4h$cB-0z@Zg4PDxTBRZmv*^XE@w~s)FJcWR1f+fdOye1 z-*KZ!fh*0!a@h>1Z}ol~#LT**EgAWuj~m0R9&Uj%*fqo+YsMl%JYCPh{4OQmmN*Q@ z8v%a6FyxWS{#9OBGxI}9KC0sBL-KAAGA zzZ_g4$d6t(8zTC5wl8~!;wk7h%^4KqKW!+=k?X(NP(XZ2Ga9~xgXN>%4n8v`Hx* zTaJl9>DM_Axs|qFRV9GFL}B_v^W3h65VYZ8EI(}RSws7Z&EnmfiLPLfFTAK3G?|fk ztkvl-I0~qI6%)6iwt@1a)xG!hX6q#kcNlJv|QwWu9eB`!ZOP>cuB6>?2^vC^fZVSET$ee62+M5pkIf zf%~ANVWrY$?>aNH4vT`qg1F*83FXxJ<0%QbELxLQT%=^%&rx*f7E?hTsI^>fRs+7mlpwT7kn?pVl9Ub<(%Vugjb?_Oj;NtkE z3x0Xy;=}<#Mlf&i%h2}@b;HETcF95bOItN65&zt=eEt2PQ%Ao~u>8`t^tz9TUz8ur zk;`F+1E_P$tGTee9gEwB<7m$dhe=@N`&Hrc&9E!dQi7;cvUb$F%0lr8AKi^2+4TKt zu`74)#-w|^mdiJ=i8Xiwn|{}!z=UswIofB%eI_7QY>VTHEtOtC0G>eO;vWx$u$HdZ zZ<=TMJkk$ZkAy20PG{WOq-9Zqyn%@JN+{`RdKjtQUg9mvn1paO+Uw67tN&wnwy!!4 zK`|kQuCkTvfckvLWG5=jJ{T)xQo|ovd5;1)QcE)I6>CiNEPJ*ua`yVpiJOP6BRIIK zW=lY-hcN|xFFqvYI$3XcP3R~MovVh0m6F^x8>9jMyCeQe#a{EA!RIU2dh>3Lnhs+Z zOA8%)NA;K~^Ghv;CG+gV#XK9B?AO9LN~$1QwiFoqU=@H5258y2E&-l7Z~d00Jv>r4 zM6LtQP*9YJ-H%CS4`^`{Zz2pu_&lN?GV=Zg6y?gGOvDyCk%00M-?i1;WD?B5e5QV_>oii^c~3 z+zkDFp}AXeuyPtnh-rzBySSK$E2sOt2JOvYrKrk7kB5N=AQII89_v9*Fl>Zl;3IIQ?r08 z@jP+63o%s!v&x-k7Pkjef@v{U=~E&AC!e+8K>)21z~qa3Z7R|$EUnVM=`?p>IhKfO zyLIXVFa0*<(!6i!rS&ZQ@kVk`Ki9KkG?JDjz51c)OT}F`9W}(>EOdC0DN!a|z6cPr z$_xysmv=S$g@}JZU5pBi9B@@(4jpP6O7S?kKBK`%$&TFnag%i}F2Zplmd~8jDG){e z`sqp)ymanC~d)zbFIWuhs|{N{D+Sx4vJ()DV+sdC&9{YH$QQ>AWcEu1)?#VyuOv`XY zSLf-POceqpdn#A~nQ5|fQAKW})7rrhg1qpKqNT$d-*z-eTB>1cm3(~Sqs%>Q8%>E8q%sbf|~Ug#LlIKyTP5e%+?vAXCRj zrm8uVn|gf0jqIpkc4UCx<5sO}6*+IA(T2n7uwlJbhGo$qXmJ{gy*IBDbnRn|S|Ci6 zL+n@lMx{hx3AuS^MR^OLr1qzmR`{SZy-<+J?!Y$}?&uTaSf*$Z^O1w*rmnT5O78q@ zTr0W0#6}a>aR%XuME8Coh>?qOF`@IGkh-gu4B^m05ir$-(?H6PwGFl-U`GWK8#q!R77`Z zVesH%6XDU-HtFGUFi$sWa=x}&+LneZIxcJWwfJ7S6^Vigg)1ryilVAb4uEiKq(s_b zQ6a^PeT{f@GqkmBKY*{>+h6q)wx2L1ET-=yt@xgS{1$pl?1w>b-tz(RR>YWq-yk~- z)1rLZSuNl^w}4VQ3CVN8ui7h**%Z31p7X^6{d`D~73D*!>|v3#ubHu}Cdz3*Au{UM zsE6anN}()EVI}P@xYEemn4PI1c7Xy0VFY7Mon(8l0L|0HbTh_PV-3zSJ9lt2H#SMj zLD;K+W*fW>irOVL@T`8pG>}PKj8HSPF4f4}aS&y0Z_A7z?l%O+Hp;gw>#;`l77^aMC21?xXeOmpng6M)74c>-|9pA&$e zrh^B^DEh``FtO0#-cVY1ga$-e`w|8y!h76aZihx-0XJ-d$O;A2k40FcTP18-FkgSe zFW^7%3k|?Qj|#vq{M8KE-AQEer3x~X6@S4m70x$&ug6)_e3iQ7+OTBCHP&w5Cl)Sk zeZ5=89megSi@zH;fA}Z=yyfD;@BVqU-~97Ub@DKt)T{viJX6!F`&4V99Mqw z8HoT8Ffc->l}woq+R&mmOpl%Mbr9&C4x!utdUuk>j~}QXme*%^;x>hvG403 z+j-r`803jC3aC?Nk&!SRxNyV9*V%~57{s;-tR0cecIl@mE{^2iQFqT2+p|btn`f z1_(D>W<6{qS6RI4pb#l}gZqnr9uqql@pRD%;GajSq0$y}3^9+VB9EVE)3AQ8tP#)A z6((!Vv5=RUhG@HJY6qm?&_nC#o#g3~hS|Vbi?nIV;>^ekr)$%;p*phLXSL4Wa(`j; zFi2^AH`e$s0{VrY0(zKWG819~6Tp9PC~$?K@+({`rSqvO2D72#P7h*i!zc#PtnwM~ zz>i1ad?ounOX&q|6Asn(&vf~rC`1j$(CWc3{}9llIl4>Sl`(5MM}x=gbIwZ9Nr@3r zQ(+SomQ>Fk-(so5Am_cVvXH>_6Bp@S@r8gYDdnhU2!w$H{aCWmAU13k6XMRo4m1*Y za4ld?@*Z`d5_rtiP!U4KU(glZqc-mvnyqd)k1{x7>t%<*C*Y|@M)OMOoB_xBrdIs% z_#M_&&~r8%^ww!cjWr>Uo;m3Oaz7HoU`np#vGZ;TVW<&T% zUmSXBEdQV{DSxFeCBM@b@EtdU-{{Ne@AM`1CwL5_7ZnknsTnf#d1ub^OZ4t;cM~?jx4@oH4CljI5tXhTWywzjlRM8 z(T_joM;8Pnj)h4O=#w3+eH}@gi3mgObNgce@VB1>fOlbEHo+;=sXr?;(Y-l4J?2Y- zFQ59?lYX0&MK=o&=q(#NNZou5F^0Qu0L=eQZ)fI575Ctaxk?{riuvBhh2U4kgL;-| zP59Q>g1F|gaUN**Qrzi=i)(NWv#Y)1SdvEsjz&qx7d&eryNP>Vw)o`{1WNhO0l;n$ zjXqI-4gmf;13j!w%MI>QFjx%`46DPo=&B|sapX3`~Np}l)}H%QQ){3=zp^x zKqc^x{rtD;DCYkZz_7FYLJt2Y01P|8D*qcL0Tfm2zwUGY!YnL+Cx0Llz^BK~`Uf%r z{5(7BAIt?%FSE1$u>hdDK~))mZ;rfRl)w?au`O0EX?41%B3EY`-n=pOssz z?5zJGfLUw4Ti5GrkxJCXdYP4@m?M*Wmu8$%LUwY__s8=F#><@dKg7x+ zl=Iou7G5(Vv`7l8qZ~yvb=Miob13wB>gRZhx!DtYew^;7F#2@nY}gM_@J|;|D_Hxxf1 z*OCAl!>24>D5-(<^`x<}-v$83t{L50HNh=CT(L!I&Tq%SV&)cQc5W_IKy=5!%ZP2V zlg7Y*Ua%+h!8ZjOm%+e))?)Dd&@Io36ZG+3R1toS#`#)pbq*3D z(SaApzUA#!a}3-X+hQ5{X21a84V&!Rw^%{m`llyO0sq9W8wL-__Aul2F@Yb>UjFC;&wBKOAo&qY`#XLkE7gtK z!mS^&7EBwckkTH%`_pIwk%Y0c#5^eknEF`?1%Jn?F~0h1jDg=0MQpy@jpHb#T0 z00)sx*E6U#&kkbOy3?zIBvl|2>86UI!mBgcta@xSJLz|4vRmJaD(2B$|H;* z!n0obj>fA=G|7?By84X?b26X1WS7ZR8Fu}Hj)6cQn|U>bD*JtM{Mo0I5+1FkP8G3FUS2OgmN?i~%mLOt)GGu!QHT!t@3_#V)tAYM36*Pt0OyF^B}*q$!-inaKow@t350=~Yj?WL zZeaIc3x4Y5QNFTWHMW`{QtOU2Pq9m@)ZdFmmCT4>0_v~h4NjScN>Eds^i^^9!4k2 zCC*8f^NPB=2P`B0HgYbdI^PJ=Vo&Z2^8*z))DDIi(kRNca-_Glkq4SE?N^8EdjkN& zgK?bc4^Qj#3FQ3M!>usDx<&7A`y;SLngNDtT*A?SC>#Vl-UTO{ec#V@QHOD%p8;l4{8OMv z$~_X;FfF>o;o{Py#P(gXo}V{Vdr!B4#3uVqngtJiwnT5~qo}ITfTI`lFS&lbk#B}@ zbJ2%W5t^_msoaJ0&wxT)lV34}kx|k{>S(kuZ1jN7MuY0}ahavb-g9;UQ8B03v#VkA z0=85aHrZt^v(+VX!9&LcvE2ycjPDzhI&E2}mc$A|C<32_lfjm)R+I)a3koUt#u16o zz#N#N$_Sf&JI z2Y_p_COEYXG`f&On!ts}Q}^9aiQh=Sik}_R18Hd!$H7UD3}_P64Gw-zJZ(cl^X+h< zf5C7Z>~OV!L$IK+D=P9`Kd599o-f93qu=n44ZCB(Xfnhb=2~Q9gPe9>mKu*rLM0*J zO2%_`=O*6&9_$wA?lAo`8c%4jG#PJHAznF)EC7|e6>J6R$33apdCCAr>GfM0+UJM* z>_`ngX~+OWf4}P`xGkvT{CRv;s0%!r56G0MHBfgx1fVM};f~Z{1dbzua?Pn;krd9X0H)(N;zlPNnl4VWcEE<50?B)`|Dk zB+&>MJoFu{Xi=!4#@5=DTgjW#{x!n10d((Nr4h(p2TWvjsI&!^YADfF znMWd7)Usj0whg*KDLqBMgwi{If$l9b6#}CyOHmRHNUc4uZ{h;J9NMEXrM51cEHe%y zm4b;@h>!VnNe`C=vAML79uo^c(fdWbSoxlOHbEUQey z!BPPa7OhtMuJPGdJEA;N&<{d6QG(SIK(+T2&njO(_9|O21CGccqRaYF$}r7{Zgr~4 zuAd&8F!9b%!ap5Y6~2;X&_mSpQwtipQzF6!Vt3`{ORj_nkjpJ%`SyFfI|E$`F`c=G zbMXojV#-_WdWV18Y2gspu7I*qcrFjZ2&*C`WRXbB_myi}caIxKEDY0O<=87EecQy$ z{LTp}TiCWGmgdC^Qr&Q&-<%(JhQ%q2tkw`$5y}ECLKG2oeoHFbL1FRIBx^9M6-G zBBWVRi$j2d(E^8MHdV^%k}i&MRzX`7#ps8I!kOb6mB!D-y6277qQMwmvgdAzN+5V6ONw(@BA^9d4?(%-$Nk1@ zxWG!$DpCE)_7mjs@=XUNYvYb-TRXs+loYtbU5JKTzv!^~5y|QUt?JEiuR)Yqo=qHrQ;u zq9CwSsIB+Rz6Av|(rxRRD9qS+yTlI(j^DL7VxOJc4stPRzI*FNKCwZdBkf@8bJXXE z!oCd5(wAT|8sdaaoE>|XT|%j`?ge_B8Bm5`>AT4H<7xSgxI$n+Tk0sBc5?8}>)XW; zVX)0sm8=m$8s7PiDJBHA9uG`^yE9%o)3~lB9*@}3UaZ;HSrUPAn5Fu_(g1re7CP3f z!0d-6@2B6h$C{aS(d!F`s5yVxwdZlHIMnw|mJ{6uiGPU;UWhQ6&{_y0Z2nY}mt&Eb zSeg3*6+dRLC^*@2issmnSdu;!+{e{`ac{H(4*QTs8M(mK4Q19f4zET?3s!FcBneKd zzsgv^UyHozOe0Dw{>1A7Hrs1}jZZ(0SGMJsUE*Y)q`XpwKZx-iPEqaxWY_C=rUt-0 ziMB^`?&kA{wTzg7(&Rq$hxD&vog3d%taOxP>m0Q0D_Ep$?rWs+zey^7AerSzknj%q zJXZf$v8{$0jq`zHQy63kUMuXuPW(7Iq^q)}=U@1v#`TI5QbQlhIh^z7%*eydulsK8 zrW;3{6ug`flb;lq6D*3(()leE>^uoD-{lv&!0-IqA|yJ+CYW$%W!YI#AU$Vg#cuqC z%k7pod*wyZ@g~#zgGn7S#Z?(6YV4G0win!`zugF>;N?Mw)XD7I<>-V2>?-5i3nN<+ z9nKeDZ!bOjp`gF%1j!5P2H7zBwD{x4WS%LiBIoL!8yQ@-*t$+_sB!rMiQ0j9cMWGv zsYO+#HW`BVJ`bhqo6)e0yf4Vs#9hATUbLCpUq14~eEbe;R$T3wFlj z58?rTx49FA5J;a{9I6!}9CZC;?HR%Zv7wU21VI9Q5dkKpZ3vF<5zf~$4{ike!G|at zFUF+<1Hq=kle*N_rEUeF>1LX^l#fRt%L1*6by4Tu~L+bh_HO7+I0pf%k z+E*r40kBVRi16uH_y7C{Jv-|^H!4B62~}qhUqXR|g_-&HM&8lMnS`4IM49-vAcvh5 zR2=;C@4w&IpXz8k5e$6w*#`j*7U~JEUmA90zFJGC{Q&0HV-IK!po$tukwJjJ!0 z*g6RjCXflT;JIEF;V8F1Ab%S1DM-@JT@_T&u5H2DrDC|b>P#KP+MD4{d`Qpa(_TS% z>Boz5r>za@_2M*NL{sqEGw-s_s-C0Bg*6~Z2qRXRz=F`N>e(XJ(lBJW1T!L#b@Z$O zlY&b8V&5-eKx1ApxRePsiVdvG`PJ%q7QCFq! zobAf|j$w@%Oajbu5!MHS);_o!e+WN%D>9K|e8c>kF1vPDBdmnnhg3kgb=(Cs9T<(B z*z1fVdD&nA8i5A5ia#5h+UKolvkJJBJPlV{heV0 zBCY5PO}NOtC4*)%aVHT%tqi|$p&{laL#!Sn>34Ni{%~T5bV%-`V3jz75I}x)igbKF z_0Lj57dpzUlHiCmcnShfCt~ehp0gZBi+^bE`_xB=*C%D#z$=GFOP>oZ-FmlV7qjCf zEroHWIRhpaj^#3YiyPTSoua-r)#G`@`VI|X29LJ&wkIX z)$v*1()CioBEb@-S@k2U8|oXg8IFT7QIz`Xt%0mP<*$rHEFslS@v)5%JO2)M8lHDpvK% zf*>qylt-yg9A?XD@$lmeuMK~OJP!?SdCLP7m~de-!zoq7yb~oB*^(Ja6Hl*Ycei%- zxpjkvLRj4r#~S?*yd7N=om`d+U?=Hn9H7e1hr;+;i*tA9npF$x3C&fpeg`sm(Kl zZ8!kHu^627lyK7?+*?<4#+F947{GPEYp>5%1Or zHBy&s^$?kdL}p{^21`qkyOF4Wh7XKs69k#s<##9LS55ppfy1&Jo6Zd$kuo&rnAQtt zep5(UpCu#H4s1hzlVsUhK3UkrtNR9;Inou|%ajyxa+jQo;jiIVmpHFe8o7$W@~#_d zUPP?cz@4sro8oVI;fWIps1bifZs~lxIusB9>Uml-F3#pHWU_9U<%{$UXEWbnl82+^I z>i;c*t;4dq#+_eRpB=3V#p4mFS08AnFN$1dyDwsp*)zwH#rML*WhUW?Y=_<<{ETYj zn|EW!e16=wn=aHtx`m<4Ej8B zWnMQAB+NBy7etyesrC~U%(TjJ3vpQ!gRr#r3+?t4wU8m5s38Ezz`7VTI33j37nRg! z6cPtmv^zJUwvIdoXH>LK;@CP!sWos4zW1@M_Sfhbw>@z;-dvGue&onPp~v7DMyMde z1xh3207@Z>^0v2^l9z3l)KhmTufYkkC0#~FLK}}H*sR~?;tUNC&wsx!OlXwStAC##4_V!qM7ei=<_3k{3;IWpIL*I zh5YdNo}sS;tc-ukgYDw`hJ6>R_aI@D{XxR&2EYc|hC!n;G#2ceEsFMX27Y~RoEh1O8_ zHtI()-Z*$!w096o9MS^5%MgaLAyP<=RDaz4@Rc8QHD+WMcTylA5=IFrtC|ZBc^i%t zXg|am*?+hu*gwP<@Fh^qPMw!#9RiJx3unV4g)k_d6ARuAhLMsaa`BRnWX+IXlbVNw zs}nk&Kl)O31g*wKohw^@A~`(v+jw+0{aN%Z{uh%$Uq5B4;-C>vneJI>4^q#{*pnBL zxhATo7ZI*}`MSIC*bXjIx}mnp&++m3Ned-U=sHAri;%O(dA%EJU@{1>0puBR7d5Q~ zq}$p8Y;6RA@#l|{*BWITgovo?;$LP=Sl?xp{^ESw2G7%Owg_x%9Lgge^^8{ zj>?(Dmc7jf0&v)fno0~w_K!vpa?GLnmQ0=eu>(XOwQAY|(Jwo{arqE{JTLFnbG;l+&XPb3Tq`4BH9&i)20nGx?vd~+~(tx z*m+EP8+hoZX0?gsy%My0dp}QUg{4`LzZ#m zAZ=4q>>KEtSffz=Qm8Sg-2)66TRh)U7qJySj3 z5x(fD#`>J;;4iNj`FX4;nPJV2MTBnXfiNmE5G>lqI|AE|j09PuH|dErmo$#397hiJ z)=cE*InLK;1N&(F+Kd53s}$;KLW@y;)^lR^bCBvnS6I-8e3<-5Q#6$_=le*YE)FBh z32i>VBIoBkfrUn?%KR_>Ju?Fdb&6vG%KSn#%PqHX(k}h9Lo#+0yy_y|51Wx5;9A=r z488a+92tRRaNoQwv&vS_&dAiE$lO~ytI#Zr?V?e0f2%GgpUU4Od}d=xpRnT{y*-U& zfUv4;UnNJBF+r)$TI;X&^mU1|jyK=x+ilNVEDtzPUIfyC)EvRMc zf#$ywN(x?w$ZCsYi;YO}G?SS;LGE3PDC8fW*l2?w)kU5dVBqJ`>t6hMnI}ytVS~25 zaVJxcYfybf=dSUlz%Sk48i%H&i&SdXn>KH?t=PE+${&eBU7LIEf)gW zu73(%edm$tl9K@>VAmV-#NOz$e1Un~GL2LS-<41vF(D3UI z8?1;y!-7bS>WIc0-I0eD>F?lP^h1FpPq@{6nRYAEBl1f!JV=?h+5rPeEVt94+&;H^ z;_*0*^45AqICzeDeXExu<}HZ92$Vr_>n-++QyY>@{+Xd+8#%UtNey~o6>~w+XwKQ+ za}l5foGPIP7^UyCn#dHww`>RqcaBPostLIkaO}( z6YdLSc~hqXr1EC1VoTB{m<9UyYTd5G!!XWy=q)a>nzlT@4FKEoQTdweT% zp!}#LpBzwr!rdMyKS`Xbo8V!e*uBWn_a2Q{0#%`s7Luzz-_@anC1Bc0=6T}!-FiST z3h2WRUk*8*iEUvD=9wA2s;*NFK<}kypR%;?CF?oKRdN^16HZ%2A94&_ry6^V{-+O1 za}uY1cB+M;8ChO3S6*Buc2BvCcO!Sns1*;vN{FZ( zGTNr0pj5_d^4*AlHls2%n6XCM=5rFWoRgjWd|qZTwg9Qmd<8ulPFiuIcdWuh*kE=U zJsTWef41tXxY|nsy0FvHBAM!AG-CTW0nF0lQ34+eGJLaPH3c3Uql~hI?CF0Mg~T!O z=<3CJFA!!br1BH?SvfU^rF8Fp9vEHBF))*AY&ptOzo#FsC2IIm#A;<(<*oE6)AS1C zp4Nd;AsB-qqu-3ERk6+%><4_|sDfR(3Hj-}Jo4^%ElqPe>lcg3+&ve2ZSXoFN|NUG z^u$Q2!8R$ImDl@JO-yTn&!$mKqHI?F)375H@E+!-^7gm(zKv8+Z0xmET)t9X3pptq z-F>2_b5H=#8O`t^!)5S3pijGaj7{MnMH(x+y!`@tfdYE*nyl$GQug4+X7vjHO6aTn z&pQ(iP{9B1C5Zpca;wyTE@g<};QWi{`2(r^-@X<5UzIZcsoeU1rj!BtHT@SojQ>!u z_^(SDpmOWKS1ioe_qQfoBf81&;?hgEt&-unzS?Co!!|kKQ@*)k9#J&l+MjX;oX6y@U^cm z|9ojPS{bIeXX?zo5h-nOunU0@D|TMB;9FQEu!xPz=EqBM5=Wb4A4-96%HZytRp@#Q zho4$#U9xI~{9C(~nhZ-Kun4RVyI_VP^>i8@*HHeG8#J5$v}5gY!y;~q3~D*snw`Ff zC}&?3n~63+_NkP*!4^f_JJei)U05Tb>XbAWSF{JIC5tz1cazi!Uo<_`*oijFK7^e7 zFSv*&BA6b;#dZnUNW04)xX2H3!17~-ryBofpmttn0(UQjGs((;vTfZ3q!kJqapOt*4^(C@Z<`I!kclP>>sD+CJgXWt$2b(S#Bcuw7ttaW zeUHou^9H|JYd~)L0kxQsovO5=s;l~5LMu%CXR>tacOH zWDRWHa88_bg@Rpsi4gGQ1}for_!BF7EaFBy{_KVlL@~QUD!<_(MVaMxIi}70bzc}8 zpGxGBL2!{zpnB_d%5n<|2rhEk0bd@5>zRfQ|9!uIo_`+vBTO5;>boN2$ z#iz1hMMr(u)Ou&pdcB#6OjE`ji9(z$Eb?meSaraFQGT7O1J^T>SQ3Hme&O8bi0TbGpo*6Jy z?p~vK@nlE90l8vf%-b9Ln)^+eYT9Jnh;UfxxLU?OI4ElM^Ca_6ZP$lTB5gJD11pP$ zVA1cbc&Rer&AwTLM8^?Ovk}zpIjK|RiYZIQFi847FIpc5MEsB*5>OKXO8PcPtwu~m zAyMaHpqm+PWP9Xq9fNY|0xK>?sz8onoaE4HCLXI5v6mK;@IZX0w%by+;AGfu0Z(RP);omxTCl2#UQV^Mi5rp>D}2Ipu#&&iw( zU*79o-6&kR2PfD~8jIsVf>XLdU#iLF2fC2lMfpvNWt;UN?LC1*t{Wn3jg(DH8=d!s z6H%tOxOI+^;up-E8+6G#rJj@{NDykoDO-np=ul_nh zi)7Bv+oNhs8!&=eFf7%b&|j)PgHQ@rak@`EoEd`2KMrGT4>-6ifzF72EY}OX7pjNL z)(hbq6DF-MYs((mSs^RU%?&0m8?y^GlNEPC>I^zZP$Mlq?nDra7ThLhjrykg718Il zPSGSnZ>!!w6mRUifyh};Uo&K>srnc_8530e013%$=>^|&E9(+0>0$z}qXmi|*V!~1 za9o+WepG>BLBwFQo!|`Bt>XV;km3AYVEk*4`QIF@H2(8oWrKtJub$^0+qeH)ZCBR+ zaod&i58C|yM%$J1FS7dYDGTrynjKVE<^cSKX8%1{0e<7`|I}DPZCAjb=LgY3ez#o# ze;x397~}f;0ie^k{(b4u`aWELJK%pdf3b10vj6w<*Q$svY+ZLc+abh;`SuS{!B zS}iN|L3f@6IsROdK~Sc^F6>iw>Y}RchjPlPrIFXy8}H=vSEXL#`vSW1%o6h8Yu zW!JDF$E&85pw6s@fxUT4{EG8S3-cR|5MEB5Jyo=XyH=0c>v8dE>b&z*oPmPrKW*2& zg|C@>!235ZJU1$4iL%6vCL#F3f>ctru9~huCP6tr#cw`c;_b;L(rn~75}kTSk&Yr! zMRgOQeAG9@zPYpH0#9@3pXG0u)*W>ntaDbZN{{M$yRf?ysTdMTkqS@yVW;Ju{Mdk8 z0-R1!^Np$nRLi4VN_GHsxi@3D7$cttY{!kj}g5IOP87RCXE4;AdX)ZU9JHk{#N zgFp6BKTe5Ir{gggrJ?o-Bw|ZbkAM%$2_WL?9bkN6UYmLy5Xlm%W3Be1cP0(xD3kqK zj8*;4Mo$)7a@P_JD##E^**wThx)fK6qYFwSEaM(?2aS%sx{k7y!u2j9%T3&(8k0e5 zFZ&3Jxtx>#m+)}GxF!pI_RJu#K88+#9dbq>3T_%%MEX|YW?N2$=b@)~z@wEL>eC7| z_QURivP`9T>tlN>d(6Zm);%4bGWBbe<-VgY%}p-cu_ae15`O4|*iK!fpmid|_TG{M ziYB|O4$p|zMozn}#Aj(bud?wUn2> zXtnSv0v;0AX;2Fgk^!0oU>QbhISi=zfwk}rQ_*DX?;!;~$somOB^|9Ab5h%{#SO`* zy6!H{u+}*QCo~Syb(@&aDhJ?8MVv+D)JQpB%ahZ5klpghfFSI3ankWTO;)_wVK#BD z;X4cd2o;O>U2=n=Y@m^_zY*d7TVwwnH?eYy3~L{3fu7>6lzELrW%>JXg`@P>Qr-q&9)JQc|O-EdWY{@rk8 zLQxI--Ef7=Vc$GyWTrGmI=+a&-$|O-f7W_Fdd`*8!D1YW=%IW#W>&jp!J*L_m?H;7 z?ux!|j(*nZBdmONXZyh(ANcNxP$^dYk?uvbJdp43>g%R$#z*5`OBk~=aG-MJR^|^>Gpf%80Mp+%q6>^e8JG2 ztKn;eDg9m9nxGBfCT*7W+<#By{DZ{-cG&Ao+3=BFwL*t{c4>eOYa<=J)u#`43+sz%5aqH%ES8`!29S0Yl*Z zt&elZuo&g_hJFxpc){w?o69%TmiTy8Z&7N99_q-6*Fh8b_B~&aq4C!lP(%2NEW=rr zZ_=(`$x>|T-{#NvS>l%MVxEk^1oU4{L>d9DE$L_hdjgu4&ewu{C8=A4;8KCuFA-3w zV65yGGs!%M>bMF83NVPXABi465HSefG@K4Qbf`%Yr ziV6P63D2TcQ5=#%?BRJF{>JE56Y#ZFpy|4|clJ_(x#s!HoMkij%!}Fks0Q+qLMg(XiHKO_R9%# zKg8CV8=%<9tmP1ddnu(i-=eD?OnN%RSw^uy%5!3H=%bcu1o1;Mc?awdM(T{%*koJ$ z9PpGM2ojh@3VIgM7QGNzjn%nR=5ui6KO`%-s9{Y$S$1dVOLNZd^SqRWO(dER$+Ic5)Bu(BZqo1my1=DHGrKi))eD6AS;Ly70ym&Gi?DYJ! zZD~mzQdMw8IEQg#=_wN>U%10IkUEuSzh)W- z$(PNi6v~0Ph=T}mMDiuPQ(w9%oZw-?iRG`lYOuvUctf`^|e#VFj}dfE0aVA4(COo!c0h-IKnqru^uj(cI48(*V{apXcoCPv)FvKAqXRb zOkF@~^asO6`%bVogPMq|6v7?f!whb$9tk!^2hOF26_zLLN)fL`OV(S$`iO}b9>C8Y8_83CZVI?7(~KSqkg34aA{?=^ z6EQvcKv~Oxh<$u$3u}Dzt4eZE4JmzqE${;`4YTtif^l2EVb+X6AdyfnV<$mX-sush z6mrw$Fl!?T8}O^_sSaM8cQNx%KVsJcI*SDj%IW>u(FMJ290~*0*UK#)EY^#=Jtu+ws&np`n)#jN(h8{UV{Y0w4=ja&CW%p1I!rdlT8+P){QxG;^)A>?IvW0I2AiK!xP+a;U#Uv= zVpgHnSMCf&a~E#=I|fz&i~vKwN7LMn8M(D8-d#3-EA;YG1xCZya7xB_Xa|A@>Bgkg zuZ!QdFC%T3`j3DwnQ1JY{Oy|piNMu+2DsWbL#C#_(8QH9R_CzB*s0=DLt60fK9!>k z`A~^D;L7UKhl_(SXLC*?@@{iL4r{b$A5(SXX6SLDRt$+0lZ>ebp`Dy|`S7W(aNbak zX>KaJ1euBIpx{Y^An;*`?3fr|Eqy8Oi%FZan^R7kFB}KOK~H`F!_V_Doi`Q8rp#y? z0lRD{cprz;&X>^eN(o#MX=9ab^zB?jcrqWXqgNRl2=sCEObQizs6zx-VIV2fJRI}3 z)<<10!AzYB%GTN{`FCyKpKbQS0|1SH6p55hBX}?#@tLJsUqsj5|oc8hLInhD`q3{(y z;aUfaePeqm(=BK?&;Mb;L`3sgqG`+JJm{-6n#a>jJ3@}Rw0fvm&s&~W#~rr@|Itrs zNehaKiJY#=y?=5?b#<}$X@4(qHtn>!*NBQhc{a`1;N%tcp}5c9^~ISd(?#wMn(sDZ zJwtW`@Y(FJk=ZJ1%L8NHek^nh0A^~yjN@!VC$#=E_2e>yInIR$^{%q8lDOlPeyHp+X3oA!ZTF#m@hwrQyl+veYN>Gk)Pk+5$=sf z3*bM{q`#9hJ4=K1X@zzoL+j7ozZ?bO@K4>S9fASd_vd>9rsj(%L@h_?Rgn-lW)R;l zH!Nl!1_NBOjK6e!3ng=HL7g)^91VhD{4s*u^Qu&tC(mu6n9CUPV0>8g1Shahd4S8u z(PHRR66e5E;=KPZfgYg8N#lfQOO1{8i#tHVJ85vFqN6j_zgDRj9(BUB)FaEEj;1(2 zL9@oPMNIKfO(m@n|MtdRxX?ULZuCy<+W_iXS9ub&u8e?*VRNb0=GPWSESB;RdVVfM zM*4SvZBFS{qN7VXGTTCO4+GhW0_RS$t!>D!M4rer89BaDL7f-eX!{PS<9=MnNQOBT zTQFhLK!Om(fFGZZ?k!?-15Ul(L7gugv@2%8gk_Q}7{6J>LWztP3KLFj7YYkKIZ?gt z4XZI*pd59?O!a4E<-s*0ky$VL>%1^QJ5G=O^P+(B5Bl=|$KpclKQAu6;o$wN=lT8j z^k2{O|9f%q&xz3gmBqz>*j0c69Zu%IU%CCq#l?TvNc`7ZjNkFl-**)tpD@S2?L_`( z8wrq4nESuqNQ`P~+U;;+_}o=aEK7x^ZF)oD(E~H2V?W1};FB|L^9|ZAl4c7OP|DZ5 z`N;B7D33OnetUfBOM44)G`(S^0gDnx<-3gJoVD4s4rQzW5;TNW$ulLPn zcvn&r2{b4a()}F@_4S@v68;H=4AH)}aB=i)&nhx+x<1XH&hG0=|II0UYW(j`;l|}H z?}uGpkW=`{rn_E9hxUF7+4pXA+0Lh_m@{$v*Xji4+uH0?xQev9`vCJTW?}e6&7xge z!kafA(q_5M^A-8X<0tK7$w=QBY^g`Ln({aI0k>G`3p>L;w7>?@{q@IpV#SWUN4%Pc za_k^Vsw5^nNGm+}msVJ#6|&Z6Fo6(+*m z*{t$?msO?lwVgjuHI4R6bT)C${7bCZepz|_!+#!j2A*r^M;5x>9fE|e#R zyDEv_a3Z)@JwGeI>ytvEx2KTVpXXm>ZbTMyx`-MNkf-)B_c^BnC-BGeZwm$^+3yQR z`y6=f<@y6pkRa;xWLm(>2g;kMB9YPl6COHi-%p|fcE}EhCvhFj8*RgqZ^=C6kc|6M zqoh+EHBS}9o80q}<`>OW4$A_0xcBRFE&7GFgK2;8Eorh3WX)hjAbg87L_Sw-qmbCJ zQLP5HAO5ygU_b0akKY5>RptsaeJnfKy^33$-EXZhvL}<{Gb1*B1{(Lm4Q&_@D0t6d z72iRBDS}cQ1;gDePgVa-E6f8a@{W}> zb98v+YB)DJFDS_EC!(o8>Cf`U)`D|Ihk3{yG!XgQ4ZFAgp%;i5&&(mVi`x3cos{g@ zlW*aaA8n2Y-5mJcZ3aJ;;ZKk?W!ENS^Rcm6Z>Dm1`41(Z;mGSL3KV3KPbSp``Wt&b zY1lON@8YI-(}1(es(n$5-PA_{1zDIq@dg3bov|S^cp$B?G1X`vh|^N0B0)wgjc-f_ z-ImCxzu%=23P&_Qhi|xnLc8sM$4wX;|H!vYA;JfC?`!i7mkh^>B7ZuFl?(Rzo|9Je zN98OG23kix&R3~Hi)8@5JHirM?cA}-03q7iGgT#GV zxjITYL0Q)I@wX@*urg9pT$7ryQ#t0IbjsapwuN*R5H{h4fyzC50soB8Ane(%KMe~C7c{WBm!zS!C1)qvDN>m6{Z7eh4}*il~(xt_9%7L zyY;NkG?ntHpyJDcYHY6l9>&|wpy2U3j);h41hf3IEiJ`C9u7mm#BQ;```$%JpNA^k zoQ>Wtrx!nFa8!-PBY8uL>w=40YdfA|b2KxGS(X92!(0-L$Cf4LpEbI>Jzg-Q?NoeU zPic>?1HTnVgK?FQv-x~XkUrqNmKjCF79!9 zp7B0T@0MInH3bIWcP<8{>eL`1ue!3`m+-}4o`KG5>r5k5y|%exwsLUwyK;qUxS8Ep z_GSK6>O*Q-Bk5^W)PX@^E57ifp%pn~%L0#AnIh-WOvWZP38rJ_7PVUG22H6Z- zRuBvZM3yd$_i+_EZg}GbNyHS-j`!jA=B=YwOE{NMpB@;s(J}d0MNS}q11i_8V^64A zB7XX#zQ|QyoV24FVNwH|X{?m^s*WdR2W)Hrzf#xI@LMX3DtOJn^?|#&uPa&W zg#5l3UYFBa+}^sT*QJNIRq&+J_}9wnvgzB&?1C}BwW7-egWi$YM1Qb50r_HSbN*T3 zTmAOv=>stzC!uiQtE=zDf{<|^Bt+x6t!U)!H(Swrl@COwasjMv=y$$%`aDG{Q13_p z_sxX~Xu|=yU&uGS!eKJesMLJGKE6Sk;D{Ojivf(~9|y4i%_QsNe;x=saq$1e^DzIT z=Jj2OT&Oi6*{*Bwh$@*8u1@a1WvidH;QaXI{!8yp2s_f@P4lzf;zZeRCe#WKq4n;+9{sjda7x_D+-XX@yj%9cU^l=v z&ZZ=dz9Q-vOiWMTu|R6Q=u94!68uYS%f;;Iej|XX<73HIqWS12m#2y?kW`p%n|>42 z8M>Q|Nnl!AIE-{KJ>5wY^nL}QklvEVnhX;<+r6$%hiPjQ&R=it?DwxcIP~RxLAO{$ zWq%V~N5zx5;R&o);L8B=jXg_P@9dP$sFsv*M5)3R$f6206nL>l4=Qu`{kxEu@GgnXUhN2=gXfbQtMFKiU z$cdaoZaD5#@KvnT)9s$aXvg}-PS9Bw-XgUBPHmO|%iqjgq`|V7!LZ6!>j!3*z85?e7yOx=qclBa1xo}b%t_}mSVz19&hltS zM<-@D%qF6%`j!1@#a>@hx>+{+Otw-{CPwd=DQ58LMm-_>*r7x*ugaf-IwdmccIW?*oHs9gQH&QS~LgSm-3X_ zjOGgc%`gleN-{UdzGsXc3}l7uQK~xGsocy(AmOH#Yhsksw%9^SE`uomn+-kL4+`U$ zG!O&nWHE{_lelsuEx_YRB{=T~F|f5x?lqt`g*Fd3E|rv{)zaS2efh-pE$ULD&Mkpp zp<)Z3A=D5FYy69S3Qc!c_ANcHea*(H7Oqn zaUJH97v8)=EThD3sJpvYL#ak`meQ8!))nR_-272jmt}01h(1G!<|10sYIG`*o&ZLK zYCL~Jh;Wl03d1}!6ryRv+g#G_*ASS4l|#^Iks?AJgchrAtori1-{h7wv_`5nm5MY)FuFvT9`|zXAu>)zz-r6p~}s(C}>#p-Y#PH$OCw zr-glc>7mQM-#{hJO>L%W#5)g%=ue7;ou)YYSBiBV3CX$?c>uSNjhHC*CL`mhAZbu( zyE0Q4q)DQO7M19&eO)k9tv^3mof`xr`g2j0Pj}cg-LvIA?35!bE^p184ud3cl3jWI zu?+z?5f7=SJ+c%NbLD8qMxlP=Yvv4qF;ajU-#nTb9W}iY%3w&C&8iXgh z(HPQ(xYxE$759NYM8GeaUqXzZ1BM+9^0pgVkJo*+YFJiy+_}qx{5@bf(rFFA zB!%`3TC0qxj9e(zxJ?C^+>B>NW#1Kq5U6JR14%{-dAI0zP~zoXir3&O^oHqYnboHS z2u%2^H!A2;zGc7nPU_NdOUd{nwa7T~?$qP9)#6}Dq}<=${o*aIb-7MMhpkjPjjEqA z8Wi^x+_n6Lm1G}O@q^x-;r#kuO5b0Du}!#R$CB<%+b_vR3(^nDlwzHoMS4yvU+BHV&zIzIt z&x+-p!bJiAJQ0JiA8PUbU`K{2SYpnn;&f7B*@4D^2v^BSy!t`-ry4W8YcY`Z)jGW- zy}$sDb^-UpB-FBtD7c|ttIp%nunY>D?1?K{VftG^0NT0SL8`JW7a^vq{DctsxQkQl}{MK8moFT*0NrX44*5 z_?tqO1et2SE_^qIiL5?IbpNdUsyC`0v0b7a;Rg39>&e)gMxE@McBD=69eW#oM8@v45BT)7H!fs1fa>^HE~SyUWUU_uYv_8^ z2gaKDAU}2X^ammCPv-aaCOa&CbaYhASk86uFRJQ)rtA9 zLavfVW}5M!#j83}8R+6qYrGV5Ule zA^E_@I{|*c2V;K`R@2Zw+}FUB69%WF9uz`u@?Z?o z?`4Y*gGr3Fk5WAXk`@FOtVgg07l<#`s|&OF{hYK`sogUD`r1BiY&IXe8#;dDU^3wd0C3!;h z8%yJ7H}0Q~Bvs}_4ocpz4Cc z9$!-xCxOvjmFxH$z~{r2cT}Nh?pP>B9EiD`Od_xD&sEi-ice%%A+Ew6 zD|go;x|fGJ*JE9eZn|03YTc>8l1t{gx+Gr+jHsm=J`j>B8s2-`T|Wp?6vz8L}ZNb6+i)Lqwx9UE`$trt#Hw^P|lCSHNpmb_Qd1R$7-)6oANOueUi2J>IfS&T~w z`lzmgAoRoJW=QI{m)04cy-W*y7_i742TP@se`fB?Ca~m|&y3+H*pTSvP*BdP9x*Wo zV|Zcv3AxVWLWyS>Ufd?(e>lt{-^^GP1$n-J5Q`lJiMKb-Z<67bmyQ> zKQE`>+cB{Ew(YNc<}#ZWNO2eqztS?pjXIim03LVAflmYEQv7z7Mr~w;4a9NxFiBeW zeEGimt9DD175cvwH1g+H2pO_OmEz7<0f84 zxP^`-Px{Ip4Wb@yOnXqu2C^*PA8w4YHCdD(*0~DvBnZX zL4Sl^xtL#(*ex#Jy%p$^J2@yuOQWFQyvz!mAkAc@6?YJtBkq9Gp&XAoE9Xt65LsF2 zuu=xOkL46=RgOw$Dr*2UbXLAvew%sRUE~mF)mnJbZV!B?7B3T45n7{7(xv*61=^YH$_mxo9dHphG^jvGNQ{8eD-~a#zBP#~ zyg2pF_;lXBn=S{qCCZzw`C$?%9sDbeQhs_ajk5hp4C!?e1J0gwmVa&f<^H|f1z-aGo7;r}kYfC4w~Lk2&(?+aTD^WdnNmB9 zA-qFl&YhwAHCBleGTSWHNeIidMD+_AuZXkPXWk$El2R5+4b7@tHlao+paCFTTR(x2 z;}$#B7gF3RzR_;wemRq=?W+5d(;_OWHo_GZT_H^mg{7rYMa)>+Nb70rZQ?UoDZi3E zm*H0H=n_L^7B6tIu`p)b+*skbY6OWxWd>_b9WFDXjy}Yi2tGuc`OSzMW4elsFt$I( zV}~lwayq>OnzJy^KUzR3PBuuyjF;UQ*<7$ZP^wr$MSPb&kev%Qa>FQx-rQM*8Jl}l zUgSh0rSfo0uCfXf_E~~37FbZ6aEb*qRWQYJqOVMu6i*|i%GfG8<%DVp{Vg8`QYi1q zno1|>OCF8m=c7}q8jj>2_+Js18I@Pne>8??FBMBoa4ZV4wYH8KSgu;iu}&{yV@!EB zP886^Nmy7>ZjYhIevY*!a*DJTF!eEx^2d4_Lx-wBuuc%EG~c!YX)xSaUDM7B!M^dg zv_Z?)gnRSa?PD6MN^nXHDz>@}JJ%5Pio_%~Z-M#``=$i`goEie;K_6l11Y7@OG<)^KP}*Z@R4J)?06@nu>e8BXL7v){zO)!7l) zNPU8ai$*n2JGJ#IW6SUa2=&4tb}Ip{wVu@kr@t78kx_;SE!Ql^e*P#B2j&jDR5V=D z6uwb@4U{#o8zUK~riE~NcMkMDKb3oPK#lsX;-J!sU{u`6xBfyJfWGG983LW%ssK1HB_z6gIkSSXJtkRl z`Ve9Yo--CF7+(R%aeF!sTUN!aB24l7NBZhFKSR%#DHyd4GpX#3kYPV^k}Z%mufdQ!y&cw`ApgX$fo zKLdzv3XxmJRZUH{J+K5C>qIaFzm{__CoiJUO<{^I3l!~UBPzj)ti(Dn6T%)S9vjp6 z>u-h5*drqp1e$%-r7WaHfwHJ%k@z`?KmruYz%jQaJel}eJ6v~h(D@rVix zuhHj&am(T<(=lKvn8T#+$p z`1A`J4g({l1tn6-B2AWr?E&EDUYOOdm8FDew$S02$@vnMRX)<378P+mcxZx>&oST z=+G8mvN)gKcE$YfQkc|K5u6Qar|hxpIcdzvzV)79?PP4zEIV?@c`+HHXpAf3hTh{0 zQ=x@c&WI$XiD20FvL+M}lLhG=of*4abGc)YA$X-rvlpG0HfA(u53baUVx3Zutc&W{ zw!coL@UvXMZ6zynPKN4ej7%qvY7Ni4`Y6U=L}ZyF*m&2~y0y72-H!I?I8_~;HR`Y@ z-I8M)B(XZO*$@siOI;0YnLs7r!11*cRw=g^tV9fcgVvedAo;eeA*L}?U45d>QjdT? z-if@#mt*WwD5X*;H; zgi}WSX3Q{0>VneZ(S~S{&)%LT5O9mUb#vxO)4V4MS|{FFRGiYy;eDWq!j85vy?tY|NNO6Q(W(r(y~& zay@Bm0}=@c_a;#_4W1q&nMRv)jv#G&Nttg?wUK>&DGAlf7VvnwWwlXZ05Y}vt5w0=+bccN-D0uVLxix z=+e#aTQ0P2N$EKAHCwKCf7Ls|RZ$Y%fuL&Hj;!1uWH}yvxs$KbVB4&1$W!^Q!e%uS zr%+`&8ZuC=7C$VR1?Y$$d|Mtr85lQdnG3)jg= z)RAEgd(%jGY^GHZ7o<-$6(tKfryUtPP8}HQSK_9rFm3-%sbtE9Jd|29X}j9-Gw|W zz6rc3bj$lG>Q&S&NCA9Y7rqin8g{Vf3tfA3t+ZedP zU0Zk+`C@%It`RY5S=;6YAKxo&pA`x{SkCGyx`i;YSkTfHggF*Tpyeb9EpHXij!&y+ zephJ<)^9s>pEKI;(ztl~dM6*+wOz~II%mUs5)icDi zuBrFj~|w|&b!f~UN>||@i*=ok=-`WOxj){bT%8cFk@C$pyn&xj?XDC%2>ce zc5}dOjo&8;etbaHRq;L*EB0nxjY-LZ_f*Q)=~kof)UCIju8VgcLs#p$+Ywp2B<5vphUz4|1--M`HDVi& zYckypdWxui0$B`v16l;gN}{&Ze44YhyR3Vk(C**d@#YBfD#*3k*{R}vR{DWS9`0JD zL!N%LL&pD#0;j23THmh>tZ9Yxz$kz3@_E6=Z`qg|0PGW6Dd+Wkwo<}5wLK|zVA@V= zc@ok2_~fidOLjr*5h33yY_9Yp>j-_@!`e4#~Dx<6GcoFSA4eL$s4uiIV z-s?2TgTyNEBLyquBt!M%G5n|BOa!H&k6$CU-nK)J&rMuh72pu8Q;TiZahMMIvU}Xb zXj{rH?lIDg^=?84;Hz?>dNOIIHVMthr=-W+31M`W@odE=(B_y))nSAnw|3{gKtnkb zFL_lKK34sUykF4~Pifb>v~2W+!SLC;z3YH@N$e^7*&o5JPt2E{po0$awA3^Da3{JQ zM07w$)OCVan#m;(N#_BRVH7I@BDxqv^mGvG>!g?-;XMTb7v1?)!3hZOE7Ye39#QYp ztL@ku1B6HR`gu$OCH!}Gf^Gje5UCh)b<5a`=6U<<1n<7FfRa)rYL*AIIT#`i{Jou3 zUoUT5OiRvw`Irls;(H#^SqITq9npz^60(l~^jWs~9U_$%kbq#J;h*YMy}b($9iZV` z-=L~-PjBLRN~nZD`fseDzk&1?pvoitXc5{!st%&}IR4HAL=15`e(hzlA12Gum)1#R zCJ`(p{3TCw&zTDmLU=2Z9I^uNh#tOWgjopUjBE;&l%YYtTu^elvESF)1%a85p=gBw;EV9Q!^rMiY z!tw1|02}HMoGRg-vZ1w{XowlbdxPqAfxLi%C7_J(#N!Bs8eK^)OFFjl4X6YwpBW_C)PELMJ`-4y ziQfX8V)8FH^G$)~Vf{0K<(Ysi-?@NTe2`Ln_Gr&+s-7)YT2hpn4JhkHMR*5R}Ls=c&bHnp~KfUA?bHL)mIQ`K-1pfE~=mTqu z59HO%|Ks&#n{PQld&looM{SrlJU3Ei@q_Gk^c%!c(k095ydQ+#Am0ryo}QB&cW{r( zPamgrtmB=qi692m_N{ngd(_H9KzDZURkzIg<>K6zm3V--FDq~s7q$43q_~Klg8M`k^i}`)7m4&jC4h(2YUOQPaodF-$`pI%D{Ece(Cwk(aum}K7 z`yWsW08aZ4U;=>C{te9db65lbr)B#8#v%YXtus*UJO6ZJo4zx&{*s8`KN?SC-cG zr|}VnT~D{WpMXB;l(;DDfTUTb#gK?=TlZlYm`ON&29|KiRIG}t-xW-keJ4+EkNb5D zNrtc}Lypd-nKJQ+Nh!yvkc4aZ)W)7(@51oKQXL~LY+~f#H-pEr?*~6Nx?T&^6=H8L za=YK2Gz6UApO*kju${EhTm&kLxqA&TJ7b)ZYy;(Lvrf~n~o@v)RbEV*{6`!K)LZxj$!T*;C~BpVSL!zv`3OD8Jm zf2K))@`NZ%AImzoUuNr0l-^&PJzovfr!NUc7+ij-b!0l3<>6ayrT181_Vqr)sIyBa zbbDDZ^&2owX>+}BtH7o^qo?TMJB@q$uA{P~8`*|a8tel^PLELi>!A8GE|#ECr!BpK z@45yv1@IzuYQWS+gj>i&kc2Kr*!VsD1l6|B+Sl=o4jmXhjYmzjN&aeneK}qeNbKgL zhqY99b>~=8t)cjgQ z{NV(k1!RSQ;%}@)AQ=TY-w}om)9yxCU7K#cBjjKBe<@+oMgzEH5V_dWXF(sKPcaN+ zr|kkNGL1OR&m1^JETI#gXU{WR!w!_03i}T-gKgG=b+`POj(yQOiEL<%!ciP7Y4@6p zLGq#D2S~5te+_MXLZWF}uvP^sjjO}Q#?WViCNuiI4k8$WxCs*T!jaJWH$EZ&KmuCPzuHX0fTatjxhl#6t7j=rm}`VSnD-LG+6eq zZUVVI z@01-KiBR-RN%`EFTA%>)t#IBPGIXrXnNPzn>;pZrzX)Q$H3dTbn3pkM$%94u!B>3A z5Gr_?O`D#jGb8PaQ`C#2#TAnopM{~_DRcN_0!k2(I45XO2Kw+6L!mAd*$GMSELtOi z*?}$rTrJ9HQzrmdo59Eq=KNuy92&V9g+@Z?ElWd{5Wmw(hjNYDY-L)p^fea3kx&_X z3p=D1@k`s7N{55Qy)7w!!6x*c;?hhYDRZ+;?UIAY@oC4{r!a(JA;M|R3H z>f0DQ$ARS6Q^qVGp5m`$Dun^}^p_gyw+KNX9X29FARQhzBX~fIh)qq58l|pem99?x+fQnsb7)MBX)S37KSdVkQXgEi2D# zx=)A6GDTiSeuK5iA0V_>aj~yS?>1z{)>zHaF95EVqS%xN#O$eo8~1fP=mzm&;(^C| zh48RkU<(-0bvC=PfnyJWtxQ0~1aTAwPYE9*4QhyF(5RH z5s2R0C-XWeQ`)}#p`n-wz|;DwpzBw?; z-8|>A)6PsUa7)BabfxC1IMgOSR7MOdQf!9Kl&TvLE zUV~{3wp6$kog)R8Y6YYhkGyMe?o;Wn=-(*qQFdb|UtILmJEMff_HI_vbtDLU`j~FPYJBeCJ2$DJRSCuAEACrVPqP$K33W|KNHk4^;uPMoq%Ke z`Fy_axAu?SRcS}Kr{jEpO}R%>>Sw}a%$$zLC!B*lW_UH10y074DCE{^3F&*XGz8=@ zG8X`p_B{p16D&4T)`5tA#PtQpx6*qQP74Va+t#n;a`F7Wvnrmut*v#H$6dx%51{%x za)H6%25#>0&>f(K4Fdjw{J}i5~Yz!QPd4SaJ?Y?JN)$F+6ma4#| zH=2Gi=Z<>$@m2+)61h7M$LrvXZ0Ku_I(;BbZn*_zV7Lvze`mM;Sv>3ClwSXoVf{~n zwA%lz6a+^?$N6{f^PAQDpFUZ|{HH5kR^5yF_+@vBxn|vt|K`M?#VdkG@=C$May#P^{Uz4(fUDVGf ztPSn!uX9P>$fOa-;-bC8!3?`v++W8!Aysw+_75mXw)9o>$l8dH)5%b(XWJG}<8qt4 zuQylQ!)$`esKk^N<@lSbzbnF$XaViHV+V~l?x*LL+^O(jkcw|+`ehkM9I6@sR_~aE54k9-{Sle)#4C(d4X&$YxLqJs)3~%)PFr+4kR?zj2IE7PfH^(7_48)%F~;(U9< zjAYW@Pf$vb-37l+Cy|FXe7NwDdN*38R&{@Pwef`5ouquc0?ECVo1FPEyc_YBcwZan z)eXKzhjBpp5{PCG6rarX`*BSfP_byZKKgONZx^fmI*7$Vx{GuW1Fapvo~@7Op-K)f^?)M0NlUHm}uxfYjE zfP6qWy+faE51ow~QKg7k+X~euLXOwGr?8Lw5K2ms z;Fji(8hUaO$zyhY)Y7dn^Vt$fHDoL>*1D3&07o#OnE^&*iTZ&iV`T~TdmJu1#GL_Y zXv&TA^086re1a$?%%A5^FkAQ~D1soVi!yoc%+=mS-ikPDD!gP^iot=`62&6)8K5Q? z%6vaSN0RDlT&-ItXRLm0SdG<{#maJ$t}YRrin)W1l=-X5#&bLAD|4uY8Cjr5h^zHe z{_qEmmm`V&ei%DiAYbwPFU@@bz+TP z)3UD5bsY7n%0ERI-M_AhA-NJ}s|*#SmIF^wMa}`VC!`BZ3t!a13Q4*IGFUnk&O@1q zklhlm(kT{;WByqbv1(vTr}*30x4sd`0eu53cljeRmu7v@5a0t*eziW#Afl^N+GELI z-ZbxW?@b&w*^U!smX6uT+!{IeLfC=zo=!ATz zK18g$4=zfE^D^tdj2Ryca$qm)I}e2z5oS(=mdhUFiK66yyAc;TPL1}-`We=Bc z_mXG?A#sRtl4i2#cdWZ2hEZ=p7Gha77v9lf`vsQI7)2#a8G1W6fSj@%?;RC=wC2$r zo4R1is|_M?*}ZY}p&Rv?5_6`@1k#?SCyQI;t}#eWW$}W(9yXSp*?NV~^08DggKpaW z%DWkMpxO$1rpE>n55asQrWVLBI7_GP4QGv?D3|i3;pOV3-}c+rH-nAPAvDCHj{k|; zKoq7a=38qNsM>24nr=!+T)K26ZOVN@rpM_nzp_f)c33Gf^}asQF0o0+B9hnL@s^=dI7icR{*) z?A7}wqW+z?3Zc_RsaK=!n(|T~HKp1Z_UuYl=YfV{Y+jRPG#V#5vI`PH@|gbSVlrH0 z9=N{0hHU%0xAzu)|F--lu@U65I>2kfTbkeY#hP0E+ z;qK5<6E3ioTiU{^#G|`p43R~_t)hRF1Mn(zoik>VVB9h_yayak%guQCCUM1`1vSVj z>d+K#@|lJhG0pBl3OAOPtWV})lW~f{55ih~=4$%*YDpZtIoa0C@xTD{fCOy=5(Wu? z^92K3w;!DuH-iY{c_%q?ylnZDD|ydsrbb&Sz3hQ@!l{yQ53BmS6>vj&hns;e5Hs@? zC?wX<)9kfZ=Sq!QE^ruMIsB$pTv|M#<)w2nk>I#I*0z|>pq z(&#=Xv5^xs18x5_a&oAg-S_;FAxiiIvykeixbsa?{Jp~~;XPh~Jtgzvg z3(T4=64FtXh3i%&8nVM(?u!~ve?vH@X%_dimxC5t*1u;FKA)%0;)XRG$xAC+CDO5XylX-_$`A7H_cV zY$40&-f&#b14yyFSGpM>74#ztkW~-$ac=BTFL7GNlS%v`FPA*ouE-lp5%mRW`H8X= zHF@Ox(2y6?6@y63-rh$$JWQo*!jT=CP{USXV0d$vU(nKZiOq0U;Gf*bG8u?OINU77 zSS!VMx$Vhdpob>!G%J#6Sqla82e~Y6bf&m5*&!YG3LrWk3LrxABZE?~6lLPUP~7!`fyLP`{BM&su`c!owsCxWWUZDc}~k21@BNY>Ah{Y z&@4li<>9l;I@Qn~8dc2jt4njO#1RN;FDxkR>j?T^IS<>6tq6OTnjp|co|Gw zC(St1CoHUi_>*9&nwGC*+Z|b>%r8vlBSd{Ktkd=VKyoH)g&3aTB$S4 z(I+6MlYA=cRGT|%L4g z@?EzU?h%#E`pS2s)(t(ykE!;<*B4qU%GH8TCGJuf6~7lTH+%`Na%xgA(55QeOiDQ1 zhN=ulFEV0-TJ3(YVMEx z(CL4#8;lb9y>4)GbuCP03o;sVNyI>0+e{-&=Bh_VBYN$ZZDS3&^fD$LMeqcp-}hgu zo8B?s^x06wPxAFj58J$);I63Ozuw2->V&`%*nSO+h}Au%Q-YeVePA$mS87{FYV9A_ zscpeuiStr(`zfxxeAhZf@LK;od55v~Vw{6abqEpkQGGSs8ihYwk4c?^uRW9j{+iti zXWCjox8dB%LyQ=WwbgvS;p|#aI6-^hzRyof{7WITx6!%{yOvrDe)-Gy)HZ1l28p@U z-X7ejpI6V042#FwdZBvKu)9-BX-4u}I!&ED+3MN$J}axk?mih*OL8Z^-ZRGziFc4* zVVyRXFUZXJ`PU|75L?F|KqvAlF#o1`=J?<8y9)mIW}Xur_uswG?E&G3I%>NMQv;K8X@aMX81~!&IA#R;i*Roqxrps$@ti*tDaN0w^Bwy62B1Dmq?nWFgg?AS97lGc-Tdl9BFhRT z>)YK|u78=nHa79kFF3h9 z-M(&jYj>T$z4?3#YmFLNWJSt~xf}G+XHi0;?wTwo$NGL3ZaJM*U%Y($+guk`m&rrA zld;4-+0$3wy9|DglRVnB6*>u?)V8>dBLDX0uW@;Dw5#U}Dz0>MEqn^hND8Z63Nag)%B` zmo*M@p1*N4(p*%3=`7WG*5hN6@uJQ$8e%Mj8t{ajWiZ4LD#WzuZT?)fV|30K%8pca zuE_fxHx{~IpglNckP~-?262Yxa*hgNBB)`y`3!QH`m73pPFk_R|bbJCpn?Ei{ z!au(_vspNLgd(zpOwz)l8P%8BQa~s&S<0ErbOQ)QVBvuz&)rPwd5 zsE6D#q}O2(g3oX4FY;}E7!B&SLq4EVw{`7<}oL+2vyq))04 zfsCH;t^B8PYK>2-1%cce*0Ap=13`ww!`k?YJ{A+I>-qskcQMV#QK?Ac(3;?oM@j&1 zzR4fnd|w+ZB=Bwj{S$QW@NNI(`LcB~L_^@dj}|S}@bsF5X<4(8EzIe+b#vGff+k#S zL|(Jsx)Fsl7vbE%6)oyBPOd4;PzjK)q6R}oX;z?Mc_ajmz~FBwlmJydICp_BnGo>f z`@Yv&*%aGqxJNL3Fw7OpVcv~mULgTH`N3C3T1w&0sxa225mDx19_~k4joXmnE3ecq z(0J3eSxxjn>L{!Pr6$r$z`P?G^s;_Hd=f`XKW#==f+gQyWJkh8)JEACVfnVIp# zBs;gKxFOJ^ACFCOTkttMb_Qz(pw-{)x3LeJ2Dhpa9@g}2}pVItA_fBXcai+ zy!7iJNpED1QtL;M5Vb{nsh-C%)%3Nu%Ujnaj)PwjN8?HJ(=9?P!rTESy?Z;^VS2!w z&ScUR%%5J%;R3CSl__F|+hikopi>aR!qo*^(mjh#rpaH}2YTWlN7u}q1$8?YKkeye zwaWd{Hv(FVZ^^)(ruIpt371uQrSX6R5t6$#T86f9o18)4v-ZxzCVCM9YBk@9Vu*#7 zB_saq;-8Ri=ae_)T}mtqdTS2sB@0MIoYKKQIh-BByljGzYf{q7w@|;kI6oSSgDsyB znTQ=`7@?U3^7mDY@279Rg&M=&M?Kma7_O^lM-cN6h`Gy{V2Zt)<3jW;=0M$#yTbcz ztcBTd<=qRkzsc)%#VDwE4zQ;^{-gw5cwj?bp=q_ewq9BcM^}FCQ0z)n+uadGF z(gIp}0%01rUhgjA{ERonL}>Yx(}1Aq=KFcJ-^M?-IK`s$hG3hl29x{@rB=|G-kCXq zRFS^$G;W@{Wo68qZ>uP0mpbgM%Ty=YH&7`sZWV-Qs! z&ra*}MwaQ4_VdQqZWfiBLxvTfl^TQ+rb&WJ_X*GQuKN({nryT4B?2qGI$60^r`UY{ z-ZNvaut^vG^I z{!auVZ1jK2KmY|58~xuh5C9v)M*la>2%v^yqyL*F1Q3X@{UMI|t67BYFPfC!Q3*5P zCx3qc;AwyNlmG$|w!eEy0D%bG-#sOOUuOHOr{vF-S^!7>pD~MQYt^j*jC6oft0<-x z%h7#PM8SEkls~|BZE~e7mzTYD4)StuKFzwm*Eg(~B8ic7h2z`=LxhST;#WM=rnW?+ zYOiwh^FG*_E)+`YbtEz+$zT*Ptw+mf*&g}F>;CX2fo_*KjR{yX1z4k}yIKH|cDbaM zRB*ttfyNv2({W73RQhbRY|qQPUR_zFY)`f$?~?;3$RwGb?eUrA^UYw}xO%bb03qct zmfG0@Lg_1{*v;Kwl%C$!<0ao>?BE}se887d&rzs&JB2WC`={zcCk7vx@*kdjed*3x z0qpFcGELv)%Rb~PeirKdpURq2xK@LKVQdHnjbTP`-!E^F_=)uR#hE;I0Zx$@N|dAp z*RQK#y?L%>`%9i^wFH+I<}KBOcsR5-l;PuHKHav@2ZcvTGY>LRN^?ig&XB#aPN$M` zsd(?3v0#9Ce0T~nE(XQ+yfTw9xH@|J<=rUd<@h%gZ9piJ$;@OJ@O)D;ML|9vE(sHJ z>7@8^WTr`TwbEwGzo`6iPs4^bivF#;wRVFYmK)@4yf}n0c)JYGcTm(TxQd9R!o&i1j%^)iWAW} zw};G;*1W0j3#!FA4dB&HuRYqw1k-?m9oEj~lq1z+(5udpiY%Fbg?%y*L0z5Jm_24H zhN7pG34$^l-r{C%C}(88ccx?pc=5?4e|zy)Wnr!2>o@M{F(wmPPg&1P(HpBc%h87n z!*v(ePqaV<3QmfqJR_x{!D79u*T6e1_h?ez>8!&(G-%gzmtRo{1XMs zxeQdoGF=BkrPFTNkp0$3J63BA?-wK^Ogc=SVzU5Eh#SgY1$=2Vdb>teAkN_~AuW6` zsN{&o6j7Su@+S~@1<7a|O}|4QEr1xmHs&8aRg_1U#ceP7_VnRi(B~Hc%=o51FT(c&fo~qoSL0!JN@iT0d?WJOd>)_r$+


+9XkLyn&8SPX<32Gti z*AJqG7~%87%+zMo1lNTwy9bTVvDO%sfn zQ3y9aXLvlNsY2+WD24;gc+kOf)ltC*9`C#$VCL*9x^3=FT6x}vS?FKBorAq7iXLD& zbHKT0=8?~lEWglyhzNb>sX~zJw0U#QSsK0c%b4eCP!b&1Jan+t$)lOEFsjSNXj?;F zfq1KWT@q1On5B?D3`gP}Y{a$2G?aUILkbio3M?{K5Ic(xxnNA_AOsXV!MuCDER1uQ z8FzP48I@<5rPBTyg6Cj|O)vNgh1|C*NFJsS@}}lIPnZTgf!Wl{O*;`Bp-QV(#VDm% zj(ivc!cfccvtKO4tn>Sd#iO5NiWlq>ut$y63tWe_+vU*3!%sfgPXy* z`ghejIX^o$Zc0<*mPA7}%R{4BB*6A;Myq>=P}x8!jK-MqQ)PQ!GqzoiJ}jb)yb8LJ%-u^HK;MqJShRj)q>wk#MQmeK@<;Z zKonWCTghY8@WoOLiS)zqS|B>i;`mJP4&{(Mhkx84<6c#)oTCr(3 zj&UGoVlx!f#Y=U@_>}P@5;U}fkvyH2$B=6O8Z<4ftm-_+ABzbAAjhXJ5|BqQVM_n} zEuf^U^^1K8s?S27GhZNcKkRp#ib$0VK1hMIjF|d#%K>=?gj|h@&WTFkbChfJvq_ch z=yA0|n^tyR{!}DiIou8{ggya%jTtB}CQBQ+=%G7@QYj&`^mw5T;h${YqUp>lj|5J30U?o~`)zGd1fIz63PmYe?o!v-MA23S z()1Z)g@hCo?tMKe%jg$ZOcMJBqk@GRV6P?0;_2&@@v!p}LD4>or%)`!xcGhjLK>0L zVe{>Y>D{y^v6}J=c*+k9uwDVw>fPml&)U{v=vY}f)WTFz__|uf;j+*qoF3o8+|S6E zhb&JX^&809mjs^(t4NBlcK7u6>a zA)3BrV1o3LZN^Oodk0krsA6b#*+>ND4=Umr^~Dk!1`Gct!kWl-I7CB<~#>4dJ^!T-2IrgDN3iL$?E3)SE$kfxe`J+k6^3y7H&R~ z@(S%2&ONvad8;TmKM-LcH;1Agh##x9j>5$j&JO9mZL`btDZ}|Mv_;mQ-@v>m>(osp zhvnhXzBWZl4C>-7wOJRSRg&-R=FnKIo7CR$a?KRQ97Ed#!x;1U;pS-;_4&s=yWmD` z1fn&~9K0}k2&pvTeC|Y@3mJCB zy@*UlW~BXztJKj!Ooc{o80={)U7?-7v&ckA;8;5bM9a6*Y5HYs#4cgfn8lQX^deBA zS`ZIHKDfvNGkrH5_J_`l6SyiBM>{8@HdvNx<{L8-O!QtKB@?=kw3;-pP+2qIs#&OO zwAt*iqCG}#iw-HbQVAkNOKRrJr8H(9gZ4O+)-R2^l~WkxzJ}Cqu4SOfKvAaJ>`~#= z$skvV9h^P{L#;Y7gp2ttTW*5Y0$hs+*qR3g}+#q_Q3q`|8;9l zV92%L7!Zm)nm+$E0L_ias`QOD1U&_$bI6-$P#X_NzUZ2C=~phUOgUBzn`R-d{w=Pu zPwyL!Z^8PRy0B)#UiS;zWA}p{eb6`^0d<8#U%AGH&qrvV{?B$T_D@)77n8Pr)jJa3 z_v=p#+wMw!xwvZY$~o@N+OWtsRxq$hKCgQd#PP6(^&g*wt;YSFEaLI2AMtCz?ul@@ z+V8Sg^yKStvrD)fU9zEktLFmbQ%9DE9Xz5p&JAEMh?F+_QTE2|>oJ`fOJVDa5JSF3 zmW>Zr(lzT-Ui?sdI63g0H%N1V`LD!&sb3LwB#fU_A|^RhQc6%@{ULcSDnUf_Sfmg~ zr!MmrZ^~tDp>M{5U8A0r&Zfr5Y^H=RQ0e`}S5?XUb=j)>_OT#t7Y-4bZ2eYn<2*aL zT-2kJ;0r6;%KDZE^{#h9x6k*Fylan>X)EbohA-ez_d6S#PBjfoCv8{ZCq`qNvax13 zJorE^K1wzTOf-_J-Vn(eD|Ql|C#Uj^Vqspeh*n8Lr$(Tpcc?WvFOk*QM02k*5XUO5KY zvoB_uD^0B?m47$vp~j;p=s)NJeGAMR!R2i)^lx@3>6}kDhPvh~oS+%VQQ;rc3jY^F z{>gLv-wgSQ9fANuzS4t%G_q#r*3J`m7(gSCHT&io7Kfnhs>_m(>V%2~=~#Z_Xfd%49P;UYtJ7?unTmCkoA~Fr`2DK zRq;Y4f#c#E@OhUpyxs)H@ve7VqSfbL#{_Il|MdvX|KQkSmjAzvEx>Tm(f-~0{BLla z|7mRTFVWBcnX$z`O)3D%4I9(%anm0@)BifQ_@{Zqf1Y6ga-e@qDgZ}%{x%W$bMuHl zZ^#GiOa>h3nbsni|9;8)2~^~S40yFz0K1LO0pGap6nPq7L&DbAH|%r8UsfjHAddfK zWpa>q_PPnXmrH1Z!6jV~IV(0kAo{^OZ@e9{tDEA@L3%_sBOwMi01Wwt=`cP%c>OioWSQNkE?Ze`C#l*LfnG;@$Q**NXwROo%qOUJwG zm175+l`ub$!1w0Qo?0|S2IvQts^L)^4 z1CyjCgEF$Ty>o|#vTNGb?IfpOeZ6=-K&ygMeC9O_IM~xKV_Ve$uNb&qPjU{z9^j#m z#%F@IJ%-5Hb^`s1(Zdx1PRgG${D&Q1hUn%mcKnrxD#>&^u3mQaHk)lZ^pEPQQZprE z8~toX(7V<4H`cwFhizLNZ_SnfdO6%ZNq`;SwzlRWgczWCK`yyEIk!&Nf+)PZ{CY4o zMebYkZVB@bJN`=KZ##bRMZ`9*(+KOmEe`KyP!CUSvg~g=exYHXwt*zd)|Yy{Ar^&R zuu{uNi#nISJj0vP-k4P)w zk4k=z9&VmdLss>fp0)>qspctt?Z6L}UF3|qHc+E56yz}eWVenXg zX-*PkqRzn*wZwD#?|sh@f8F;iuszt(ptBPb2y3%XDGe2woLNGjWS0}(xw@ee=2*x( zQEg+#FD^tj)Z~%v<*R|()K-s(;L#6DFZ}iYG51zMd9CZZE$$A%f;$9vcXtc!?(PW? z+#$HTySoN=cY?b^kl>u3j4?80%~@yes=d};m;I-zS1+#K?|YuNwOtRT`cuNQ7C)Tn zPS2x^Ub}MM6%&4xf|jBu8%Lf!lvqSSUKKiv44+GoSjB;7>}#R~1upMja?hrd&sn0G zE_bwWcp6|7%+P}7-1aO<9}FROO-Ylzu{ghm{-MJDg}NG%l;32CaT12{Dfe6dhBt`u zCv2;)r{q7rI%G4b?=qTGbwsNeL^GPim{9hRDt1X7KDooZiJtAPlaT7Zaxw?E_$s=fQc#=GPui>|c94CcD>MzX16lZ-9Kzl-3Ug;*xKG z{364gH$XmcOtyzhc0kJRt()XUGmo;h#TWkXAKw7^LC6aj1Asjq+?2&+u;RwIJsulD z^{ao_<3W{8M;tx>X;Cuf4A|olO&PmQZw1Mb6A1N6lX@y8el7A&g@VSV>2_Lkks=hp zXEDd}A4lBv!XL-GNJRXE48se@J&O;8dhx|MYz<9R&=$rP@wUJ(6vAF~kF(&8=8*y_ zftOAtyv9hCgCSGEu@X9SJR!U;E^Yoh*(6^RE2YjCusSu z`=q&^V%I`AA!Urs&(R&67V?K(yP9hNA^*+w{6@%UO4JA2;@lBUp$?@Js7&8UT@{hjf7G!knzkJWbHm(p@Y0uQ2 z{Fv{pM`ZzfJ#UD74n)R3e9!6WxDlQJ-}BEuea`~`-?NN!xtGWhZG;0)q1%r=IBYr2 z3arW@jrY?Tmcm?I-^ZY)T`b>YP4>=jc5p8iDLMLQevux$$Kk710~b>t+X9XwgaM{y z{)%+>-E?w+hjmN%5*^PddIis2_ra~H-D#qO$VI-Iyenk!Avo8PVp9g*hXSvHL%t$< z$Eku&;c#n^go7$lX$6Z(d{jg`?Gx!5(BL<`B4HQQwVrCxo#!`3zO&&oKPrHczm^I= z8Qm7@+NGa!H6gEq&-9Mlk1!WH;Bl`^HEI(zAyOSEloAHxq_hEvT{q%{Gp@n@MGs|v z{V_Z9n?h}@CR})S-VrJQ>Q=ri z*ci*`G3JoY7^QRP3wabq;y|ZIncM41Z|B3DA$Y_)L@2F}PPn(l9t6N*&k2JecHFnv zrq}sSC;5DF+2;)s!OPEwAFJ16`9fdqij#4S{Zry>W0XrMvxJ03yIZyZHRD|IH%;_3A%D=DG{8QU;7 zVpO?4Yk2+WQKftF__;Ng_^0T()%EX0&v+&H&-39~Di}&}JblyGU#@2XNr%1vzTw_|9En1KQ!{v11OXhEDrp%~#R}E*$q~b) zjc@h>$!iUiq8A3roa|@Xw4E!Pu|dsuZfe)f^MTXq`+AMQW600gqCB&kk?@K4XuUf< z6*??ej#HyU2ahJb)yYoI--C36IArt55pkdR(owllFo{(p?bNdTm6XPiu=LdVyD{(! zyU3+FHvnY(xx6K0*iv0NXHkx9QDqG?BVMszvS(1<$9~{9*)tzN_KfpO_8hV8^TCa8 zsZKtS{(FNazI5&Br}4$jyU7z4opqVy6f3qcq4rg+>gRnRyrHKfsot&-TT>7)2Dp&^ za7}vt*Prm+9}bMFS5Jo3!Es zbOVvx9>B|UZ!wmCXkk~eFS2v@dXXOO&!B1Q(5ebMzrjVAC7#Vh6!k2dWhnQ<1h}$1)iKIj~4LwC|B6R#&4n)~`gh^z>8iJ0rtfX1P82YWNaBph9PzjSN zfxECQVFG!Qu~PO@yaNdYOp z#m1c#=}M~09LdmDCLC$$sJK=bV`3(G9%Gp2Kyl^q$<<*A=Dp<;1wi6Cm#%u3!nxxU zqf5FKDVb${G2mb~x%WPo<{Xvc79FHDGelxJ2p%>ewly-*^DG z0hN+zHGWzqF31_g=L^(rz0X;r{t24W1=B4T{0MJckVR%6qtZ5%96D=8#Ll-5NVT4> z+7VA0qE+%%#x%9TQ#ZfQCV{y$&mkL9;~L zk08Tzkx2#Z&q?PN=dyZGJb4227h*sA5t>iTog})ixaE8hkg{l%+`ab3T%50gKc~b| zredT?VWpeG3M~n4o8G+Gw-&EgB;2Dh7kUf`NvYJJdxUE)u*jo@ zgsSl9Z9{8_q&MS{x+gJotxpFzB=pSGC!C;GgoUeM^?Q*EXc&PO?$Cr5<0}5p=FU;J zfSKspuG|2*4LGFw7~rXs*wJ-tq0Ke{#xp{=dxPr9eLbCJt8GM(h&o8Yl_Z=c8~0I2 zipl89xLNTeCG;UA>1i-}?*>dXrwK=l0;q7}1pKzp#yB!7jcgnxjbU)~(Q5=`4Q8s6 zD4epOq4WnxA*(S3@@m=O^eKPh5C#Vn7?Gebqxa8Ly;~ocd$ANR39p`>(ROw?_BJ4P zgVpQQFy4`D%!5M%kFO!11ijD0pJ}9(5T^>!2L_op3s^t^_@1{du#l==(_xU>1E5Gf zeVrlF==Fro`Wi=i2we+Pz}^t~?VaKc??1dD^5Hh$5cvll07O1l;pu4wEoAo>Mp8M^ zJ-$BW)F1X}$ST(hxXi%9W{gEsj?);_vL53Q0hf$g4>kBS{LTWpb`feU@%-&RZH&D! zX?IVuCA5sMdC4J~1VBG1zul0gvgg|!>5l{juC;`M^=vF7m|Q(9=4bL~+1UDvCEzP) z(y#@2G;6$b7ltA7Z~H1{aA1ER>bjPn0}^6da6q3C=tPA~4-)P+sDlxb;BR7tc1vg#=DTF= zaFAHv$@knd+|R4i4NhkXW$SPLG9F}DL8#kw2rNG5-J->XN?hGW7v>c|Qb&@1m@&;M zIFToj&1M(@4X%oB=$N?Hs`n{!8`8z}vUzjA^|)ROMfd9(ag;eg`E1%{oVNL#q$tyH zX=t!p{q@|za+&H_+&m=y2w0W(3rz5|`y=F}v^vSR=M+-LuVo)lls6ubMUH;LBZs@ofkFdloiptjMo-WrALgf~@G%OP2Wq~U9QGj@ zLXQO5pDxRwc}!9?#vyJlTbm)xAt0ig`YPQj!);?*mrcwPRfO@bzDr6-Y%*_-o$#mV zM;9&{$rIw0;oP~(^HWFz#kIWNhc?}#y3|v?vmv&_3Qy9|CynrJD*SHF2y#-Oz^2MG z7D|s&OAq&;B@fe`&vnAWAjK6w@+i7CCR9q4wDE)2P!IdKw4@P;NjBcMm?)|5Mbng9 zsWq5MP(?GV2p=wc*oAU_NKZV#R|Dtn!`J!x5g#sDd!F&-Vu!RK?|N}c%U0<9j3Js6FB5IP0{n0|Tj;2y@j z-R44A7U6=m20QNUr!jKkp0~|UUzay?MxqqL=JwEOJH=pnub()4N%aR|zdycjY%Boo~FEi4<6Guwc`ykkXX>Lz1;ZFp;122;DK2PU z4E$D6G@OS!64iImR2<@4b1Dy*HDz-NBf)R9o0Tr9&z3pqf@l~V05BY>`>+9zxMlY+ zav9}yzdZaJh~=p=^t|NK`~5(_CiriRmwUOpaI7_;LAHmNZUgUt$nFCZNbeTK(@f^2iE=e;3=d8oA6c&4Ne!2`*g1_ge-wmbHy358*Fk(4x{nFSyV897lV&UNvH?76X?Nt);MF=#(Ln)kDPRKtOK{EW9qeyD~6DLMKK`7 z0Kz_j%WL7&lW9|{7dNgVSHT!G;`5FxId|>el@<%twXfW&$fToqV5V)&RWuly@xoG` zXH=rG48^@Ckc0L>C4O1s%b>fJ*C2WhZyn-;lwO>3Nc(rR4`QQjPD zdU?FBR@Z2d3M%#pCMUk^#kw@&&d_x3@YP@aNkx!F>JZG;33V)w6~0G}aSK4~i+S3| zgbSmgUjKGh@6f&$NC4Uvn&INI%g_mHtt`Wg{;Joc!6XZ3Xq8LGmUW(sc zP_kPl|2W}Ozf`hTIQkAuetL+S@`!c{rbW>9inXVimu3*n+Q0aIZy12s|4?~TLm)NO z$V=^7OxLF9IvANW{}7Lt#({7Uo1@Ex$}1m{sc!F?YNkyi;5qd?8rt|w#kKgp$te)v z8$|5+shGxM-jTS)T=}RID#XABB|Tk>+mVhEc5t~uDYCtE?*g+{J;j&__^JN$Wc|wu zB{VF{x~zRTUS~SUa%SQsn{K_oL=Ng9FTqSpTqY58GaQN4l&{(|9UU6R)_=V;VEuJU z|HtyH+`lC3GqL@Ru+IoM1^>r{eQnnj(HPH#%B~d>Q`g0V^D`a}$4JzbRwfA(#t^pH z)o^?QloG>@&Xd^JOk+Y3@a1!_YtDrDypkT6(GZK&Lu}wOq! zJZBAz>f06eaz(Q7&YuzD#}IxhH{+Bb9Z{LrAr=g;rTK4AX_GraWl#54k$qgw;p}ah zjx-b*MFy;Pn&AkELPR)5Y#NkEpH8yR#ZMuBga%VPl@nx)FP9LkAs`en(%R(~g&*?6 zoY2Ysf!7B-$16OFp!ivKRFC?!syiG3+X#Y|&dn8tT?Wc6G+H@^egZZkmy|Lu8P#u% z-=TIB#PFS^A-m|ideH^FQnMvoLy^L7@R_AM{^=c(Lw1TmaQj0IlF3Yd#LW#5esdq^ z^0~a=gW}_;ewbRk;-%6)zV- zs5c)w)4XPEO3pvr%v~kU9iyVv%#^y8qKk~Vf6C$21b~taY9UB0UAPr=8;^GzG8-%v z94H@Z(w)Z&M;hmTT5Z>6VwR!9CFeb1UorCpenB@k_p(e##C#R@tmRo9B!;~S@mRV6 zkX9*P*|T6$1(bT zjo9hIT?Y(0+S*sgxdUOI^YL+w$*};h%6d+&*1ZYb0uU}6W~FUBrEK`^=g z7a z;CFq&Ej&W=D5O_6L7N!{qhLO9v6A!Y>|-9zEvUdnU_xGm1E`?Gs!vWQge*IV+mLhn zDdBEO;Z4t0N>&o|MTWZCGT%|x@ZDV%;696g6&+&#mrRM6Oj0;4bAlJv11UxV6188-8} zD4Z8x-1eXFOj>=W1{mzt^bwXpuhlk|x_mDdmEEw4{DEQG=C;D~2YIugq4E>At53Vf zinz_{sfFI##wJZywfhJ?h}fkP7{L;!{4~%7;~-3jWlOMrB{*xzvVzR^nlPstJ25foZ@4Pgk7bN&YdFoH~zdi|IT_<#_LFN z(U41`p~sgP9tfVr{w~j2J5lb%Bh+1s!(xyK?Cq|4@>J(36wn>b#9i6znr9)}hJDfu zMivBDF{wnnCPJw+H*DZY!o>4C=`!GUh?MPWSpg20J#jG{sK{O{v&dpvib74feZ^(p z_%vABvdJ$ugPcV&9!2&VZc;M0NQL`M1bPyX`anU_ZabCBVru(EVK>g2h|Owg_6W=5 zDcHrZ>Mp7SxOtHxWGPRh3s(y{l}A&k?{!q#Y(OANYqox_PcYoZy>73X>jVEqn(&R`0% zQk+5Q8f|w2r5cg;Om4xT(-AriOp=9VK7gC>{V7;aKYcX3jUadsBJrXNtE@|pIia=U zu+e&^+9lX7T(WRWO;O(-L-sg$v9ScBc}{*Oya|!!axWU(cM0k6BD&(rV=?WXj!O^! zRGi2_3HN7Y&yZZoJ5yp7&csvn8h4BR<6cvC^?A+Q<^U+CU+1&D}K zG}uqoGsKI-?8(J|-rN_<;N2NaSL`L0kgs^_bX^Lc?uDL5+cp1`b5p+l;yVkpN*E+1(A$Zi+Ha1-#SfkJ=f$o}2 z-ZKURU5XYq{o>t<=0ax!KY{oVEW9{Yt&eVqTY2>4B@hyI##~K5G_90XHReI4PR~=* zfaa@DlO$0Wr_ppT#w4KE%o3?Gbt!-I84aw}7i8iLrUEZ%v+@%mQ6P_u!QDsBzlsTD zMBu~aXCdZ6J>!#bVm0xlGKz@?`#fZy2`@5_$zP^Q=mRufEKT~!kwV^eA*_uJx2lZ5 zim!d^MLxjxgXN*OpP>N0{Qx5Hyc!6b{SE24ecm0Sgz3StH-z_hxYJryJ;ZoR%sTH;khD4V7w-5vt z#Vs3G#LahV(^7NeCm6oNTQWcz(cKuE27UI!$&EBA!Vya0kMP=ZDG*@f7WYL362Zo> z6Cjr;T1j_VD27@N4a6$(*+))eH}GFV+TCTG<~JTpSXGRf%EkHKae+c1%Lt^!02j}q zqXM|_vCtcEkf0|oS?6;oKVyswT|5Cx2Jt9bw9ju zT%ntDm|Dx$O~0)5{b{lKGE18UWHCjvJTPT6yX(?%sB-0Mhx@Ts<7TAsG-|~J;k}%5 zSgp;J_1a~7=~1dWoAn+dNr%b@FO-x<)6|&b)~hg?n=X-J=bsH_lJzI#u%Hj}E=w|r zj$Tw#C6meZoTsUWh^K+E`h`s%)J%eevuPFu=!nGH}I?~5erEa!en$1lM9qSi$GJf<--V2T;T)EH0 zW|+4w7VV)lJJ%+~_t#AO!Ksd=%pK$VpIWrEwOP&fwa$UFYoZs{v)!sY%ok)@y;|CpSNh@l>Q(xV=YJ0_F<=D>hqdTnC>3m zy33#zE!%?JG{7H`eOlIYVKJYf=q^nO@zN zqwJN8m@ND874q;yp4g@o(>u@m0O*@J*T+K}=3JofWQ?D9)h0{ z5Em_AL>rCcNavSs6E}JeKR+kY5O&H{>vu%Wnk+hfvIw8K*ATyOnq^Ac716Y>Q~J0$ z`2Bz?@;0ZeN^Q2W26ydaP0i_Ap;2QTB=I^34Y7g?fsgc!>^$hub4}9Sq5HtgqaaC6 z8$Uh)Sl?PUC-$)TOJSM4n7a!7bQ{Ki^r+K1Ngvb9`$R8 z^^&OYH9ftR84+9hI$NV_2*cA1S`XqBdR7nO`OCu`Hp~TfMh`!HFg|(@Vz>iw!(6tl zB!afb`{;o{TY9sr!)`WAMNY=ge)ygEbV=N3qk6E_9#(e{#G0A3pZzZDh0x=A`I{P89r}gcG$zMvj^JZ^sq&4zW=A6A#B1Czc-zMq8DhF zST2>hve_GIeO02;YFw)B8HU!L{zf$XU0sZ0sx0l8n?(;2wJ_yQhI8mp^ky*HqU(}J z8>S&Vyn`YdbD2{##7N3*Kc!2S1(7kK3uecAq&x!W8~6d~nDI9+HjD)|SvihE$YY+b z2<(GRu}&1Y!TsQl>FC$+mag049kV7E-(MjNO(HLuUUj!k1F5OdcWH4km3!(IOG$AP zR^A_j6452aUI!j5AVT9ezfia@rz3VqZ52;%7TnHg*1J9E!kpRPcbunps>DqMXC>Qz zV;K07Y1lQvu(6MM;Rtuf0rB+Ntt-j{n(J7$E9&7xS=I;R=hME&i+Apr7|N)pYjQak zK`vh9>&YP%c#p3W_xcCW-ll<_$3|ih3L^WrNk^lGN!aPHo#@3o*Pn>v17%*4iQ)zE zaEo`gP(`WwJe=}kM&z)H(QXdJNh>oM6)97uq9xaO^^Iifa*5;HyjuWoo{ET6{vn6e z{OUV{eP;pA^y*;4I6ZffAu~8FIyY` zwZ{9urM2-7MUA%_FZ*A0jJNIM->r>*sAK&53dcVbHQs8xe-=Xi(;6@He?;b&a{Mlg z)bXf#fL?qdyZ0>qPDB6-4M{M%si_yosIpBu+tZCS`QqH%+=L{;WuDBR>f+n-T)0O| z=gUKW-x68RQX>W?7KAsJR`rzKlyuce)6g`mZD)H^C&2~D-;?=U+YfAi5nPypCDU_IUn7U}I1onD1ux|JOhO{`UmnXKQv zu69={J3n1%SLfjD^P&0g?Vj&mPWUQHxOlQUZYdc6IfS9%D_35*M~!V*3H}+S|PKq``{!EvoL!PF2$c#KkA&Bv7c^3cs7Y z7wFWF=Kl`J-wpusa~)4><6CJawOL?$d!OR#=rRe|{A`u+4j7}dJzdLGWYJmHm;da& zi2vC4Cy>9v-|-)T{1puPFU_@P@*u+M+z_0f$k)&r5y{+lamZGBs!IKD8XQyGom1cih^gYFGPU|58>yO0LgQGWpWqwx9HfmJ08G2#bHF3gRYua}or8G9Kk=)E}9R=tKg z^u%xiHqC1))}P=C&j^FyGS6B~3AIWQ8?d7N^M3*PrT;yUpKn{a#II#;x6CV@Pe(iu zGgnHXaG(;*&+H(Cw~!PKXJxt7ppRu-mt;H}Y>-<07m%OvpMm_X{|dHHm>2RSnJ4jVp2(>mQomgaRV$(~X05QD&jIVfGjM%~ zH9j)(Mc$*PD$M-083zK5s;3x=i8b|Imq|pC)0bJF3>Q_K6c{AxYxrF46^(M-N>AK| zLu=*oERc_zZatRbY!s2FE>26QhqslW=~n*QJ7K}y<{RU&xl;ezNf#6w^n24OzfpE) z4n}YG(&7fTn;MK%GxYTLfA)A&q@Hq#U-P_E0X|v?n(Yov7-*PcbwKIDiy9G<@3S4= zR>plt5Z!w)Tox#9pl;a|C05qLr^`L&q9V90w`{}E4HT3W@wy3ZtxczP{8LlsUpeWgER;;QNXq?}gRVqb`-M-J z)$00QynFX!9asJNAy^*d#f0VqH6d;wQg1wd1xkEnbnjyV9Dk;m zsA;D-BCOI(#4Z-!^p%&tF_j_T53y%h__v(}*z17Is zPb@IdlsRrcXt0^HotBx}87-~Fzf8utxO|o)7GEj1*5gNA4i5TZ<|jJ_?ImxCrrYbI zc5=i-0E_kYt+flsUDzyTQ3+|)n=GKq{#C>Va>w)CwJqc0u{;hJ#TwIwaM8n7-Vv;6 z38L_&+mR{#jHGx+bccT?Wn2tNt#?&AgP$<<(QdxdmKe~|3Mk8v&9mwHQSfKCbYLCL zRSnnN%St(6-lVtEF3h>#v*3P3_B5|Pl^cYRC@S_es8NalPhh4MbXFOWSR9?IHKAQc z%Azy1^~|H6M4I=ejVEGcXh9PareUim5Z}j+?Z8|p1o%b(jei_K;~xRg_}Kt7{)d#4 zij(<)>0@-A3$V$DJ$GE9rDBf4vw_#U%cG;~pHc6`kg_vx9|vFpG0u>iJY07T>*}3O zdlIJ!?~UO+@FPs^Uv*!P1mcM%Y2n#2xj3O2@Ug+KIc9`^*LK10t3_7-#lXe!_XF2| zXKh#Qp9jE1bj*M8J?wAQ(tk|g{_m@q*#6_%F2^tA%m0qrF2`Se+_!0vL5%8%2pfHwox*biW|u4~6PlpRwi`mKnAW zR?5ALLSHgy%$ssM?S;){u?Q8JzyDY*UefrkxTBeP)l?>cw2i19EvCDN9zdT7XxwE3 z&}YtUf4Ww7B-9w>se}$4y~y-Qj|G&})z{OPwPdRDMRa_&?nkv~s>{XiczrtGhMsY{ zu4EuJVt)R)Y5#Qf+&IJtK+gcZ>!VaXohi?Kf^Gv{$q`&re>e=BF|>Qv_`i^&)K=| z`Xlc7Eqv-@6k<4~9yBT-Yh)*USvgG#oigCjwR&EcOBK4S)4JRL1e)FtX2P$M zHyjI}2B%$}>3ylfBGOH-Ee0oP8`)cH7suxfJ)=0bx!c%8U|FKOI{C5B9_qzLyRvA)lxcc2cZ&YxD68(iZWS;H$e;<*=GF|QRF?~R$M(=T2P^S^q}&E5LSs% zMaibsF-3At#c#l3e@72n;HivXZ4T!10SVSe0~W8Xfn8+9B#8x$x?^NgTBEHy`Lu4| zZ_$ZbL2w>*T0es!(o$Hj)2!UcQfE6|;G;h1SW14oP_{O*ORO9BQhH{NM*7exJfdbj z|H(E$(-yZAhx7IT&TOS^K+Fw1vM{UIcm8Owvo^4K@l>j|D8(frHAK3ce-+h}a_Gw( zHblP0%~qg&$@#`%lW;&IwVNfj#IzA6MKb%8AUu6Hb{FzNum$v$;58v~G^>@tg z`dmk`AeCPdmET>@85v^Ekh?g#^c|vk_3e-@Z065>(+AlpvC5~^qooh=`C3NO3pEpH zgrQT*!!QQyE#O9ulo>aEn@~(0R4;`V^o8J1)Y;0sJFc9gsT&&H6=8gIq|D4-;!gAf z=iUB8l>-?o?(r0!{E3%<3PbrPH>X~2|qc^c_gWhF2IM3b!>j$DALXEs*GAr_7ol3tStf` zmbX*)B1Lz^J=KmWiywu3%>wr#!x6!c$$mIu%?#|FdIX!J|8RD}no#bqwXrZ0bW$m2 za}>rn21}eklt~a0bG`IxvBt^xLgF##C*RAqjNo(2+*$Vg*ro^!73@Q&q#m$$W8!Xy z^;si+zm_^I#!?9~4ct5zTRkwYE_f z)Sz-#TO^h$`@2sdJd%6#*>JpmyYkA#$DRo%OyyyMD()fANCF^m^9Nh{99nSAceL+A zdNs`Sa$8o}M)ryL;i0N*b&%@c(ZRH&pqc|ulGky+iWS~mYw-Ky4oF_LdNkdbPAlG zuHYY2(F-F{Cba{3(dQcW%p0VXEm*70Q?Nb(VD&Qv>^(CV*tL%7tNO3a>}rBpN39g3 zK^cCO#Jjxp4y|Y1{ZXW$Hs$>z%Mt>B>aUNCG>eFo?QNTF4wHNGOE14-D?IacEQ?B# zL{i&H_G7%L^>_I$0-@Ngg+pH#8Zai+1w*>emJ{3Uz=ZS6Uety%4vx&FHg!Cchurd6by)E#S=pWJxF{Mei&qA;l|omksbqegO(}4=47Bu>neANHGveZOraRyzRVD8bt%Q8m|gr&v+OYS$Mdobhs4T`D5DD z^ZcqH|eAGO7;p; zCUhD}M+*e-Hqck24FP+u(^)fcf@*`Oi~LjJt7^<#GTKY|WRyYK`L1j~u*gX$dBpKV zTy)0oicPRKTTYU8p)??GhBFllfr)d`$rzXO>DQbjX%W~*1Vo2IY$qP{v-q%i@$N=4 zwjFtavM8qzj5F4W(2db>7m533tQ5Z+*~ap zfDT!%EAm3aCJtHXlB6nCD|cG7y5e`shC#_;nsICLKAQZZvSJBjIfTZvQO$tL#yX_E1EC1ULIfRmC}b{BLnMJXG$|Mfd;x=7{SxO!jikQFjJ=5&%!%~)`wg1+)Q$&{E-@*P_wpd*6t#r z^CF1B9mqTv%oIisuZSI{02o05U7X(e(b2A2%@f9N5|kgK43^sgHf1PgpfW? z(e`Ju={C?nNRIT2j80^2_?~L}-yL)vnZkFQm9o@33+Ak#z;d)^NqzfI%%DIRp^RE6 z_7OnYFUX^>MwmHomZ*75ZwfS7PSUg8zbWCAiGOfeVnFadG{g}F62M|Ing-Qiw$52_;hVrPQwP0 zG>N12?E~gO9^S|>B#+}iG81OZWSauajRaSUZf7^rvy4XV4{<5_3C65}q3aWAMgUC% zU_@kVM;mWEk7|6jAcU}DxEzal$ce?(%qv)wmzBAh>X65;=+FDlTLT}E+-+4L>_fhy@2YRzwZN0TGv3MNXTp>Nz*D%S zvME6HsljmBtZr?Vr@2CBUKyvo*?7RFYe-KEkC3avLD0!T5-ua9=9(oXp@-Bf}4eumOeeSl*Xe9*xmRs7vgPSyXTUb z4)*~&+zAUE-WV)IeYJHM-GUD>J<)f>K*H#8Zlf~EYik&1oGAPlYaXQGiA!H#6V>}l z`O4>y`(|)W*;RFsx24LD_O@q%AW`15o{y3XdObbSADS*P4_}y7vX;kKLBa+KPNBa+ z(7C2!=QiN~Y&i5!F{>JpiS4}ex-7L^>X-6QC*oU#40@fsM`@b}Qr7`f&c`5En-!#H zUNnF#v#o3}EQAAMg-v5!Ej>k$Ejgi$H$@;(V$67c;5urWvlGMR_~JSn-T1xBU=Z2; z?(ygnlWa|uZmW9S)A_Dnw92)u63@pEas8~rW6QqV)A>5=vV(J`LS)JFzNCJeq%g+K zymL&R7c>m=<2`jOsNGGc#Cgxue?6YFGyV_JYNv(&`MRJB9qV6x&)X^X|J8NDf6a^j zw_F$e`x^p4MD(|#|G&R307OK8yA=4lqyI1BKii)-5&zje00SEvz@7d7x4t{3wqgUo zzIgsrJ)l9cU})0?U|&)I*q1tyR1qJdaleyz?Hr9$6H=`Er$}MN#@%HJO@bT0eA430 z(PSnJ6mnN+*)=UaBg`k#i(b(lA*OFJ+uA6Zcc){01F#^vTmB@y1Z7S+$)Z{$Y^`Bl zYVv_lu^|G=M>}d{jToKX{wt@gV|_CVF(fEheNHvaGH-d2u;XG-j8U!3TH$)<%u>)8 zVn`RJLhiFIWD7|c0XUlOoAS?3dqjymn2*0Q+YuufB<^{-`RpQUw z5o>Mc=39`r@kAhE&Y~I|_$o1fGD5%1R35ZVmRNq*)cisbZ}Z7h>;oh!JY&r8T5p=A zkH>{WL6@4X^eLECWfDO|duh81Bob6jMn{1YnV`P#AXM+Wf>|1klNneHeVLDL;J_ty z-*F$TBSi|P8yx!|Po-=JE1K*JPL55iy>EKwWi)54g_!`j|2Nlhunt_vP)MSz(GsuG zU$SGSJv$>X$W0U#gkw7+Tc6+rpr<-2AV*tVW*H_yhO5D`j*jEZIiTd#1v5RPae($X zn1mdxAyIZ`#V1m(WjW-eQ!^A!_F^z0qLKHYrq+3Xo_ea7R|ud!R>}S7+H*m&VJy1Y zQv!gdg!>LM^#?JVBH8~z`yZpFk58^U6Z!t}wt^d-=|c2UVE&p&JLpZ&%QVER)Q3rwfPZW!gqBwlN{Rn{l zFI&!gq|=zf3FQMscL8t*^JA^QVE=Rl zB37n=yv0gEw$o>f5*$UeD-VrG@uel$eYK&887B}S2)h^Vxz&=Z*rLP)TymE*m0 zt?lcO(&fLS9Gr@Z4e_==$Yi!-B1BL$dnl?@?C?v(CSIyFKf&^sjq2N!SMl?_80l-j zc!v*xXMyB@>DJZq(GiBYgCn33GId5l#E+d=3fB-UQ3%sbD$|rBmwH)ceALvxN9;4@ zioMe$sz(9QZxga$YqqLI1|={|afp-ffK#6ML9~mi@>czRl1~@NCyd8-r;>!zgIcNm zh|LR7;)TcYi9UBg_QHNG-rgM$9Q18R^k@6b*82k*x^`LOSnduJ7zt$OR>OkXEa=D2 z>=QT@XsLep4j(TGC>`btF#)dPkI|x~TOTrI33@-QT#stwKx`aT*DFmY+nc1j9H2GZ zGuBdC^16x;Nty&)&pN;jWUhADXp@Xf-WH?O@ZHsZJkp7`F=9`S3;qL~0xx%-p&(R1 zBucH3Q*T*B60FzZgz&h|L5__pFI><3y2$nUV-otJrT`!*Pes0`=8$r&PH zZf$0t9F$UF#Qh%uj5$@J*AC)?J&@JPQs2_z+?pID+amK7OsAbIMQ`bn+RBlNnk`D^ z`>~stE&o0)InMG!*qqiOi*mV7p5)6*mky#|8&;OPzL3=+{Op^8NKZk10t@2T=<`u4 z_pL26*#sL#3IIw}BkBtu$+CURV76#*28rrHe^gw5o3M66cvtNg$^$CvKQET{T?qPD z24gqo;}AhoDCHRvjv+=iBw?SnGM*%0K=~_!A%DwY;s?*3TKN`&otk=pDtFoD;hA5? zh4cKDfN&+GH04}*yVq$#|3*#$#S5U~DjK-Jk}9MI>OOff$nEt2#;Wl?NEv8U(wkokwi;{(lg0_SeG#QlpQhKcF#hM51(3`Y5%hpIz# z?0@w=Z_NGw?xBkPKh0p+nSSLS|0^;WcBa2l6TpPU&h%Gm0x03IGyi2vejBQo|4K~& z3IO(BWSl=00PKG>ivCalu>S_Jyp3DGK`a1t3j5zGJ%9}6H;CnJ5c?Cv@}JFKOw3IG zkrP=x>OC9E8**<&axiqy^TYtz&5;_3V4%NNE}44}d&!1>Ksdaf z(oo8qQ@*#S+e!J)qHg0vC&-=Qk@3lNezrDsEFf*1!PoV?fA%&Bm(guc8Ee*`SqQs1 zdOq22wXF%E$jt}m)u7K_k>iVfAWj-qb*1xi2afggE=%`k5w>Six6#=+msHCsOA;r- zqPAjjf81KfQXP&^=8s`A`O2({j=s@6k8ccO*K1y}{ZL$mYKS(H5OD{%(#(FFGp z7R#LRfj5#}BVp+;a#VlcYu4F&@Bsj*qqwVmp!{IAU z){*3le(>t9r$b3oWh9H;UU5HS`D4CkX>!Dii}z_?Yh!hvC&z?0kUrb;xJO{Rfn3*$ zNWqT;7;l5+1-Eo!gyYH~+E*W5orWJC+O%@Bww|KSzfz*gS$N&Eh;M|iH1EWyK}Z_v zk%|T^d3OffOLA(TH3aQ#>QG=;VR&iNb(^}f&~@%{6OZwW#yD&onRmbo!JL^@Qp5A} zo@6L?SQF)fs`+?_G@p=~hZvHz-!O^b8y0vEAo4s@%jQ+dK-^Z&z?KP4ds|Yfkd;6w z(ZaiFomh^r_-oFoTYnP)Hk!WrRALqoOfWylyk{66=)y?cjil!C5OqOFMZ!TY-9#(H zHPwrCp++MET!1_`@gbaLYC~v$sVJrBGL>B}Y8r-ADBNm4*T{G{fRk560&oaP*<;vG z^XseyhCa5=w4<@>P-tlmI!TF?AEv`-LMhGZG0bx_{V}7Z!1?_DG51cvwYJ;3cB~QG zw#^aSw(VrZ7_n_T8L@5Kwr$(v&-YENxz?Pk{&}$1-s>P$Pk*b@>pkcP?P>Sbu7+6C zv0@$F6ZHtV)s?}CdLXU0<Q4T_V=vUW5EYaB4Cgi?WY?yt(NdZEitN?QSZ#({Jh|i5V1{DLK zjlX!xLZF0396_HO(Sdt@13kY)04^y&r&^@g0r3dn_Nb8ZBP!)>^wW#EW}t@!`{;VX z2J_UT%psKgE+1#1MVM8+0}cUe%Woeq8G z4V=0#--|S4V4B;Dm^nGE$E$^hjh`_A*_hP^w*A2Bc~gk;f!_!U=~8ayD@Uyu@luU6 zny=Yn9X>XNVHAGu#wX&MtsIOY6u2LRzoB3-8s2l@qa!xP9rzkm;~NbR*JC(+rYo}Q z3C*}mSk0i(Yt?qfxC;*zp!JiXa{FC+XBxo8H5lQPaw2a6u4Y*~HaB!_-KEC5wxHjw zl}WtYeqRKj840Kvv8=}*p!Lj95n5AwZ^)j><_YoKv&7Rjv_WA0yI%VM^4=@{Q;Ry9 z36z&Pcm{+Ii*Oll2l5o?D`+_wDEC+B*BZ5aX&Vb?d@+@A9*kKAB^)sFO{^4y2AwAz zamXAkJKS&MsNlVoQeC4y^JHfcj!a!22p;IXVZaL;Cx8Pg zV9+0gDd>0m5bnLJjRQYB6hhZ_q}RDxB-7nFv<`Ro08m&>t4*j}0*(&9(=aILfE&{l z(RnWC_n7mGVTu8+H!&LlJsGw+n? z?(LzH12{~62rUN5v7gz7=#xlgmV)Q_FghO)F;y03@787Kmhi~xAEY&MdS5oS?t@8W^;EVh$AqUH*_2WF1R3iCNr--V ze{VOfahJ;Qefsd`g|99OEy>|&gg9v-_N>T3pPik)Ct=81Ii9oH-fktY*ehzbzf_AU zFY3E+D%I@`yy6@x+dfKntnQ1zJIRFp*1TXf_q~uN%sjWv!s_MES;;wGPq=FJcL?WA zmopqvSbK0pScPOku_b^OTaY0RE0E7Ye6Q%;%D5o5x> z!Y|}HFY^b^v#F+83{Lj)(2KVMAufyFu25Mstkb9}!XgmZ~B#_IDGWp4V{momM8# z4N%Z2{Mh}CO|r|G@az~mBQO=Af=t7ql;W&3(=Fh?f^{t!#4SA&n-D}TQ*EliOqOw? zFjHH4Oow`QV7@_ff+u(f5_V$Pk+XD^aL&mxq8X9;gn1{O^=lSs5^M+cX1Q=j8veX~ zo8~kjp(Yo6Q=vu~Eu=hY; zil9tWHU%JPP;Vg~Cb}c7ccR$$W_H&*!ZXP@-wyd{6BSn7f7=62VIeqhD}*ghX$l>4Hub zq*3DIB$=w%RUVj4T&g5(pBN#+&}jCjp6Dvd^J5z(lfPQ`QRy#;_j_V;g0SX19WL76 zrUJJ{hX9H)y)072_?r0Ka$3;2X(+!r8Eqzs+`HE>Mz-&i8w{y#0Fgu#>>UJ!8O1!< z_R!2wa7ipDh}h-#)mpr5F{ZJNZ77G*L?~&iHNh#Q-I_Hw-q;zVhYB;$J#v%a#D%S1 zrQ`_F%1GB7S%8)E#Y)VKN8LcJw!tdxYlD^I`;KBk&-=6Wb^#{z+1O~Gr#b|CbfKG^ zucF(axDHWPIZ{}JmYeUk1&t6u-M6c+xj0B#S6lxTJ#YFRREXO$%iwhpA+m64M={I` zFF4w+5Bjtrw;W`=Zv|n6sh&hEqze91O=C80v|!3YB<_IZz-=-sUns4%HxUi|0$FLk zu<6zWvDQm$njJlS+e%E>5P~bdcSA#Yvg`>!k3`h~08NUr3jRBjkQ_HNg(Fb)Clzs3 zXf5b1xU)=8ftYEfvy!n(T$D4}8$=^E3Lcl{!uLH9@O<&-kJ3!on{_T6>|1T~i<~Rq z1E_~{O&ml3>km&%iROk9#x=ZjM{j(c9kt8G&QVRYBK+UPXprPY5@oeK@6I){!7qCV zM<#E%H%voL^+h|2*WQ#yY$f@TO?tJZFVDDJggenytCZ-Jhfm?8w#JofbGgxIL!q#t zb0#&=X!@)1BkvEil2FINukNWt!)(3}4`vkUa59gC=2^cbpPUt< z^nXW-iB}*8fHLn2EArYpm%%|`LQ!6@lI5=s?n(+i?yE{4y0hC++(hs`R^`Qwr;|ZX z^pY36b=%C2TUd-{$4h0Wt94MdiekyQJce@pEquj7daij%i3_IHM zQ$rNECg#`*pjD>?l`!PRPM5w#GaVb2(rjG^L|0<)FlO+#H z2nY4`s@y`2bm)sCHGg_EM>RpUZ7wgozriTagDR?A#bNqd=kU_nayLp%ir=KId zX!IIcw>2XITo@n2!HcfOfn%j8thG57DFE2GNTMxcCy9ZUWs^|^a+}65p`w~T^*mpt z*)HP|Z#HtzqH>|d4!Wy3VK~zkyC@$&z{Gox{f_-+kl}T}aW4hSJ7n?qb8W+3d4z)N zMQepA4|q6uv4_qvVE!ww@UsBhKVP@m*#G&u{ja4XEMI}cU)uxBj9>T7e_J|Y?SS1B z`#Gu0uw}5M9rDyfrCMqv*(zy8#;IwS!Tw6WjuVGO=W^m%L;U;oyR4x&YztMWR?X;9 z8O6_PbO0FU)@&O9e^f=rNE?M(>0#KeN(zSUB{tH804X!6ag5YuwPdw8Of2j*BO}5x zi9JU?(!#-1wJ5~aA4wlVOYElK8No2*@_hz3e-Y={(W7(a*v*?^PqUjR<=9Q4kNvWv zD84O$Ts`=;-&0J6(hP&UQG}fi&yETqFbkI24Lvw&Ha@8^lae)<14<$+YUF`b0jeA- z?Kp#55SM-&YxD!2h%}|anvg_rRE@ceucXJrF zQI9Bn9vQsEBtBiCR-}+w#PFF^Gg1psb0uvM9mdz#GS(rKBUr2Yc)|TJ0I0NvQw@5X zc!+`DGLm%at2`-1vRC=q-7CGHjXYT!ftq23ncUydl<|&2-Z7CqN(5ygI@eG#1p4vc zwlfH%6$y!x7|;|$daykWec6*h_bu9nvFQ^S@&*!OfZbCCxw_GST+o3PL}~qb0hawR z4#i^eUHE)kAfRNSq7t|%pjaR%)EyzRaL57V=Yb;RP<{Qg%7Hnfz05qQhj2;vqrS=E zMi2N!Ya=yqM@0r_v`Y>dKuOcr!#HS-nF(Oh5Cj_fYzFPk_jhZgfRKAcD2yQSp%r7O7yALzvOD}P+@B7WA7(?B|U|^H(^)Sf|DJ1vE-(RK_%1#oH z4NeEokS|Nhi)_bfN|D72fZC|@#(PNGf`8Q`F-1dXgzip1A;Q4g)DWWm=&L8y09lmvOv=z=DWK)!GN8;Ia^ zPzNrW4Aa?@X{N2k7b2gDP7M991_04|iKY>#yx_4gnwl_?HNoo@;Ce3S@S`N>LIUuK ztWC5i?wqaz^D63(0sF9~!k_6HHca`(`K*>{pz$mV6N!438k)mOWjYrCiYVZWm?}dz*Q}XN02Pc9M7>OzN?wM)d&`1?t(a9aLwxh|ru`SM}mU zLgFDssf{)Ui^FX`5sdwKcolE(JHBcJSHh#JvWfSq5+lm9?GW|kqP9XY{+?S%Z6W%D z1x6^Psbpriwuv{u`(A#r)OEvz3YP55Q5rnH*bpt=NZX;d)!|||^)xJqd{9JbksVW9 zoEhwKs)KogqED$A+{hxMX=uF@abFl|bJ-vdK@y4&R&!1TbrEs1ld8YkSL+_JcQ z(f{RA92^naEc>Ydc)_*&K-FA$tJ--jdf(F8cO0~O2Kk00302Q*_a1_LN1cdRoqu-G zwI;~COS=!BdcwX^GAhkJAt@;{h1xKewsf0$6c%iwtreL59)Y5octIO=>6(($%1-@~ zz+lIwZDu(=tb@bOF=>-r4luPtwL)Kagn5<>MYJ}^R4Ku;NjddV5)kbzjZSavrncIZ>H_)6i}lo@$+Y5cgKmP5M~j z*!ls`R`T(#LbIuZ^RWYmcew@Tv?BP8|KW+~TA1cAQ=?0#_~E7YZ2rWcPO0c)YUATr zQo$Mr&OOp%!dSOsCsh5zz6-a$_4p_qg>~c9enr>uc&OBv>w@g!Jj>z7slCe2=K@XI zO%{TN)2;52;wVJrJFiXd2>vo!);cF|j-P9M;}-`9_BVxZ=5v!jIORUx>$9KEn!tbX zcK7ogOaPk{sBBDac+fL!BN(H77%^y$@02MY)S)}oT9NTOTf%}JIX`HK2EdeIaQmli zMLWg!NH^K&)1KC9K88~?x}IXF$UKlF2|gT|e1oIUk>Q0UMXehctx`$8$XDD*A1UvU zmlL z5H6eC(#aC6b+Wf$u~a>RTM9yCStl2oXk92R70RS(L+$fxv1z!JU#eU{dT4nS;8vcR zcX-%3^`6ID$evF=rFv+1t$Pi3&;3;O{MD&Ux1hV=a%y|}^TFjII#*`_vNmxc*PWqD zd`tHAz{nw&^^PK+QJuPt5;fOyAvCR+!l__#zU6eGYd+edkak{+X1?H6oMu6yVnO7i zT&IlfwBl7*)` zCQTA|ph`GtI!WwxV{Mzjow`ef7shX^IU;i;_6EX>G5o6DA)ArMh+r4=)CS zKCEDmZh^oEQ%KNYQVaE&R*ODy$5)Pv9rA=)PBSt|F;gRmIlzxg7eWD?7dt57Y@q&FJkeu${ZR(}*PhHVUMD-M|CuTnm$opRj-xmZWEl{{&#(7cJ?u-X7( zwhcheTQr{Hl3#tK`4Nt)0538A{-h)O?YF>^?YUUYtAl)r=eBVp?eG3z(30Y@R*{Z} z`LKI(cNmqYQ*XKv`)UA~o?4~)4lUeE^dQ~j_qCc_hfZu}soUV~Wfx{q)vJ(vIdBZk z#vx;jDnjs~!i@`m!Zz|2`vb4UmW|BP%{Z4sVe0L`;$y(AtslxEztaMo&ikzB>@HEu zd3gDJ+q@}_`fcpNAk;yP<`dgwjFMKeVIRuXp1bw{xagbeWz7PUNM=^2WbyL&p%gTQkKRvQ|^qdyblpj){wjah9{WfkGKoBt9?0CM$Tm6(d+sfTo z3O@->YY#x`3{X^=T3dnYb-TG;c^aD9iI-h{$zXDG+pNNT*EPM*o^V;m?$)zgz9vP+ z>bttIYfm%3o01*=Q0+iRa3+;a`fBP;ve|yVnBVOgf4g_IzPoEg%CL#LD1z(Dp8}TB zII83y!K(7iiQvka=gOhJ+!@pl_IPI8Cb~QzO2y%Mhs6sj(qoN8KcrXVuVc+UnSYAX0}G zK0tMZN_G3IwQC{{QJ3NYDG0c*NJjiOIwOMd@u{TtroCX9mU5YCs3&pxw%4=M3TU zQ0DjMfoQ$=`LIs?DZuttVzhO$v8wqThWGsOG5K(7SF?<{TP)#J`9;WZyUe|##{SCmrH@-4z5i~CR8BGMHM9)i_JUa zWTA(=#~#53I6Q$pi3=CJTLQN*&+CxWaHIx>i8tKA^^ntC=kM?MnC%{XLnVZ4&`?m* z`S|D|jo$URpBTW3Fa0aYO6St)x z@R46g+*dw%;MVR!Ym~zKs*YsX<_O6Vb)b#BsFF^Ys)-OS`KkgBK*km2Y`(T=2-^&Y zGU-^GYRhNUeHUL9NWlJvE92VjVT4;x%2dxzR9ip-Ud(ij1OH>+pI*-g+8DWVl?>7> z_D8(+8bAkohLXqQf&!9tE`17=!#;~~DJMgMX$!7yc!vepP)G(h@6poRA$fHCG8qu* zT^!CfvL@qP^&Xu0tPd4XbnvNq(6@* zst{l2cvwgoOd_K}h}12qfN_E)jA*O?#QTX0Ec{W)dtIv6eR(38!RI)JPNN7qj6KOe zkNXU}lI^cZlazheh%QK4apA9T{0O97_8yQ|?6>;4@GD7ex$y6ziNV2NHa%(QY4F;^ zby&;E_r+h#x4~b3zo*C}V_+j^w|Rv;+rN%*e;gw{`^h8a{&?E8_{XvM>*?_3cY_2G zW^hq+*QXkJO!MwwZgz>i7`--^u|6E^!kxJx5fbQF%#R*@%uWxhltFw-f*}7sWt zySYdFPN=3HOsLK(lN3gNCyw|T*Uv-`A!uvf0Wv_mB66Yp{8$9rIkr8N-^a6MY(F#H z2#$r_7j3LmMerDQM{TFXgQE!V^ITDACxB1$cuVr5lY$G9xkS32eUjY0K^%-4v4lvn znsrx#gqmywmu7|ylSZCsK)zAFk+}S^30ZA!E$*%%eoG=_4t;@Hgylm+UK$R=;60wx zaCi>=mO1EqB!TRo$9kk&BU`Bl?H!qy-&WN~zZcuQY=vgJ0B3BALH@Y`!p`=8YX(*7 zzwi%Wh^Scq;(h+yPV)bXfA}Y;^nVTi@ZTd3e?X;wXBqx`{^37S4*$S1{0Wu*4Xyb1 zzy=037M6bpD%G@IV@39w`r0K(LT%tirksObyXjLYSVOudIR{Rnq6JiYuAwrW-9;3e zAe1Vz>cp2EES6O4@G|K_ODwba#gt~~E73noZijt?L7M=Pd^{um-0e%Rqca8R?1vN= z^R1o@HNmutUALKh9r9xoN|AyRDv)_pws(0XYp-7QYUBL*su3rYC%}-YwLzjpG-#a1 zahyxsqCtW;mz>P`=J>$6qd@?;1p~*c)$Z|IRYc6)F7_Z{@4mLYYzm_w?)E-S-zxi( zsduhaUHRwR&!&rYZS9pa?)HWEJg}KhDy42m5HtiCAZ_ETT!Qdl+~!_*=VDA^5>GQ)Ew^UA$(1Q znO`-j&IN%1nqVHfHE$DPS)bq~V-P#S(4_*8A*^WNHojKxs6I~AF>1&$?z4F!_~E9S z*{XAZ0cz};b=_sv13>Bu>tDFiT6l38h~i|GeJ=QbIWlcS;m55&LQi0a}h#TaoWB+J20IFZ4r?w;}A87{*n_@K;4xWF=Gvu0}w8T>Z&1K*jzvLP|1)f z`x7ixn6G)&q8|>*I(E>wY^>l&X`?>EESe&8CkJGdO!84K#*Ze&^8X!hjlUwskQ}U( zjajF>q_(Z*MO4wBX9N=G7Y8WdeoC3i6YX07kFZ)rL)43pt?&wpXUL9E@?h5h8K4Gm z?R}AiLTF-1oG_Qlzz*i<&4wwsUql@Y6d;@W2Un`}MoB2ke?^nzoN4vNl@@(*rDiwF zc9A*T@%x6f-8o%M#*#~$K4kMxMq&WETOQVLvo8Wz4AJmGKL|R(KNNLN4ex=E_A{ss z>;uf29^?*J)xyD6`~0(e^K7M}w(7Lxi+!BG?uEcUEc$mQ8iUM85%i|~TpyqbicrK6 zKH?MxMnVohCy+x|AZCRaR$QsU!_s1ihz+04*C9~moq2&)S1(&xX?*zFuU4T;>_*pF zBTbFeZJ#Req%)S=BE-zNn<}eTf>0RnNY#47g#k67378Zzqv!D)8x{@=bzlvVrhq#1 zsqsIM=Z}X*`n$LuqQRO|W9&?(XB#NkdL<)c&rg_PVKNHd?3>Cg&hVc?r`EUol9Bvi zNkJ|F^+o3>u!yKD#ezfmIe=kK;+8w0~F6@cqi zzcwHKWJ=whz7`ZG)9?`piw>1GBt;zNVYu;^@IdA$w0Z^(q$}TXe%{@y?_IwPE@E4o zCz09A1FyeM7+o{N|VfFN0n zs%`6tb83Vq3b_WibI6K$5mTjQ?(0}3y%x{DjNZ*^WLyZu{A;QfWQHQ#J78&={+`(j zS~GW|kz+YOqv6Vs$jBR_8`aojW>CIo#7Kx3jvn#O`f_jFw5Ag&LiF3R10^J3iXa_) zh$UNR^>6JTd8t4!%455_qQP`&Nq>Tn5Fi<8R#7h-wqk>Nyx~`TyNFZM;km4O}3-qO*IIMmGqM&JT90}3Ve3G zyNcwQi}xKfSr#}EbUyTn&L-cB5%#AmB24+thC<%#ZQG?U5WJ?pWFGszYUQU?_;)B@ zG7m^vg8SO-#^MgFY6LRp*Iqwr1t$Ef)|?;9kXX@9;1fT=GOo3Cv7J2iwVguAacMuG zSsUW!rZ>q~J%1$-YkYKEMWBcU)lA&JG~t(IPRHF9Mh2q#!aG6 zp=Qo1_?Y6EEtH5&SPhn?Ne@V|#RQGun2W+R6G&0(2bB8&pNwk%7YmTt+5T}7=6@0* z)%veR6c;M?zbK;E{t;?ba{FP7PxpUb7QPdzd@uNe`8JmD7^kMbMyyM`t@ypcZB=_k^YAxC6gDwf>@vx$Y{&xsIC!hBqeqmX(J$KUL)cJB*RT&avC z?08$U5!l`g436(r$-Evp2TEIPf1H{HC&g) zhx{P8XvQIDtuGW8qX=L{EX-5YWuJ}9TM%zh6lk}ijGc_g)&N2<`^jzfx2;E}l+g%0uJEO@;^55 z{StM3hC$pvKStwqWI<#H+0u;CApo(u{^C+LcJ7hdHHEV?d3lHAV-j|oh}Kq>b-nq`{m#I;lXDs2cn*Q{IT*@@#@ z_Qpp0bK0Gi1=#nvguYU*Nj8148qQNHN#Gwik9-umY<9UgX8#D2B6Vk)Gkr379p9M7 z#t5)s9CyjkRgWfoYH}F{$_b~~n|IGyX|7cgtd~yOgexQSk#c+IgsG4s^kb$DdK6FQ zW{#8ULr`;lN*_4U6?7|F;))|mN}3uF4#7YjzCnC-x7U~?poGBxjGk^eo4#q5PZW)Gek22&S6?-!#ZOw##;H3^g zo=D6BARBV@G|l(`ih!P)<6mqk%pYuNHI&*HTl(6F-q*qr=q1D0N=h0u&oZ5n6P+X4 zoS2&+RJJVwhAa-m1KwV0AF%RE^#QjQKLqQCB#~fGkC~#Ja*i~>PhtaMzvR1LoEG#4 z8UW$!hh6m6|X zC*A;;C%|@XrCpuQ8Tj>-7-6X5chGbtdYx9{ND0AQznU^8Bk_?F9#H2K#{8jqo#ZTU zIhq@Kr*;9a>D`A=58TA16+{jUf~e}v2*zU6$!)kgIAkQp!O}b15t{Ms6ZWOnh?-1~ z&&VudC_(Tlu`{h=)MC3f+|4+@!Z@8_Dy`b$L>FJp*Uv<_9xmJo^^pfRjZj{CareV& z%{3b?^)v?1_dSh%FUVl`dnnP4n>sAO!5=_r0>6%R5_mT0QA2d=PoI){7GoYAS%@r? zp^kn>Ppn4XXv>{Clc#!hwyNZCdnitHVPh(ep`RIwOWu}HjKcJ8CR+N6>*5}Ab3x{= zU;0IP)p48Cx~Dc%P{eJs41G$1;0T9g;A#hBsePZ%dIXiJdaWbUb3qaxN`W-ry**UO z48SA3G2kCwy$jEVQjbi?heac0S_)}LQ`%|C>+nB91QXrL@DW+QKB@x1i~#{kh}wCD zzHgRiC53nUY><`qKdJ0D`0WE=oT-{lexxl?A2UEZwPMJ}cy!sG z!&&^^4J6N|hI$4p#miSM<_ty>4yRX%dgfWDMq5TMzx~CL!jiOulN^GO;N<#zQ(a)R zsA9G?nuOpnnOaY1yaSgP0Vlo|Fl54U zjIyH#hvp>Qm<`T01+o@C@YYfp!0T||m=RS~4M6)6ke0EH4CM%;E;L+`W%`)lZrP7D zignFrF0A`z^{O_jM~hG%Hy1UTbyqwY#>$y?{0hOkvgYUb*7RNYCP%BFRv;8!Jl5*- zRt?UeZTO@1Fx%7J<(+%EaXvKw*x6G1o_BgUMuv!e3Oicfi8G-Fwf4Xx0R_SZJ+*Je zPYZdS@ioqr1fjc^guRZue$cUCbF+`Aqhtcp=8pt8#Qq*R#Dlifp_$0H5M4?n3qRB_ z$0J`ue28?XUj6gWt5atbjnq%*O6|z#w{iLt+B&!GB6nJ+2Vp` zbFm^aasE|Wy-M5UT0$YX37`Q#7n2*j31B>1x(Dar9CkIft!V@a%acU@P<*+HEt1?nRY9W4wEWJY4|RehS|= zYWYF(wWwZv7T-9dmr%|6S5o!K!E2`uLjjO5;!6rb*Z~rtQ8OqJhq3j)zAL4L0)w|b zrX`DJ-~-QQTN=3df-jp8anXUO9)5#-7krF%j_?JU;|RQ#lvi9<8>$3?3$^v6L-{v4D7SCH zW;NvZE*$hkv>awcZc2r4yHvEf4c3uDfE9FB!wG$V(nl(SuLU#AI4H?3~`$rXG(LpM3GLUKIbP)mA@i!3y^wb+M7P zQ2wRz;Mu-@(yDzUA6i%)U>O$Ajm6=uO zi~c#L7PjIt?5!~w$GL-Q5(;_Y*;E9E`*J6&q8& zxEioi6meV+>IWHM2HlQ`d$>E{$@~6R9jhGw`k{igWt2E692RI+e`mHwEVbLczwL%s z?YhutQF3#69Wd(aJv@(`N656mPI+dKEb@I2@N-oQ^3D~GpM*z3$$tcS4gEtNP7p!t zto!6y|IVe(x#JgmU%L5+OP!#WM#CSgfd=5f=lr4lYoL+e_1~emlX&{ANx3a4Q z)ETvpXkmJ7w#wtAIV@xgY427HE8Z@kc}!W3RWq0!W>5lMeY2EX6(dI^YLaP2(M3!y zA{4ai%w}Cc$E_Z;i^@>2X_Rbwf$LXlR}QwJBubB6)07j?wkc{xvA0a}^W;-^ z({yQI@!A75X(p+Vh!R=^Qi&hSZ>5rjDkTMeF@+LW^aVmb(`;)CeIW98X(`YlFu(%; zT#zJw@Z+zrUEA$*+J}e;nP{gcuDC-F2Z*t_w}N7b0>@ct#3e^Ma_u3Y`!Yj?oJ}WZ zBmlA@i=XA_9vu&Lyr_W2erg3tvT6rL;(4`%VaR4(!Xd#-+cZ*CyKdC8sa{{E+Iosq z;S6?Ib5@d4oZHVOz;$ZA@7j79R_PwG1KtaEdz*PsJhJJn;sBSf`p2uy`_k3BKEbJN zJ?8Ft;zBHA|5$Z?oAzWc39l^a#uiIa=2U@&IcQ#3mW#sf4zk~`sOB55`NhDRTm+mw zucZ??#5r+r9WL3kS<~_z6t>6n?eKPdxBt+-KD?wQ1Iv41<@a;m!ru3`KG-+bl~-(L z+?-oC0`ToqZ$KWNTG)TSp>r^>{KJ^%|76EN;JmuNCm+^7uELo)c=~w(G3Of4bix z8_+K$eR9OK$;{Fk%@~JCCix$SX#pcm7%?$Mx~}5IEU=<7>p>Ops3V0s4t{QFie;>m zu)8@0#p+)tccWnaC3bNUe;-&=HO-!c@CZeUgZKYi>|!<9`j^-RI!}S@jj@IM4M~UH znzv#yt22Q(c9^^{e!*IR#XyTR%^z1HZh`Y9=JQ>~6i>AZsSi%XZw+TxaSLEC1ZW|M{W2GSnw zA4ZR-zZ*Tqs?0j3ORd*8aslKiwOxYXE+0EFjffL7t2mOeF?!-ND6UuC9z-ud%Kz&0 zaN_#Y>5=b9_~rBnfeO*mm)OWl&5~(`uq^Gx`U+o?(zT0Bbd4yv>nGi+I`5;b!my4; z8*P$4Rb{OKFp6}po(F}?g#j|p9pmV^0Rx+F3K1^ZD<)m z_=z@JwLkSFMOJ7wnMBDvpfJjUG-9^5p5a9U(K15esYF_19U}h_7Hr6AIK(1OSl>EWBfx zDxi$hOpy(o)VmX47(~zt9zkZOU@Zpc}agiw{-}77NQ_5R=frf6e%t=s53`xyZ82Q9RwF~Bs7^;y84a`u5h0p^8N2|95 zp~3U>c`8}I%oPCdx@`vmAtRWO2aX2NQGgp8FoSZp3}d+fJBlXqp#j+QIwJcNX1yln zOC!#M^p2R@n1MRc+)EH?o^c+-py>CVmK&arn%4nAS+t>O_Ak)Th^V7=#U2zZB{sSkVW3@<{eRM#otdc)2DG+z~#Njc=9GFz_KR z+UW!=5$S8Kuo2Xy7oCv5LeYMvBS2Oh4L-3fRTCcekxMqKBj*gjGZHMk@O|j0D%w<* z9niDhS{1tBeiP#bWqGw@ys?$}_yuS~*v}6oi1(m98hxu^NX*3w!{k4G(z$#wTKWX% z)zXgEx!30(3?`Wr zA>v8CU|(H>WKu)`IIiHKed&=R)nA|f#w1%05I8T!X<)#rKzz^FMn!qUXg|(p;M>LI zi8eWZOW%LKF8pijy*vKQ`fTe<>0v?!(-)|-EzsYmXaB2h#rzRwJn3k&&{rH+m#Hv6 zBxr*{(V{xQlRM*kXN!Ur)Zswh9>4s4ITZtt-9;N=r1OBJt_=PF)tcjYrZt$}Sxuwi zOzIC4b?4)hKa?Id7CbJ}e=0rL?eEvJCmMO0r84Tzzp@w?pl;NHpEIqoJ4Vceh}6*7 zO3~2YwOzr!xs8Xeh}A>GB!VD}ANA<}Zrc{B15PVWI>h@5Vld~Re@4=$M-Yw6B9i&> zb(hQ>rfhAH8bLhPJ;Ul})H84)h`Mt|U8jw@VZZp>odaq%IXAL7cRbxqa$BXD2WJOz zG4BqnEiZp5J+2V5IVT=6zLXwhvYeGCn0Z_yoNBs{t>X0!eLE5O!Oqsez-jcH>u5i* ztSq9gk+2cXW5Eq-pdM?}0&&O%krA~FLXnv&{W?!-5XjP+e&C1CKMuDog7Yrzth)50 zaz28vBZ%PHIl_`;l<^=8^l^i)vczRfUXXBZVy6;|PS~At8G?nj6o)&Q_S*u~K7n(_ zZan|&szNaL4g!=Pvn~HQ{mg_E`)C8~NK9kRo%I6Y-AFF*({o%o1Ue{;6j}(m)yfvP zkL){683425e#k8$ucK+{%W$Qqemd~Tk7M%>9ZQw5d`A>7LMf+ zy{cW;gj$E@3o^G_>*I=K$vJ@`{ju41@wY3_22LANmsFjD>2F`~_0JrCQI-59 zi{bdYE95JS;rI_%2t7W>-(4YpRAYa2h5UO37!wm4{lAgLV0{TanqEA;2ileWsM4Nh z^5_-tAc2VO_B>0M;55V=!KaOJqGoirqL)Ij?L=lP4cY?r#maVKwmgwk@hG)ET>aOw zLw@+H2gYvubq5zpRa*edj>&rczB$ZpVw2T{l$Vdl&(CZ1)Rm7!Pflb6vy(1cGk~L-e&Heb57bVz$3C=3CJ_97&&!$iV^$^y7WH79x$qFSaXat)L{G*>3GvK*4!8 z0$^x=>?F}rnj|kj9WG!|0Y}5Xftb?*YV)lDb*pcG;1C%#WrG>*9la66`Y+hmmZ^@3 zZvTewCQ8rl1cJieckZVUO#_&NFbhS*eceg|pd0cZv1q9%a*@)b`}w)_vh3Yh@bWo=%^m--Nn#L}+$<7Q{Jh8o??Sk+ef1~^ zn+3whxIvuro3WD*O0(5=A_|lbl(4rS^z5cEpi)379JO(U0!WCIr>hSLja6Ta3U|qa z;*tPHmX$!I`hFYl(;uxd9~oh>`?IMx3z?#14@iF5kLZ^;7Nxeh5%O|77$w*!3P=cQ zRIHdE3NA^R#CYx2G9Z7%H!g~NSN~XYf=q^cNxN_USQ&W0qIF-Rq3}mzu$u~cm&WDN z6AqfTUji&DV0Wrm)Sgwugbu|H9LNZ8x^e>=m9b3K-AL6+*|#K4u8+0(>5a%-d z;|zQ^{7vzWENhnnZDK;}H9j{|#T=T@>h0S7-aMuJ%1YItUf7^GNUDn{ox^%&*Mid-d}6DcT$Vvr(FjZ1>T z=wLxoPQwEhxZUOk(Lx0fAlAOu_ZEO)D&f7UOxsDhyjlF^Dh2e6bR`Un)NV%lI1RuS z4p+6N(gJZJO2`Zv{;h5_ADlaCs#DF~w+h&ck0bl8A5g5gr9C!c*Lsax_vRQW-)Ik1 z7vSw`+$>@dQmBN-7V5u;nnXr?Xx#TN$M7zRr^Ui(k?Qk$&&7SnAeaks7 zANPO27StSFJdh(t5tFCeZiY1U1>Pglb)2oj{`ISe72BX1agI6UC$ObnBIPjpS4KuE za-?ui10w%R7Dog&7)LRg4@A4(IMYr{91q!`w8#8gLKsxn@7*rz!FYF$wZ~<^J_IiK zOR7?-9q;4P#KMXA7*OlU^K>is2K4pB!1|K|o%`O=Q22 zAce@z+X&R^3Z?1tV2I66Q*`31Way-xpRhx<#ni&AiR0H87LSV0#3tRwxz6Cmc+xOJ zxQ^Y3<1t27IY`JK$<S7t(3TA}Q`? zACbU@c#)?trY1UXmLL91el2>)sCDqI$X9WT%*`k(9|G4BfHc^f$quMHuXAtHp*eed zq22;|5-}YSADo6=T8#Qe43?##Z{OeCU0D39`By#+k-!cYIcyD~Q_BdVwuD{MkcDsY z_mB+)KYDzSBy<4SJx|n5X%RW`Kz00I?~OaUs_wLkT+1kSB}{~sgD>nD$Lz4^RkRUT z_(H$5kNn=r1?<0k`*8R~d9<14H}>{v$%urAyFw~Zp1ol9VvsB1O|j*zI_~yj+n%G7 z0IZ<=ow6%jlQUx9UVf8;sDCXX<4;r3>iPLYMb^CnoiU<*_AG(|+7%l40E#G7+)tzl zhT$5j(S9iQ zFO@A#)^l{_As?`uHa)5opt93I&v81^1WS;XIT;J8x+`L%0X+AZ+QfGphLF%Z#=@UegZXNb_zK;kn5 z;{{m2F=Te$QGc)s$y&XJdB*9XUhZ0WERj%ZqiPmS^C|?u(75_AL!N8^Bmw8#3FYnx z%>%tGvzW{{-f4wJiMN&C&F?jL`&XF8jd5D8x7l$zfy^N7F$07J!+ZH`RwM-FM)_^n z&|p);k`ncBB9r`iReoCQr2*@L#<(893l*D?bffQgHy*XwP2U(Tbzjmh&$L^xiQsM? z-4Ms+YhnH!cd{o1)QnsIEVyrG9Ts0*Kg*{<|qQ5v_Y2K#cp`(z{io0XC$?B#@M|WQ>5;ibp4g z-Kz+qV@A0husZWaiS(@KB55>bX-HOCTpn-O)1in_ULqV8{dTQHFbot0x0>gKt1wJm zu6Nb&Gpe`6``p~Fh(?Rh^f&X8MF=57zR!H!&6&%l(w=_dKEy!ge)Rrl7WfFP0*JWJ z(jppnM9oVe7X8u`y6*x!xbWS{j5+Y#LxpB)zDOj&^SICW2$3AJp26z;N%bIYMEI(p z^(!?WzSmr{tGmB6>SZRv8X3ZaGP~Qc(wa9ewQx7_dn1|E3zG!)hT_vcDDn?0n50)f z#2tx9VrX9G!U#*0z%&NghD+g6ty7J`8hzv~r~uw_cZ>$2`C=TOjmW>{8M^}@O0(A{+q1<`*9#BTn0xXGiXg?F-V zbRzVO+Z6lJmaYdZki=44MWpazW!#x6LpDr{-gY7*Jry5r`2e#GJvQTj34XpB2^`il zZoZ+JUw{qNROSNP-0=S~_fAowbZxq2+P1aRnLBOUwr%h9PTRI^+qP}nwzKoAs=umw zoI0aV-}LAaHxYMn6L{8K^Lb^i7!ZPlbcZoK>dW^*L+rqf>onS2y|SeFy~tPz>G=B| z_u{2?l5a`3L?8_39`77337TD*e%U&_;43BxOX>76XA$$Rc{bP*eh-h6Zu@SW?6=6A zyWE>_IC?TY)<=^49zynxFHQwek2t@yIE{!)4-zXvgDYnKMXb3ax23mU1;@$@6=5H} zfts%Xiz()nM96khMKk#<&#Hsl?5lS0cLdqx_s#PCA0@KzJ~pJ>)G&?Zr!$GVBLFv> zQ#N5BR+Hek`<^=^XH@MA(pzMUZ-gSRYt?tO&`^kqvSfGJl}p`wevj{S15XU}tzzRH zbJq9E5>FP$1Wj)9eakIM7Ccz$IzwX3VSUg~{vMogq(qIhdi8QbY4|nN`SjtTdrc{Bu3< zZmj$FSRM+wQH_M9fSE4jwSbaDTYGVW`83c3Ci&wGO+BTJJf(l1@}!R*Sx{-JeSqLa z#3?MnbY_y8`_@68+*D>La1tmoUJaVQ_bQeRoHbG*`UZ@~1}>$g(oT>hokGRW$$`Wq zw^xF;J38ufbSKV}L(c~NBKrGe9u4F>_2l=PS)O(o18&Fw1TK1txIoxWy zVMs!pJ45;VJvXH=R?G=qa+lqVx~~K`?SIMZAD44@-<)5-v%Xta=Qf_Dtbi3y3<-g) zzq)E7LG>z}_R43N_e`5}R)QAT+NiF#LPHF}$Z0g&swkj~|AHb+|6a90 zK=A(@y%?3~00aaT1q~sLb7L~bl}C(AOaVZO5J1JOLWq^{mH4(9muGtT{wurp zU9p)1V41HLjP|${NJd^ zzm^65&qDc+jPidn5m!w!df`V#+18C^MRGFqX!Z}Fl<*Bx$n7hEui-Lssq-(CGD(qA z`S{2ha7HraYA;mEd#@QKo@(_tep+Q)CH|ozzVf|0w7yg{Oj=CH)a+JqFX1lLG+kN< zFGys>grI#AWNGFD!uIu@C;0z15tjlXk%L`n^l~u!rqANt*y;AAkT_H*(11gIlk`7j z6!psZ=+o+Jrzi7Aj$Ke-P?RnlJa5;h^>r88x(xdaFLK^=|55V9gkn_~!}pgM#4MG` zHjb6;ckSb=voW3Pol5OSmM3w2TH_xa0$0@ZQ*iF`Q*eHv;wWRb+4yv&=0~1bYs@&ZQ#~`ioITSLiIC zQ;bgYk=Eu2W&%>Y=)7Ido{%aLo$0hyTAlH0{cfnO&T_5r`|;O&!*CtD2=%Wtf{IX8 z_lT9j7;=$y+RBkL*X;HPLYaZm_JrxXpnL&41RDLr8aPo$XrTs>onmFY6i&lj^L4~9 zbs-z)$)fHhU?Y>|9724DAker#F?#{N&IY1wAA$^?Gc2mQZyJ50(mh`=(3;rl5q6Clo$0t@bZppnRz?l`FSl9RTx=#^#nP^w zm79wa?L6qFf?U(S-F#3cl}Cd4wO3z8H3myBY+lri-$8Kv|`Mkxv6 znLRdd-EKTGv#HOp%-{(<$pwj1uLG$N0R3C@Z-ZsQ2SvhKxeDIqQY!x;B4_^)k>9^! zP#Rzm=8CK4PUkVypb&FE*BFRk`UnekZ|H-76%?|a)A>R`0lt@Q)CmomL`-JwWr8JI7x{u!c^!Wv*3C`bGXi{F(wycTz32 zy5vN+1Nq2^3Dxt=y1m}z*flFM@e4$akFX2$(?RD<@gEz7OLdGS(9Gp==4fptB&ebI zVc2Mvm-^pql#?GDCBq-EC#~j{?zdqYq)1A=Ud9*57)9WJ+9)oA|7oL8f~WmsqwGIi z-~>XswHNy|HMf^ayJL;MmrllDu^&~Ldx#`GUd^~!>WodAVPoiI_R)=hZXYL`q0nyi#8E^%0G&IIWJU^O7+f0I%4lBWVFeq@yE#{VXx zxc^H=QT&ln-u^>Iam9|589}dV@CiP|tmeuA9^BZrA=FF^*dcX5wqx>_6R>4Dg+ z=wBU03=zM&S)+jU&Zj`$jW~n5uP*zWGG*ThHoVAbw}!|owDmJ2J+7FT3J3-v!|UaK zYRygaxfeOGwgG(qLq=JtjGXpanh$Be)BBN8Aid~*WR!(}WE4(2h5XB^G=S6Qbc|c;Ua4nH}P2hn@4w+&Jy@L$pPlYDoOuryKzj23PtAzC@Jt zas}ZRfY7PLN++1U(j&7?7GH2A6kYE363ciuMe7LW_*rMrM#S1)6Urp!Z{&pOO}A8b zJr}JqCwIBnR7)>zxJx-}I-d)kO5KBV;ninxR(ld^QXQwhUk0zysuUluv5U&(Y`aut z_8$ed{~kX397{ZzooOupQBk&%>GaUBrpLZS@y!(r#Uw8KhgtqzMVZMk7lk$d4;2O5 zqP_#+fBI$lXR-WW8#(^{ABvuUo{9OViu&KL7zkLH=ve=C^&^V>>y&_%k&XHPwAU=M z8B{635}iegRV;V`V2)YPrP#5V4h9&89=Jb7&?Q`q;x`2>kVLYN9|1wB4*}utkQ_13 zliQAK_UrHJN6&M0%dF$A<;LgE=gw-+YUT{9AX2|E83@r5FrX+T5J*5{fHJqUBmx2e z2ozKxAmI=;c4>Wb_>*mCA{htrIq)E#@elvpumC@KRu*Quv!Ie-AKFsO)JP29<;@`h1 zZq{*gE+B>b2=v(a;3Mn<-L@_u0Nnwk5D+j>P+xuu9qp^g6OtopYP!3-5mx3!A$%R> zcTfRd`sJzs3`^iqPQjgkJ}5DB;GY7%D5OI|koC@>?q8wl_}TJ5dd0|hhIRn``F43& zX}avl$dT;oIeUaO(e-vf1HXlrKEnwBUL4o}Vh~PvcfVY}p+Nk$3zmJ)Gs=h`K}&sKjd=!uaZ9BlvxelsoOM%@JGf9tUK@5oGb zkJ;TlBC+`QcX;NmS$MOtlIDG{Y2}dnu*qo%DF^@oJc9876IAtev(Ujl_6$^jW%qQe3K1amK!WiD;^flMvCVqtZ>Qu= zc~{!LMF)TaSoyHt0R#GUXMKCDZjw(x0zN~0(0;mv2SzeE{$`qd{Z9D6mlFm>1mJ@X z3jqWXE+Fv%h)HR|;8RclLAbl-3({N37W&$)fOQc8DEJR{>K7I|q`R?t_qKod~ zjle#A%d;8cga5+_bMsxO!S|h}&0T^#v3&0>Z;kR|f|IaIgZIrYmJ$s{4RB@zA;_=w ztuUeMT(4Vy1n4gai^x->+YHTz00Qy_@64!&@SKi4a4eG4O?Wc-@!>A%#0IkaU^yc+ zKmwpgjD#cRIDeF$$OZu0mMTVO)?-Tu91yqzu@DKpQ`CXr!w4k)P+m*`=~J^j$qn%A z!;!C~N7FsC4RC|+JnX%~ALs3}UHMrIev;j@P4g{*win*fE8h+3q&T{LzO4#^f&~zW z@Oy%Ypl;SidNz|6D*^Kply&HE`;U#WZa#vk{H})F9h=TxTmg%u`ITDvCQ{5>c^oB4_ zu^m8qbBnBmMpeK2w1?ucl)1@pJxDLqXf&x5nSym;OOGx2$gr#f}M)Uk%8yK{@-Ugj1&jVa?Q3eY4RlSZsxe~JXYKgB6%;L>4Aokld@5>Al+eNux z%De{1)J;y$kH23?%v|KT=cm=4QkR2GVeWyAB-t)w zUQr|psZw5+O9N2`(_T`YsCM76bEkN(!-TITCbM%t8JHfrxL*-}+RGfCHfGYMTTVH@ zqCYKoU}cB3XMHrBt97m{4E17Mw;CP0rB9;bCAjOk$>H+ksl-Bci}33(8~I%SR&4IC zeiKPD9^$uBn*K4@YZa4G6F*0_dBi}7eD+=Hc6GH;J|$!!ey3<=nLO|sn#LO=^PT>M z1^zb~*P~IAJb{tyRvW=R;s80$%t#6d%SzVqO`j2gbJ|j(|U>Xj7w!oF|4mkUG@h5UK|r64Fn`BSWBdM=uzB$ zwg;PbA79;`_nYb%D0l zCD_rUT^tNsGO?2chWK$im>zFZ!SeEn)>8aSgNe=VK|;tIPl0k+HV+9-rK&Uvp*Ht) zEZM*lEII&ydM&aDa zenOLr9D-Ayrdzd!cKY#_L0i^jWwcLe6?%KoR3gh}J9k7rzvTK!p0ELN>sf`EcJw0s zLHwECDV@!#9<1c=rPTW&lFig@@{Xm4oE$&iIxHdP)qH)w2(sxw|I=({4B0Lp}%D^*_|MXor6+~O5;ly|OI-P=mG zNPuIDX0%@t#~lxuFaOsq`F>x!chAXP%$T8gP*qgTN2CAqm*Wn)+HP$pzc_2u0m~y9 zH*OQ&Ef`)luA6Bqq7wmsaME|(W0jwz!{9jm?+ylyUkK%1aZKw$6)3fH@6pjlecMZR zmk?XW^5H;0+4w4W9PQ-{`-v{u|k zb4rR+{56qVL$&ErM8^jn&+Ni3Zx{H!A~SU(1$HB~qX3r#_TTl>4l1$1GpcuGz9IQe zf~D|SA_LQ?u^=mHB20K>CWH6etD9E9?NF>qs$!1j29{fD;dhoxcEw)JeL+VN! zc_kI-uFs${DfGM}Iil_THH#4DJyO-QxzC^okf)O?EVU1DFNwP>TtP{#ap)p!u-P=R zU+vCWJ1^(XfjXZ#vq`ourD`pnyWHF&s)92rsE!!c2MsIc)%pmlFsgf)^OL-e8Xs+B2tFB!gJAG*<7zl%@4F?}6DNjzjg)+l1iVbTI?W4wTwnKGBo#B9ZeGu$Rgm!-zC92V}r*x6r{}S%H4NY0h5Dj0I?@ zc*X3ezta6m?mVW_?e)oA2*!mvf=m>*nCX*{1yd3O)#LQ`A&=pRY{cLtu((|VLL(*9 zc|0{ak9j0)MtgOJ=XmR{-a0gFqsq!vlp_bu^;Ai`yvvB;!=FPQIaOQ)x@&ASjAf>D zuy|>Etj!+Q^(t57H3JurIy;t<1+w_@F;h)4RyEiZmnRX?P*pB^n19Q~q|*cLIOkT} z_IP=tP3QiQEVBFJCC}3+Wk5gKPGSWSqoFgz1u)>F4 z`b5|?kRCLqu=YV>DFf_rRQ}j>dzvk@A!*RfeHZvTlnt@*tRxA67WEfT|HWtc_b(Ru*kPNglKz zltM!4nq&6;n>kA?cjK_W!tvxLcsO>~5c0Wk*^pE`yJ}*Vn9O!%m%h8$_5`_SiS3JK zK1Z1=o9A3#xGc8N7|EFr*wF29$Jv0^U#f_-adEAA{N$-RZJN&ii5_VNZ3%;vApJ49 zG9c+95oNaMTGUL#YmDu&!_3IP=@eCH>T)@H;r(hFiNU8bE=134p2;Gawx z?yA2WttuSWK~1v|ElFbnm_!600o?hs27mhcYvT(VV&+y;_$j@G!g{&XV~3QcRhA~Y zYz0|4t?Z&#CgExk_WM2#NRX~~E>U#NZ=$ngSo?-)Fo_ZC0_nW6_>NJ_fK@G-VUQvO zi$j_!oOcM{zf8bGZN$ls>N?Eor0o(_ycCW~CWNkBwP*)Y5Y>cr_DpPaj0>F5tQ!ZKtyvJYyco zGLPSg$3YscIIWKCCgfi~bQw3O)`~FH74Va=y&I67k3XD?eajf@ZmU9>&GR#Jjy|1l zE(gn$yPpJ`Hi9U^SfY`qRm;2SDAfwrJR@=`4Q{_$gPw?WR$LZjJ;QLBmp=x(u9RznTfQ7_W(RmHxJEUjq5oRJ96GRZubfPI#~A=jem z{hsCqlr_4Q6%spHMFn>Wxxl%=HqX`oKDjM~QKz$R9`1fUKDZU36Bc)nK$oAvJ?0Qj z7YmSPR4XD68X&!|Mm_0jD(iTE(#b(Ou`&veK&=_y4`Z=x^P~r~Hn^$SLZ3l!)|l3p z$uKclj_asgxfY2t#Y6g=Mk3H~%5OAtu{)BlPr_UzetU1Y-=*e1LqM?*5CM=sTBT4` zOOd%I5BYiIRLVeA6eG@cYH1p1By?SBGb&dr)O0gi{JY-01UX%%nK zlGPXa%&6($qi|um7O!1Rl*TNRvmX7VBjV=#8M5YN_I_5t8Ad#Z(r=NL<9ps}9TPQe z(qcPk9qV{4p$bQ{Q|!IJilhbd8&0V`$mvk)+d35d*|lWeLvv(oeY$P$ho2oYPqXwi zPtA#tD$)Uy<^+kl`@n>k9`Q0?4f^KxSj~UxO|;3rUXp^Rx-c{IjcEnBBg3#W)xkWN zq92BE$y{9`Duq;ZDHlM)*hoh9J3_EbPw3hc{{|?+Y;I?EzpMojqLvSk4HvJ}b&WdP z^Gci1*33-JFel1*JLkC}2|W&RdhCpo&V`K~=9Kc&HmcZ9?Ia)vbv8i-|wH} zZnlf*+8jpfbjeYE&91|#yg+T$0)$s5rDY3v#g%u+MwQ&tdFYBGtb07L3j z5)GF^h$AY0%26GNFxApyR$%`ji)1>B%BDPw;mSleV1!P2!E%GPxFEG9<<%)V z>Rc^R{G!h+?@@Jo$1$DYbkUNQIr^1T$P;Ryyj&|O)^LBqL5)@C6*&IN(^KU}!;e;6 z)pSk5GD@hu4CdO+Jj_Pd6!YN!=$@LI02mEkx>@{8G_~Wve_&*l-!}qXe_&scdIwCu z#jomreCqb%CPOlJ4RtF zeh}eWb91jHa8{>Tz`@Nwid@^5iRsseIUEA(H9Qy4jjct&r{&(jm zS3b=j#&mi6q_H=l#WNImhhK;4uIt$TU5S*KfKA7z$tDZ*WiBsU?Q3Qt4-N)lg;tmY zUgt+Uw6Gp2B)vSjdREk8g#EW`3d!}uWj;sZYnF{5#b+9T>Bb%5X>Dz6kz_@j!i9*p zH2Fy}BcVfCG^q+;0S|UsKYKF?+MaIO<`d^--vY3O!@G@!@&vS(v`m;%Mo}LX_tz}# z+AjJVd=iA`hHRYAPpd@MH6!~%GJ-q(L<-N)GLbFLr1|6bctCLkid-!S><#rE6bz*E zCtfoP5x&TYx1B46Mb!AOC~RKrGgA#^vnn&)3bWz8ZhZ2pIP*%G7IUf`-=J73V&h^k zV%Ud%B_e=maOeLC!+N1OjFu%&@P416&)}~1RSe$2lj1VrYm;SuX~(_aoIY1`G#Jz& zZ|)uN1uw&7uij%IiW>^iS=!24G77XIv4W@vRrz1WQZfLZKdBw!@KUw~!CQPf zG?3m+r&wACQo*g1*mk-c@?4Ihe8d^$LCnK(hR}N%%@Es~1PJA>pK(L{53~^)gv1vd(v78eh|ON{sI<4 zJuxZX7S^B&6ItMV+TUHNZ9pYe9ndRgGH`;+4f#$X!L5I+j~y-AMivNzn?~(p7{5U@ zT-!6bDje~r+rb;2kkc$~I6rix#`CD2{dHuPd zYFi=VBMXPA>CifvE2yc}#fT>M0o=XEZgrdE$|4c51v(k5X9nvi64~j2#0^xrY17)& z2XM(>6Am|8*#pSI0Icbjz)2rEW{LO_pqSoyfi`p{rILH#VlNis^5{H?g|y$H>bsg{ zHo|kF;p}v&B7s)g1>eX!cN_)Bt7!H1DuP1>2U{z7G@!(Jg1FS}OMFDZ8LX|rf=>{~ z6tjEOYCXH^SSo#zVHs+t3hSLqUzBB&8|(9G!q(zsJ zNN>>~qg%=ItF+A>qD+VqPod{siA$+BbjXs->&knJG1Wuson?()6Z@Ld`YaWO{v88r z6t>D&&;}F^>_vIX9&Uk6f6$YE?}5F|YP^p766GFbGJ>Nv+PVv6A2PwrXeY%7-DA8CA z_<$9VuW{AfC@};?_mAotgw;kZq3IaUWx{Mz67$W8;9kxh^rK|-QwfVYUB??_CPN*{ zf9Tof773-NCS3Ld5A*z4m6oVe77P{5)K`G3ShgL^5y8j+t=7pvt>&DNb%cRWqk>As zxWvV6svDBmSF$l-GULM=ZymVW$b40@l!^ZM<841S_4xk27+n(06O^}&2#1>7Oe~Qk zd~FD2qvRC(WUm;*;utBNB8(X@J&)=HK4Y5fY%!Wj zQ}1ZGQ+U}%@S5^`ost1YGEeOR*a|Nj$vf2*>Kjc&pY0iMU_#%QcULv3oVs!2m;43F z!;Ns))fb|~eUJRc4biqPA9?pVPp~Aoj+4~gVnEP@z%}4g?n+?@DU^4M2vb^J-p1RYn8JjYTwk`s6+oGf|cn?D?u1SU})^*qdh=5HD=Wdoo!T-Aqm zQ_{*`JWSu(g!qXK0Amdlg~T30-2Zkkf+liRx@ktBE7}IwL}O` zcZLc@7iy~?rW`DpFudZX_$=b_n0oX^XuDp#-uuVg`DH!0#@MD1^yR@5LpJ5l$76ns zy)&*Bh-%gUNOR9ARqZ~FeNKiGZpG$Hvt0;7K*$O5!(t*^C&8k5hQ#Apa5u0nwhu0w zwH8$}9I+roMObnjO@%)_N&@S3+Koj}rJV<5AZey48wp`eSTff?d^Vy1mY+@YZyS%c z#5efSn>gVA1XTZ5pX>*yGPC?_&-xcoWn*OjAAu@66BGUaE1;_V160Ms9G8839%eQp z9m5X*et;_DLigQyap5`D zINcT;sXiT}+KXobtrEyD-vQ+D5eGnGZ4C?P1;E>lfX~}az=NHR2yzJZwH`HX0wh8} zNLO;ujUfR+2jOI@2$p*lvPMU~bIYjeJXA7a^R}bJG6xd0b#cghf92Wq>!WS#z zL0G`%pg$KMf@;hq?r!uPKY%i*C%{QnfA^c<8XowkB;8=o$SJORMW8QzRq+Y&P zaC*soAi7&pVp<>oF5m#%SJ?r*Y4r|Z!M}G=UaY&$d$-Zy{DE<<)&SlGae7>MU%JF% zz%hITxPaf^zt(TJA$0iw^x$g+0j+wY5XirHSFb1Zf_ZN@Uw;wk062VczCr@Lczb`{ z8~rV&bH`X%e8+#o7lm0^o@J7oJ^U&^{ANQ%)z<;g)gj~usLp}l<@3>1!y#~f-ud4C z`@k2|efFYS0k!}L_L6zw(&>Wz=rW1t9qO}R4Y>>Q;lhBslIhqB5apd<(@WcD>+(!; z^Ih@GEAaJg^u;;;t$g~e8GFX4y3G55lK4Nu=q|plmEZYAgve!lMaoeec?^5rnyI59E z2n9fZfN$%?CD=Py2%rnd#n1x&=}mAGfB+vQs0|u$a z84!T^n|}`=XUaP!00RKx4IZgQkpkg^mK*|r;{$q&#P0(w4H~@)0X!0B9!1-EEbifOx3v0jbxOL%w45k>(MgWr!3JSI4bX5{c3L_ z_gVvYp3`<0S%-8{T9kA>;B+1Nq10$w(Jje5kF-Ixs5C4ht{Sn^%nfFCAk)?UDXKHb zO2{kPqP?5gy)HhvEQ}k@deQv4f@X3luOON3^>z|q(TY>AfyQ3wll(ee)8ob>Lf9xx zhBUm$@txf(&J^|5{(Gl~OB}vG_#|f-k9NtsHYit2sQ~OGG4M~B)DbkE)?w$<$|&(; zqw=r#?b_=~wLK~B@L9b@I5a7|yaTAm2jrd=WR@Sw6 zaQYa(qstVe-t=as8m*)U+LrWZ49Yr9dYK=QA}TjeaH|3TOaj$3Q?Ly7A3X zMdAaTcR%l=q-VaoL2RSoG&NJzO}D8E3mS?WdL*46eKLgWXkS1A@OIUYmxRjS-8yQr z-_Xdr z`tDQ~yrifE9_Al)m`#mhwUutZR~9nxw|F2KZ`Zp-1>l^T!Pgt((WN$PGH$MI^;J-K zQOu>I{MLTx#OO0;qchfDE9_OX92q^+0K>KF%_<{uLS`4#L94x7g~nrYA3Evq<}9Ug zuek93fOerFt6io(o7H) zn!5hDQ@uoHqQ7Po^{8_s!|ETJ0eW(u{uJM3?Lc0Kn^ystIc#9|qRlL?i5^|rC0*FD zYxVEtK%>@G9uC~yPfklQfZDZ8z&MIHpB_pH^qbz0tH~Ni&Rl5Zv)IQABwIuxa^TNLDp*-eOG6{kSZ;6?0+T{EwDoy4tO|O-LW?Qd z45>bN%y*b4n{-Ubij#>|?Av~+BP`v>$=se>-Kd_&-msB)Dn{+_5^_qn*dEXvmb*BU zSC$oP5%~renkb(n_(*ifb4oe$v60yV+s3H}?!77fdx=%S(jb^SuO8X^Mm%cZOmFmV z@O1i(M7@=uZne=xD0kXlykW{srllH~rt?O+J;*<~<_Cl)F?A6i<>_vol=!>Ia>#fJ5@nxSFdxXw3M zV-W0QioHBC%QrU1U2T+?N5Tx4bmo5706ZlmHSCmMd9*J|VsRYBu{L~bQq~))I~Pk+ zLjFZqiV6K#xsp-_$RKLz6C%d3#c4GsQ2Dl!4^w#H8wJcJBe?yl3y?CO6!<(5A* z_D%mh3{uaM0gu<+hOevZA8S8(=*Z^e$z{CLoUP;okw0nwc~fW|Y;rcsvO?WD3ZR`(|Z zVwtwOba0>im4+EbsZ!Q#0woWmdGmvq)@i9SfD~}cK$ZD8WQeu}id&YAHWoWKN;pUO zvZ%R94PQBEFGh;(WG{^-O1~oMD3OQrSeH#Y!U>R6xlT0{XZxG&hi81hLhH!EUdJV+ zj?UY!sbYl7)43Xdg>l__Y0Ua!rd?R{b<(mzcW9!Z8C6y_ zVcw#vt_3?D%Qn{uYz(qKO+njw%#fpOP11^=M32Tc!&$KO5nNghdX8V zEih+4&p_c}&1+h`10RbDX^HvD;Ypl*rk?3U%tvVra}^^?W$0Jbvyv_?BuiG?<`pZ< zS8CNS@w~&Vdrq}eVL1d8-##%Pc>8?xB&@A7n0@m*tkj zoO0uUtc9EwIbwta=}0M!K1|vP_phm9G4B9^a=C3UYYD#3LM^7c-EWVus`e0H8*%?Ny~mkwSw$ZdXuU5O#60YSW*>tJqW^TR#s$p`|)#O9uLrJ z)ewKWlaua>;Q}8@f{vFvIY?j(!CC++Pd2TBd8%RgjiVOO`)5AZR!=Y3M?9=vPh8bu z;%eS4Ev;^vp?L;~Y?w*+bHn~((jKLs58)5Pv-nH;d#oue?;|EYhcqRVsfDACLpIR) z$U|rbnRdaAnPJhr`M41o1r2;TAjY({#466cwUsF~m)?o$ zVYL|01=;;5)bgGU6pwCnx2fT3^SM}Ug)xYnVKiA{Q-89C>>PQTS;B$@9ti1q#G&%= zBlW8|Ak!bOFeDdB>P(r(^_7Z7PDvn0x{{f!r9tqmEsW%vKiVO4>K^P?avN&mS<(r3 z8#>G3`hkWV-LMxI>vtC-f%bwD=!A*F(c{JT*wsY<)vS>jz>fLyO?;{_|DchbdXDz#Fc($3^&+L{NzgqerqLvft zrxWewTfM#VZ1cX~8cxBcp!BxMz&c6YhRYPP3d-=#gN9mv8cc~DuVF1l^>E`3$Hu0Q z4*NVR69_TMYach=0-ig&C4H7!KAtyOwF3k#7`RnXWpta^wae<#2wnG@;zLdE#Hh*` zX&W`W2I#c%a4k0HYbJ_kc{9sZlt&|vG>0Mns`0z`Hh?)SqKgG5Uqgj=skMNvwLw|j9t->{Lh9Ak7Ir3hZz_)t|H08^uEV3p>1)9~TSf04u-af4t0%Dl# z$2QFQ)fD@Ue_~{oRg5{mR4@tnYAdpATDe_=;ITNJ_-P|>G33Nd3r*ZED!50Q1O-4u zr+gUk^irN&zL;(%U@ZsE(%WLbhkppt1j*mLumtL2$W$YW z`OP#zq`OD+l5DpKHM78%m$FIM+K$PC1Oq{hCQ+SQDcGwVlH{e%>!aOij1uHCNdlwv z!V_gjm5DZJ;mbr8_PHt#nJ){*>t9D&b^mq@sZeHi)@p?8vP!Oe$vr)!S_*i2AbJWc*e zRVDngDO%O+cz;}@g8IcHhFwtUEnqXTd~RbD&(-S0P=^{4o77&0HH#=vkX|sS9DDS} z=r%hlFgb+w2{J&gldw86R_jWqXG|@ma+vjMbLMLMD0hk{Ianzw>NsC}4-2VLq2;zU z_z?rtZ?qo-p-Z7qw^^4hBcWZx&`_x|)wr)+iOYVv2AigHdy2@2(QIdvj!uH`3@QeF zA={7$Cn=uQ?c54d^-iO28`<9C;8QIN*KOuk|TUT{R?v1c`6{*)qRe(n-snY7f|X zWzfh7vyqFePa`{Ky(=5~#zKWZma&FVQxw7aDyMb!b*~D3Z37>x2J=^CeUTwbq8kcn z8}#?jaPg~&mmRS|4NcN!BA~0U_%bq8VIX-`kj>!qJPBh1i>N=7r^ooG#GzBD#>8sT zf1ci5O4RFHu!NDLX~8lOgoY=2U8Qzd719OafykuXUnMSqWfpB-l;>1MZf3&J4ndc& z!VEhJ7Uf9~ubz>E)5|Dzx=6Buyj`g0_@96JXVaQSvP7ZU+CMvD#}D5XDpu|O5FNUE zSS?V0__0+mR#Sa7%Jgob+%h<~k5Ac0f7UI7!;+zGbO@9hWFPp*fhCM-j>bZ@RF@^w?Emiut30gC@6nHSwKYFTYeL= zrQ9y4Og0=h{o}Ddxt#yIN)voAk+mb+Tr{F6L!MD8T}bbDpna;w!Q|K~nu(tKXWMR; z#p$aK*yLw@;HHL#qZH^SSJW8YfoL!mOVq36OUPXYM>xTIr=yN5itmvQpHso*Su8^R z1Y@G$XJxW^3l8VloPyKTBDa4ex}+}i(llu70SqXtWHQt>PX9t2?x}NJeaek{ERk3|nu6T0dpw6%-hI&Yi9_oN0b9N}8n{>WWY~(VO?3T8Uro`Yg2Yfh5 zOyVIvhj=2;PSO4{a=|W^7sjsbg^jm7a|4u*8i5RF5>i&sDx%dZ_LO)|nNkB$iI|M# z&mv8ceOIcx$9=DKU3^`hU8b8gO{q1Bo{QT)WX$7qCrZzd^}Gt1`poATkh!PL{+8qrB4TVr7fho76e|PC^{ir} zW9Iz*>LYnkJ4T671QY$zNpA0}UozAtAwKoNi*+JxIMtqUx`UOp;?ZE{;3AHN3bDL6 z6`=3hMfj^Ko`w?yEzxsO==jyUve*$f*qIwP%f<&<_V}7)D$@MBg=a_lC}XaRXw45> z;aMaf3I?6CR1WD<9+R0W%(+yxcttzBQlDdfdV}j>A)-U$96wW4Z#$oFGbO8qoc{D@ zqME7>9ts=^bX8MryW@u^iP_@098`YXS%OEUn}US`_)6hl8@Bex{fzrDtM)P01gbn4W38^0?O{m?>B(xfKUVvZ}cZ<8Nj-q z*QkV4|(b}gh~sP`fJN7 z8lr-#QQrRBqW&nG#~D*mR5`yR10lkbHU5+&id7@Ew7e*4*7$@q1QAmYRvx_Fr!2NR z?9i)xro3=D$m-!@O?s;~&_qI*_SR}zHC@7>^%jMTf(iOob{*is7Pz^@)&5}$BAocT zShfcM5>n*pcjgkPb;^p;ttRtTai-wkFnVT5dE9jd=@zYvetr=H)IGrIeq_8NS?Xt} zmLkVcMtLT>#iu4_cJ3}K>em=q-JV?>cgyxEVT%3Wu-yIHbg?6{%R?9IjdHJNNDAw@ zz0jv3UA?`-Qz}xLB3I?K9e<{+xvSPThqz-Ny4W4xz1J{~ch-~v%ISDo@YVKFU60-? zcWuWft@2dasP9dn>*GarLF~eJGunZTUXfJcgz7@;aL64yCF}h?A?C3WrDf6xuf1ft z>?-tf)wpGsxX+e)GHIq)+aR1l=Eadp@1Iu;xO9J%hlG^BH!M6q@q4YbW-ENn9Mic5 zXH`*T4Oe$E;bwp2Rs&}zg7Ab5z8OiqWLlc=V}l9t&z^$u@UzAXV?&~TdZs^h5QnsZ zJenU&3$ZBP%3`l0h?eC>kjrW|u@2T_JxSId_GoDH7%5#8*d!7yYxDR$sZqu00lM-_ z-vf#V$T7xdgVQAW3BXeQPz5?3TC-ImGYuINE8ZW3$yvJZ7*8{hJT?u3OAa+rQee8yD3;^a5N zAp~jcM^xU}s-_eqc_X}|&nx&HSdD|)<^M0n&M`)`sN1q-+qP}nwr$(CZM*80?OV2O z+qTj7b@Fw((=X{h|8{cz@3k}L8dDE#YLpwAIzMK&OR=b;gm6I0cNzVROQLI)-40Q} zxKFnKVjfmnm2M`(6-IlY`yP&KcV-tPar#~GF^SU@R7qczISutdBma}rQ-nHtsZrsq z5RZ=wLfhUx?nqdjTH!s?`psj>g~GHwM=e|d@bbLPQRM8sP4y(cew%CpUzEnPU%pnA zyu))Aj^nXGqh<=Pdg)E@01(X77fOSujftcqZZkinfWQ&ImOZF=4|~4I6KAplJ!bt* zxKlg~4GW-GD=$;>6%wi(4Q>Ci=}e04SzV0pz~w*@SABm`rS#@Gc&wQv3<##D5I(zJ z7V3?hDu|A{JZW}WGD0+l?M3>19(`*;#s}vy%~(9Ip9GH(-yE4k!#-E33-xrW7mX~H zZ=&6%*G&A<333iRVj7jtyozNnNi_3TW~YqWW?KWOyR|RAsp#c+V=UudFRZJ;d+{o~ z9)BL|VHk&#!&_6{*}+i#nlk_hC6JSvLX0)FL(O*kZZG!=*hAL5y2z;x zl%@1o0$NEkfO)zCEqByvyT=o1@DO*US;*EyW@pBX1CCo&VC+P4dzf5@rWl}92qAQK zn;l-!+>B08;~#P?;A32Q#_m+dx;avoR=DOSCefWCr~K2E68s$D;x3`Hb-2mDFVH?- z5t9d&XfpgaBmVXRsfSTpdk+W-yjJJQ*yFVNglyfqik`Rf#C3|Z8C$&91#%VC6o2K- zP0l!8`N*#4UJfZ|Vamt`?TWqhQKxRA%dzguAtDd!7t~{?`xIF$EI2hSvq4m$pv^&j zrgjC>DlfFlZmP6oJgUq!$_feuX5J9)Mk0`VNNfn**5r0h%*ks@uxG0all)UJBBhkq zQLW;vAd0v`+os)2@Twcm1wMwuG4bveESt2xD#^GPa{-+2!fP4Fciv!lf#)9VL1kTa z_(+;&uI@r4o|rnsHdRdT^Co>96I=)B+2pzDjm(WDEwRTDZ5h#Q0{r!?GuF-@WAVDc zeI^*&8kt1ZU428d0dPJ9ju*)(JJnf7O&>dh`Ie9yCZCY4q*S3_$$t18;l2 z&81!_vS@TVa6&;MTpWRvh2*?TrZv&T61>OGtB?hK{C1Zgpevh8@{`fP3BP_3l{w-e za;`(hw{5r*-=wT}@dc^H=s?0XdC*}W*F`iZ#{Ygdp!^_@rR%HkMg;JS_2_kO)EKuW zT?1D+fCwpj(An~z8cP?tF4rK6BzN5v3!pKZ^yAoZ`6bLC0_@}8?OT9&dJkyuR|UFx zQ~6ms-kVy8a&M`qN=ktTt&~x;IfRH1OJIKFyczA>+@1;^BV{+bfL`2Wn)b!E zFmfDI24XzuS*f=R?|b2xXj|3I<^p@}gqb0wE_zZTzYtX~k?Almgl2=ASggOmv>9iH zg8itm>(IkdtDRZ>fLGh63xg7tQZJUF?NzE{uYXj-)y8a-G(JD%wlp5`rF2HfO!A+9 z4nY6wvf{aFa#25%_E_KZA4THTHNo7KBsZxKGn{X~$xLHGGlezx_*SZ3M&7cOiPJb> z*wG#%Y}wI*J4VG+4`75T{M+1{MLd*yc z7~uI#M1Hmp`P3-KH%7e_`Q1ZfYF2PuF#2bLf{Lt_p-uV?qX;1&ZaY=!5{uLr^*b18 zOo&S$ZD@jvY;Kem;TBQx*|8tJ*5e!GT_ax#9ryD zq?KvvnYX?W6vvYHcKIssqh>ds)22oGR~s<(!jjVTN93UmGUgdrV;{I(F*Jwx@n=;d zzz{RO}X1x z{=xYuXzR_%OmUU^3z8{vLGU`X2MnMSHoOc{bl|DaEF5O#l0aJ)j=!DT(y>UKwSrse zJo{W{(oL%;ywB!Z#(IPEAl0n&=n7*KIVl$;jcli+;E2iIR!5+55i2xmVyrhTaAvG$ zrv@Mn3bgBo){eXG#8Iff9zFR$Ldf|gI~r1Y1~LsK67-N{aE z&ud3ox3K);ulLgM9y$1a00N(tt#7dxQ}2GuqZS%!zo+H)h&}iVA-AhiXHKmhm$_K- zD+lb=X7U+x%)J*pQHupN4|+E%F2Wmi%ROu=d<#JY}e2(bouyq zLo+aKz}C`i=r0&gEyQH`k6)*0T8p=!{2V{)E>3PLJ=3A6*p`oh)kTa7bhd{YJEbX3 zPB@d%GwS^E-bI6+t6}Lbd9f|^LTS^(vdnQ8yFk;t(rppij{L^38xkI}FwQ8ZL`Tl; zFtM0j5ZgluOXOD5YZkp8?Y&!Sqd2nu&pM-UJc|4R^A)}*2u*&`$5{YO91X8T&uOj8 z*<%64r=g~Dle!l_#1It&LuXE<;@=QE{1>WYB`|2Qc1))FurA|@&GwP!+hf*U5Wv;b zBC}+$!1EVv<-n$nHE3F3LKjn!;Uk_XvYAluy-M3AS}2?WiOoXFqIykBEQznS%}r7d0Yvlq_F_;ID^sW?;yrGkPK5iVOc3+vFr`gY$bRbncw8 zze*5phV62jWa&O8gEaLv#g@4i<2qL(x`uNiSJF(ADPl*icDKnXITTb&jlUC&$4lRw z1WFb)C%V}v`*E!Dn_~8dF->>AM%oe7Zj{8(l}1*Fs-}!THdmigg=4}nnObqC(3@O{ znd0BOE}!^foswK*HytV~X@1&Y8}W9|kwYrjW^#UFqP``DOLzx`n45Q-Ug*KQu9Ng#vin5^WKz)$CRkmR7{s44XcHv z0+H%CA^MxKG{HNw$g*U@c@U6D#*F4IIe}njqOWcb`MlT_nB4>*=-5Ys7+d}GR3wq2 z^?M-0xhr%rWj9b^SWk4svNLRo&$EF0wzA5tOO6IL$)fY*(hS%%z9 zS8FtJiZA{EoLwRd|4p!p?Y~UU|F@}v;eQD!{+TM6*;xJ)v-&?x6-@vCrV5vTri$Aa zI!axr2m*!x7ufCXZ30SWhJPiPLjX!aE|OFP5h(!>3kw9WNehJAx(o04hdGbGx!$WC z?$cVkKHj(Hx9+#@{IjDHWi_Le#<1YRDEkZ`^%@O89wH(k9DZfMCOHJP3e*TN z1%N_pf;kD~T7fu#UJle0Ap6hpNHhm-5Ft$z>}_Rb0h0WRrs|jlXj`jg~ zQC$Plm_c5^tAD`z0N=dX0r2SZ{L??PzpD^XUbrz$OhMh9!1}ui7_wBer@c z2<$Zh&1k{hor3xh?Am)jlEXWMsuNakhQH05;27G;r%vk(fkQPnzpw^2wlg;Yz+4@} z%g26033S_k@7IM8000Z>5%L)j02~1Y^0e0-f2rzjk73?%kKT{Pe%xi$(0*|C2FXG8j!*%J&L`-B z5QKW(zMG=hAU@il_xzPq4cHt2;P2$y#;iZoNAdh2`ySMBsssGd7DI?Np#kf^!jH@Z z01Hqb`X7H~pLZ#L*~5M-AAX76{n<;-ZqDAgryjU}{6hrg6vXR#0Z1&j5hVaE`VyG} zzS)-`9>klm5Uk5P7yZRm5eP~UObl8jn4BN(oB`i|-wN%b=1vi;Z7BvOZs1LS-eCPC zrxBroEe5v>dV6TcXbA3ljU;?EISG34?IiSmAOp7&jD)}R4(YLjQWp6?6#_K-Yy8jS z)CCX#oLoUY_leZwn?V5hcq9U~g!6vQ*aEVl!Ndua0md@F0oWYWxAd(~0HFZd3wwQf zW%Wvqzec}C8P#rTYsdKfnt;~_d#`r2!Ugh#s~yTl_SKB~Uyl1>PyaBfka4f<~p(!TO#G3b6g+sBupg1tYp|swF;}s*)KY3^!7m+7hh>sGg zB!tb9o&JNrTanC<#<-=qAi5OP`K%5aN14H#mSYs0Ry<9V#HxJ0Jd{o6fXpKuf!^WO zVJ@*zp<}Y#{(&vKoQ}}pLRM*#h5cr)-^Nsx+d3s3#{fv&~3Y|$T6GcqF3u_ z(&p4`D>r(w@Y9o3gzHVNu1mQuYNaM4ALQcib3W_QbYH}V3b># zb0-xKj%JPI+XRk<^Ad8W3!#XSA$bhmQik#YW}W122&!jO>754AUkPxYB$+^97@jHgBs^O8s5%(~A_xXo(wawbi>v@* z({7oT*Z7An+Sf0*c_Yijq3(_E6LWmyPx)tXhYBo{MWdp!2ocEfUg|3@B{;bh7xkgI z%E!ZltWC~~{HR=`SwzpxE>}&y*CL9JiBuG_w?5&dbwt|pU92KLF23h&q3X{2s99)Xv)~8?!X+k!@!)qoEy>?+z|bChN^8kN-pAHY%>XB0 zo(*-i)VwvTX7auW@Z7E+;x-L;cin*@pNTAmiF;QOTgmY|hGs4KDa7vXpts6`ls&``Af?(77-jEm1HP zWd676K7Xkv0{-EKZo zwQ&VdkS~|!#yFAvYb4S33}-dW1AGeS4XyR|`Fkbfpow#sC?8=l8b(9=I*!FDK z{!*(t^Ux6wnPei)b8JwLqGSp3dmkM^5mxGWrvFrPZ0Sczj@s%iP%%9wMii0yN~^QEA6CX`N)$_CBS57h`*q!q+W z1~kzSgD0qlD^!l_Ogp4P$pWaAablcFArLR!5wbSR_d*|bpRkw@KNXN2>4h$ba>)nH z3Vy(`lv9M7A;S~Xz@;>@|3Y@W$CYd3=|#}#O_`z4%vx6@de~D?xUVx{EhOqAswmI# zRI@{k0eDsYyD{Mg+2@!gjS=NO>mS4!;unUucT9OLvG5TP27>FyPdfP7RV$d9{eAiN%HB2GcgKLu&bh zS=*CL*lNU7!uWl!rdldWsUgcFT@IptPu2-Pt$~>)EzS{v@67k5zFND`5K`Vy*I{wUD`8=YV>bqE4avDHnwa2B#8~5{(z_{FL-Z ztrN>(9pC^1Teg?|QJtp^)4CKcUs2QuRgQ{^Z_mx`l$IWd(a<*U+ppe2B%TNB$h@C+*zuM;m>sWeU*Gm5~SRCoF7ST9dp0 zP*gvka|V^yc%u7Y#=1;INxu@EM@3yqab5e~0ocZ#W$wgr{0La3Q-wp*{))LtUF53A zcTHYl%*NvwcAS+Bisk76ZLPYu6R!DRli!`^lHGtsFC*)9y!$Mm4!dY_ zk!Z4GT4PDZj_tL#LBQcCAE?=9ybPqPQxyC6*>vW%nmk5D!zLPCXRab5k~->?7rLC(=uD4?=8`4MnBbA z7n&1+fYJv1`&w0DR}x|`bEB?L!Nx+|S}rd;6nvwC$8(5E(}qS>IU^I0<#cyhi)Sbm z75s^+6{4#0HeouNp~HnDn>2uy@Ib($_)O-AS%)F>2*>9U6L_5u2ici-^K!~9qv_Fg zm@T#-^xLp?@`LkHtfdP9(PGaxF#Rn48m3uD<=qzt&XlRH1HrbPiX#e6V|s+%)4^D_ zrNc@6EAHaAt?UFrUaR7OVQf0aa5^8(5p4vxXhef*MtsR;I+0yPatt>6`wMRr!Iq&; zoL0jn)FJM1d+cAc#E22{YOZn0vK&G+dkaM?$`ylEK0^J@XheQmKT1wWna2ZIfrxY$ zqYqQh49O^D{Q!o|+{FXV%fN@q@Mjh8d9qj|2Rg<m?2BSqh-@A>}1>#jZW zBomGU$yPnSR6O`9n&;QK4NLpYX{`%3KI}B4JE>y{d6A&J()LMFWtg|VKh|tbDo>D{!Ze*q+Y)Zz8;1^M$)gI%(RQ~Atfmc7+B|^K zy1w7^mNA*hnylT#VKrJS%K9{8n|F%%0zLBu;O)`JS8U;7q4BwUq!+$rub3J(NIuxZ zBD+_4Y&Z2p^i|(1hub$D(a zuU#rgnVM`1FJ4gP>Cy{uIo8>M-s$u0VA})p`R$D32h&O`U(CBpWhC#3X)`G(0e@Nk zLiD<=%Nm8DOgG7#w5nY@*7sPW& zm1=VtM>FyDesc(6M;aM%k){qb4$f^_Vpn1Fv7g zsd}Ex^4Gzk`R-cXwl&M*VV4HYW7%g_myJ{;22wB}J(rx!-kr0pad^X)a(!2eERX&M zJszPrEJQWYRQ{x%6pyQA_z3l6U(xLHovq7T7CKH|fbZ7la}UoOD}i1xo%5T{7-Cbg zhFhrAzy?#XOF6vpEh53X0a{S_R+#MIX|;xW&7qpj;=!q4s$AVM(WcCk54P@%cwJ85 z1gNWqpNzU^ru6)o=pNl(A|H%-g?i3SCE{9qm;3-Y%|IZnt76TtKUVo;Xu~Bx@<>T& z_LqdAdx+47YWe9Vf*`^QjeQJrd+vhl~aE(63o{V)6PP-PT-P86feJ+#3 zrf=u7jTrKHpkUcHtbAe{Fz0+&ZZRn><)=`}dHn}k^5LT|(L9jlR`sS^qOq5Ten~dM zmzD004I{dBnp^&rN&?lqg;DXz2~k8U;%uonF)^m5H|@LQzP}@@)TXgaAjZC^utufA z`qs~CS==;qzSQxFHvMc; zsbRrV{(#cD2W}vazczs}l7BX$o&01Zy;c92pH<3H5^7&2mu<5Y8?#y<9p3|1l7B zg7BB>0n@6YTm|&DxoB9HYA~LEb8smbIWthBY3s|Z8@*{4OVjj9GIon53M+@0>~qkP z%4;#4)hf69NtD}we#o%zog7aKbzg%=ny8U~e()ShgUBt!{2t^bP7chS7e+)s1MND~ zD`c$0Z3L)3pESC8ymsaA;tVcEH!IRX;}0uO@NwwCrO5<=G&B$9nMLc7S56$=pwAkz z%=9_s6f%93b(dTX2`+0(Q)ctmE8fA=E>E36lqrZzo2Ki#t2q2kem9Z%RJ`XvcG6*t57#2Es51|MLX&;rW%Wf$EtXPq0xw` zuoBg#RIT$PBePao7d&Q3WwzFkX0@@BbHy{9rFBveQ&P0~;5)X{u=G3yyCpe0ZTk$f z{$WHO#)_7yg}7Amc-qGN_8a9|@rzh}_8@zJbi}`0n&{AGcNXQA7HqS_41)X_$oHsWO<&wRJ4g)`I{hZw`q!DF&)C1n{ zw_Iqbj%k-y7T*hhbemXg$k+dA*Ul}K=rcX?>pc=d9~RcH4TiZ?es6e@0YQ5lHx~-b zPb~aui~(uk08w|RdmIe}ywG@bnH|O_%Ib*C#8jweDj3JPVKZ8%Bh+PxgvrKUL28vI z743b9`Re@S7(6L}bHQ{1*>JZTk4}=80Ofb_E0ADoc^AArTqFhR7I^-aF0ehn-vHvP zzf83G^-Fq=-vFOfj($SsdM@V_i@N$AQCEXf)W=huCEx19TNuQxOuafv&YaSmfVGNQ4~Ewpk6_v#{8Z=ZT}9zcqluL+&S&%n)b!o z`xJnuvt2MH+OfS0vBrXxk+os$4SboSUBk<{Et==sZ1l?*L+j44eT~m>Wrf{9PFYX3y)t&tMuTHoT*wZ|<$R2+{8g_s(_~L7KyiC_W(t^njfyFOX|O(8 z3|YlDx6785?)F1!KRz}SKJby-{+9AzVF^^1y3eua+l_b|{#0iB!*@MdU75ic*cvKI z1Gpm-jhJ`?$~?Zw{8BaReVK)bMp3iEP$;LtVPDk_ZE(ItuB79H7CEf|f3~!26w+m)sCZ zE+c=qBe0mQ;h`l(5*%$`{wPc~RH_hQ@nI-3Zem~&sZnQRt8k_XT!FQrGi?ndpf}8G z=cD;v19lD4)9$UcWU-?tYU>PT!XUi7nxkSEe*F#yg5_2|tcSxpNnt7O<%X*AVk~th z*3fBk=qoy&{ETsMQMW=-Y9kx655Kc#WDXhyk|wm+FDAQ-iFNh78kZuXms@?vF#A%J*Z9E&(^g-d+!Np?`giyXqc zEalS%%{Ux`ncEqRu>;F3g8E(AH29dsm;`7lHXb9pcFpz6Z9hhrCBOo1TGapBD!=jQ z+;u6g=`G?If`D|jXR^2&Q5&xy``d7rk>DFE1U`PE=hibonX6Z2Omy%Ra7 z*IH7scczQ$0+SHY$0FpceF1`&cIUW@hp@)Mw-}fkt=$p%gD*C#s#{3_+FA zI4oXg)k(ji!oj(+f1`Iv_@CnDG@UL5nS^_Gyxlavnb4LXbR*h{nKpinp72{yFOU=^ zbVTGl9`-)g@(b1DhRNqy9Mef}4j-W50q|P@8t6FHh&+Yzf2JqXky!7d$qgh+5dP3L z30oCL8oR%s!>~H8$~bwP^oC_0oMJvr*-;oW$C_1~4R0reR}|K76#Gr-GK}whD^$Sa z-&}p`fZ+B?wXrzsVnReT`V@i=5-ALyw_td^P8zTP_}*=KC<*>fI~;7FF$f zxMnaAb5Ha{`TB$Y6GPm(!|Ri_5Az*F$NU^aAtObdC|VNJ?yJ zayR?N`H^$gCy-!ZI0d|23Ccr7tueiGs%-uHyx^e&K_y2B6iv0&gm$p~20AT744iEtjaDWa52>~1kU`L>ErY}OSZWutb25beYa0o)d-A`b*7Q-Yr zvs0^pt^M}R_NxVyL8}QsKu8GqvbzsJDIP(+gaiXz9=P9%F#3s0+YbkTOD;_Ta`PRJ zGF8;-(B8y=p8k)DlCRCjE{-pY<%HtyL56MuH51w)sKZB~?x_y~xYiRN$(!e_#Q^AP zmv7>C#wD|EAzwiOZeimTq#_<;x0(&pmi_A}U1Oo17|x&{ES9I0~d>p8dqV3<8eL%2COcf^Bx2Nc2? zM0*e1PV@tKQqlsv_4M~{I5)Y3at&^CY!|@wY8`!~p8TX78>lhK#l<0DY{7o2`!*`5 zM;w1Qcsqap)%4CtCWpC4uMZojuJ&g&JieLw^KYxCT{y+$w`eQ7{@Xh!8w5y0kaiycIsz6Y?A!gtn|bI1zNgnmy&Sy{!=sKD0pRWO^>+Eu+f$RXAE)cL z^tVT!juq2W7gxBIANO~Yoc8(%RKOts0B6fb004pn00?4>{_7`G6dC5b3Tkh+P>R8t z90202Y~$1TLw)!k7Y%r?+cyCGV$SSX?6x8VIO!F&13CiM+VL0oHLv)Ed;g{UQcwGp zJ^Iy6=;{m}v}b>`|NT7#;}*j0`X$Ty&!{s4$`m`+D~isCwUyLeYIY~DPV{wO~!s&-E_hS1^G$8 z_3NRzzTJgy^Va=w4BWm6hyD4)@;4m&=J;-c zV(vRYOR&q28oO^8(m7~19N@L;2X^kvVN|NibQ2*?3w!%$wnVYRV6FJ?`~FGkLclm8?ar<_r)vL(e}MMdRZdnrNwg< z5pKGAWS%OBo+o%X8pM|c7g2C3ZxCA?#*luC1u}Q>Xhb*G2jyRKi9zE!PJB_dtIwlI+VBibd#Ar*MA%P+DOZhYYJkKA-`6}^o zYlL<)ZV4^M>(q;n^}38T+rJG_jkiCEy2Q&KoL)pm2bH5_Z=1JusF@%=`&Az$F08&J z4+F;>03I?4rxgz3AS(T}vU09@55h2G9HP|`63RN$+>mYNfE!)$WW^~{n+?9hOWCbf z89RSg+zj1tE#r?YpF#FMG`N$?xS(2B(bjQ7$(Wpla*qX2<@y{3L&F{Kcws>r4Pa%oJrh!=7B!_6c} z^A}lu=K#aLC5IiGTDTj(&?VFaa*mx0muHU6b4=RosZq(2GOH$R4c#5I4<;#YWx>pe z${y~%jf$RC6538faEz_<9U$S+$uXVQ8K38?&~Cdn@3T9Wlb^y~0>T>kIcs>JFMQ_u zV?9z~IY5ACQJ!{63`vSCWpkPl{^HS^u1UlWWeAmZR!Cs{XYRCgj6rCojQ0dmE@+>) zz5g@Uos6bv^q(BiN7}PzvIz3A_FP}})q{zq!^G08QrwDem!|M%_~B7R>wE=q4J1B@2LUW$nJYkwC}ZOtt2ZPRVabv(sf*lPw^LfWKR0{0}Ri;S_?s0Pa{rg(sPkeiSe z9)&u6lNJ#35NRiHiXCkB+=&)RP%$&@VpUO!T_*+y+`e2rp?2v0LW?OQYzAvni#b*t zsZK#PdPeawR*bL5e<8ANVm*+&4T^Cx)suP8%CktMOB>0RqU*~ zApRZOX#S_Zm4PUi-sD>x!mN`~4%N0eou8{t@@#t$POr_yUzSQH&@x_bmPGWaQV6Tt zjk~O^(Y`^*2?EBVV&m^}r(;?cuH-F1M2i8j-D<9(xo7UH>WV15qTh)e;~}al>Z9ge zSd>HC2P2Mha-uu3QSn4VdqPr%To$ox@#U&_rXvk#VND4~_7g42*6@&Cm>*Z;34TVa zz1U!WN>wDIhVGgur4?wb*LCgyoq^?OdDyq7TVe>(a@s=lah1KYe=}ZD68?Rq_efG( z4OE{eXIB!7iVr7cXDX^PhWNr8=e1uLmC(GDeVo$}t_@s<-6?MsG(53Tna|*x2~4?$ zlYS`(Du|w6JVxfR{No)rDc#X=S{%Zt@HurJ2A?CPIgj7HYID(mb;zoZ!bF8R%V=Tc zW6Mhp*N6=o=5SjW-Y_=X0-adgz)*dPyZMJEa;?WaDJNL9nngX5$BE1E1sUnzYF&ym zXjm(;&)Q4cccTUjn6^?P*q6xUdXbtISj?qo(SQ_tn&!E@k6!ceIZp{k{T?k*QD@ozc_#i@E^gnQzU@KUHJb~D&&Krej6J$z$ z4+`Ht<7WIV*5U z6AN2k!&c zd9J_i+&SlyPxP~DuQf?!Txo`~6p@vKC)N z@%@%4dS*(d(@8am|Kw+h$SYhqHkr5FgU5xu?vnZeQ*TDHhQ^sqk0Wr!DQlX-P+J+v zvT|vGpE#yb|CdJZ=$J-xPof7iYHAbRLyJ+?Z%P0<)Zf1m&EDq zg7R%<7yFwhqWPZd97-7uA{)JG@E+eU3K-4HC7Ntkhqmm9RPM3k9EOG7VgF*jlhX@x zC!p1n;=vqaIWPL%86VCK6?T6#beDBdko3O40bgXb{G6`kzvFh{^ZA{EVtlxds5dS7 za+wV_?+ajOk>h988OFNkJR8f+4MvZiVK86#{xRpeSH#J__6>Y6_N)?lU>u3-C}+yr zr!{N{v}bd&n!l7_y>ZuqocRbWnUMh+5u%F@(UOw_XJ3W=7`Je=+M4a}c0>=LGb7oE zx?B#x-o?7~tYv-YSY3dwCh@WLjlWbcEhD!OPlZpI4fFMu=19sp?Lv96hf|!qGj3$~ zCe1Ul6Ww(Am`dbYLL(2$$G@)c-7dhYDYmDRu}`#0NvxBQW^?jEwu)*Ze@{v-cbKs) zW&KgenfMrYzWA$YI?#rk%mf0(zI=03v$?2M(ty0fM9yhGi6xk)@0~iD z0IsCIsV9cQ73CUmpm->WE+(wh9;RS(4pUTlG?mqby5US#ev1yaNk`$aC9w0$tZs?^ z91|)Cvbf4lmn4(r!V)XPz4yjM_^V+!z+5ju@^vyQI3ll!-Mh>KUhc*;ANz0iBBNRN zTynxAC!|qb!hH(s->?#}AgDvRqr8?7cJt|p0~!4@qCdfL_z9O9rL$tWN<4T^kEhA7 zTMjA9(soU`8*2C96%A|t99e@#^E`t_M|(~LPocL(>}5Mzt@?@YM%uwX zIL5!cq+Lz6=cuyAZ{nF@Sm1r<=nN>a<3E)3-wZ8;rniP$hArWWA<5kci+eb;nz)Xn z_^&yJy#<%g5x+0aKePx{IG9pQR(kD)zGH*x(cfwqCpdOs`j`5d_QjbpBK+SDoxIJv zKPIw0eqKD&9byU{o+Dm-&F&QunV=Q5RIzf@C(y;i?IfQ0(Aq&2X2`uuWv=cU3wpiu z7KB*?P*WCXZvD_v)f0XOT+Y{_lucJ)96O^uYM>>`7gIvjx*;1;1T{3)HEf^nT*Tt* zwxoqGQx7q{>l(GC^7$+E-y=|2&?6~W(R?}xbA}zF9goOuD?@^$blhNnh#=?$etmq| z+ny5BKddQzHD$Ry+SP(pTyY9-y7o}sD2RMfpxackbnHq=T?VHbk#xD!2!c0-zvsch z-;ZH1NQQ(nm;Hdb^s;ml*>iy97V3JdeU7x*d^c3~|T&v~cx@i7R7_q^7aXb*CK zxo%6{afHr^>#{DUGh8~Jm7ebgN|k&GFLeReQDJg(Kx*oBL%(AD%8IWJTt=#uGbn)M z`%XeQ`k~^g&1Kk=NL$$H0$vK#P-@~C;haE#>R<92TN%e_m`9dwDxX)=||D^OP}jL z_+TkM#Sdb?uDJWVbXNB?jDnds4f^nf_Z?xJTZ-EX;mgOICCb)_zu4lfMSFFy;%k^a z7N5-NQ|d*V7|08}{{pD`RfF5T?$E@}whmGg?G7*_9YSxOLA37?>R1IvqB6&a@$Axm zwfBYjlpq>32^F&y_$Gc124(tJ^9vd6EZ8j3y&`?S8+HCP*I@miPiv#oKC=?h)!ifG9U9vX9M-X7fWr77$t%5F>n*w9U#w&NZ4R}$ zvL7D4a8V>*t;4~LL5S9pw-;pH2zwodhEX+Ah5vj0F%(*fLDXas!jG>S;qyEy0h}?q zX*_wqKcVhUsGKal$!UV{F#$HC7nRnr>RwKxfU9&hAE`?W4b|xQkg(ll&6-Pmv~~Rb zlsv_gY{V=%LcTxjafAhCy0ql^P9)Dx_3y=!sCOA%b-;2q!a`2}EwN_!YeAfh@yGZp zm~nd}Klt?w(@%4Fi*(1jYqOXsR)}kd29w57+;bubXnUMBc=FdGGabv z$!OWkG$Xf>ruRlGW0dqt4JzMz3~@IbvEILklTRibuIv&iciOLJ>)_k#61c2Fi|Qrx z-Dvqd#bk>Kdx@wwZsAzBxuu(3r^RV@V7eZR9~{Fftxm#;rw{FuBk#*l%Msa+pE%O$ zsqyyM7#(~z=&GI@apCp`=PHIczj0m?xBRR*M+0d6a(3rmevF=DOn5@aN8s&FjFH!^ z{8&VqmYnLfEir2ak8L=6?LCahONQ+WbtoAF2Z0wNW1AXE06vuhfINw3tZ@O z_uhI?`dk^G)ix&5rw00qFPQ*)i+B$U!|d66;lH3w0BO#@YY7P&_POx ztds)6XOz?HYZ64P^!3L>az<%TtCIoYKKcIblE=|*=snjC(9~la<5j}5XU_=>7AM|f z=VF^kMHW4)B>}o*YE-^ZNQ0$V$<^%=xaar_w)B#?MEsccH7%>ojQ)ZsD5Mf9V*>^4 z6^R5{O0TbG!1Wl7n$6VY<-*bJ!&SrQ9+<*n%;mDreC-fWuD8*opM|k^PsGurm%#Gb z)0UZ=iW5mLD1VdJRc?MNAM#U-RccaVYGPdsM|`fc@g#qThXjBB_y^5Wk}^r}<)WZ7 z3LNWO5Ov2yrlY~+ZsFVY_5rY(JC{?7;U@Ht%FFYmP^E;?PtP$Btt0oPvh6?-eoBWf zc%}BIuPC&~vxqVT4Li>UUkXtt2gyn8bW)>8qnO>uwXlIc0{Jkta~W5N7XsEKCg{=F zc3Am6wxv$d(;{o5bTm03P0={vzB~!IMkqk~`{Tb$_6^4;y(mL90s(*ZwXSVyOgJMG z%q9_-M_k~nsESQV8vGj-A02cz^BkHaEg4Qo!~IM?-row3Q(eP>f-I{W=IMh^W!F)f z1_Q-$NG{*--$sR#2i#CNZchV=*lb{%D(2GQ0B_w~bkBB-H4yMP*y%S8BCGaOVNAV^ zlXf(;f3Dx8P&%ug1~HLPqoY{L*`%{}CFX!7x8EW#n%8=K3JZ6~vhYc@%aZE-!ZkSRK#=%BqK1?|Pgd5u3`~xD&ZMcg3n1 zy~PGzbTApHuN5?HbLbL;3le47 zwr$(CZQHiGY}@LxZQHhO+nAosJ8$tV<`>-UJ(-aa<)nBocbX1E-nh-z&2o4B?;!^G zuJ}2BGGn4IRB&F7worBNH4Zl0MvdWyo-(-G(}jv6767f>u0sQEzui5^sL(3FXWR^( zP^y1UIy&u!M_^+_h@sc>%Id9_E7eMr3EZr+8+JqS+R^t99IP!uq5~-#zJ z6@HRo7J23KXd&OW#aPFOdeC~z4<{-P=aUN_IkQ-ETd##irB?}iJ?kVH@Aee4N(bJ_ zo?zz$efKe%clgi2;fcb?;NZG$q0!R5UR`84K;zh=leDJG>(Ea5J2%IXK3TXE5c~Y$ z$7-+L)Zv_{H18sJmlM8??kX|UFBU{zj0i*Kre0_ zT+22q7%(xIEkyNIA8;lOKJb2WJp&y{HeXX>Jhf^TddtUFQ8FWk449fmZ*tN7QVPat z_AO8JcF_7OD=*2A$4f~tPh_e$@z1VU@*|wH$P1)z$onfKX8yStk!y4QU@I~e5s}lNv24z?sD;iXp-AHOCh98UyV`jIP3Rx5b14o)`-tl zxg8IJuP=cx7%p@5r>t!u8VmlLMsG>Fjue&jS)(N`bR~ z^0ed?U>KV4>GT0gvF=7c60okgWmQ<VxSpbS1a+}B2}8G56b=%sVq@W>OF5}lgr z=8*=+d=Mi(UVA}-BSV8n>ggtW2jBoXdZd@3=S;JpC}NR&n@<+mb8`5F=x){h!Es0o zA*~|}6&W`atyC_446~NJ@^db)@VPg`aA&)OB*M4?ncC~{lY~^eNx19Px|+p7gK!*` zT`P$vU_HE(EzOg)8y@alThm2_NhrAvBsWkhxj;*(H#fFQ*sB*O?-= zd-Gn%eH8o`;@em_dR60yZ95Q`5ahQF2(opbRRzW<&vz<*xU31~{k@gXOc_Y^&SsaK z4!TwcURoCMUy87%s})AQfmzr#pJ8Hd)1j9j>%a?p#Gj@f^|> zg&_{QS|4WhyRgMJaF%1)I#D`WaTp5-J=-89B-+K%imE>}uLAPXuC4hGj?RVF;)?{- z^znBLSp8=Xa*Grw8^XC|2%Y+TG4h$aXPplR*fD~$p+uS|CAH^PFNdNvP&Al^ILnRY zn%TE6x7>x2gD3Y~xE0R2_yw8@$!?XaoDw3K=&SdwNq^@)#9l`|SBjt!3914`DKs82D&yf=|(><#RkSGYknEOY~ElSNBq=2!SIXE8Y*F;YHAa&AJ zxe@kZfOILsi#A#8KU0-_*cR^=u@xv1UO>qUk-Al?!hkD@9%h=`C|3gDByJ2+inE%y z?nj@>1tIWW$8tc0B2Nw0r!cWzB@kt|!MPR~e>m~!$U6D<#Oy35X`*WE%LYzG6r{YH z*@*cO~TU)LN)L4j6FsCg~B^nTQ@3RfJq(TJ1Fk__*Iq6K%m;}F@5GM8# zf9S06laKp{<`Zcn@=qO8n1x-GIN88*IGgt#v`#0uI(Pxc6?p02fxfT400HaO?<-&_ zZ7Ft*#zz)XkHevN*a70lPBdUe$*1TRR=aC_x1$FVm)VumX}cSfv2#^6cLpjLB3B!Z+a%k7uh6U=w#Lz1EB8}a6OZ8$-RXlRD&%8cK_)Q;@vc*D3IjmN832Hz`v~g&Db$4l;4)f}T;p!#6If%fDQEuT06w9?0KobF zuuu850S{gKE5wIjg5=wPH3Dw%nl>>21G8Mw3J9cc_6p5GulE_i0omBl(a}|zxy4q! zC|DzcnfXIQm;rl0yMPGg1f=@!!UC&IUHSXDjYJ9p&ou#Z{zO=>Y4__)m$stG+pxhKt!@KwXmI|(y{5h13J{Fp&zPa1y|}@d zA+RG1VHtn|0RvVrNmVhZV=(u@7`<=K!CYDV9@(GRfB|J?@MC@{wqpv2>EIf?EbZxE zb7~0)!ZC=ei6gwZN7?ia@@zM-3@I(_%)mhea2kEp$U}jEYVqiHVsGXp{Q<9c5AgUR z)d(O+RqM^Fb8#|Q4D{dO20SkQVe$-Q`01|-U;u#U=KjR?r31L*1vs-Z9DL#KD#-%A zgC`xee=7&3hX?lt_g_{<7NCzuy*mdV9GsuRgzy*4@z=xqt$u3_?(YYz1JUdQI1#W$ z06EM%lV_N_kbk#)Q;4VT^Z$U zw`Ar;B3==Vs%+x*MkHw|yl_-p?@zO{e89r#sgW*6H#=chjP ztr7#gHh!OXCqIu9;6?!LUH9!rdi);41^f%W?<_^65nq@yoFT$Vp*6ZP~OqTEVHJah>QN3&UrT7kw=MU{!?xeF; zV(e#(#lc`*VNUOZUGDKYNllhvHs0G^Z>!I4;i?dOwfu39+o4w-TIkz}V&Ro%Z}WW} zzq_N*4>QbKq7&VH3hCe#apB%B$4r^WCP*SG6bxugEaIDb>X*0oVT_x!zv56K7GyBB z-w-uA@ZY90@~g-<(8HP8v9v==Lmwh0;iqli#7%feoA*%kr92PLr=2Cb)*()mJqC>A zQ;l5)+b1%Vz}>K6Dy?bUud^(URpvfmAPe0W1KM%4^kpOL0ZQda$;(;6hy4@nJAmUY zSyd!xSaeO=)i%fy=I`RY{6Hi1Pc|<;)>^!FeqH)!*Ox}^Fmh#`7u7e~*3S#$$k!;O z&2IY!$t{c!S$W73gwg_Z!LS5PX8_0d`V6yNekYy6Y|uy#cl-%$g!>xPhUTlM!ggV| zd#au+_HrD2GlVVsiEOg4C9^UKcHi;s7?P!Q z8h}+e@DwK8dUS*)DO3)H3Xz(}8GPp@GsmfEw!7(6*Rae_?v33ivu3wh*E2vl%l}Cv3@o zPN>D+_PaLH8VeMkBk^uDFQP)^S<17V!)s-+yepgK@gzv}EG_g*yWR9dt@E&OH448t z8^o>w=@_RDZ^{569(-hkK*Sf7b9e#hAE~&C9<1XkvQE^6l;Hro*W2VV*vIhPgf_!b*BH+b5UDc|A2R;_B zB+&I^iL%XhU}4mR2W z$+fhxNVyc$nv~wNdh}OuF7G=!#9>)1y=Gv9eEpqQGG#|ZXnmrQV$0YI%7z(gr0W-^ zCZ^uxYvm^f=#-_jcv<@)0&?eni$uH<3G}U*@(I3@9EAz$S}|GJp6zzZ8pDV`?KX2l zP3&+uXRy5&WP-$MS9t};MfI`F^v>|@Dre+!Ms5wSYIG-81Wx)ck&+V-n5U*PHRfND z%j==4EDvM5Jn6k88wvkr+ZO!-PtIpf!*^>R&{e@|O$OJC3Zu2!5RoUj(#BV2z^c%8oo@*>LS6 z)aDLHyw7);Iw1&>`X}H?lmhQ8vODI`>aJq`P)nz|_D-Dck|N#wjnXW=?X{2ZZB%T3 zXFRX3iG=pZ9SbNsvSBn7_lK$Y+7Q|lF7E2JUL{nkW=7NzN>(;vx0f5_OA4RzFwX1> z+epCdM42>m-N^;BD^g54nL;60MKhm^S1{T{p(5cq>ZeYYL7&y@kO78H_4=~uFY?o6 zua1IA5RCXM1RW+F41M(I!EK8lw7Bv2J<)et%W@h>Thr4@qec1Gw;y1> z=B<9_&skwKJQNpQ+g(R^g{)u^N;pe3En+#b;6-!sG(reV?L0F$k=YE-gZ31+SCq7d zaQdbOJ@R~v##&kGNXK?rFw4QESIAS!*pPvOIycIx>FYZEb2Jl;Z1bq|seiOJi~+uL z^xz&qcHBy-`C#ETp*>hrAl!%?=^pxjNj)t{=-_d3o z;1}ID5uDS=!1E2nR)d6TiJdd}u7O}&$bhd)FOn#Et-1rB}hvo~<$oBFQx>B`abDUcCP%r348r3J2~4&u(J-tFwEpM6^w&gf)$i{>YqV*+FB5={20`{7T;zdz{igMFp7Nfi88fZ zD9Qr+t8&<*GG8Qg@(X9U*k?@~Q1f{^RlRdtneY58%;3cg+#QH~+i{~;We^?&WRk{! zIYH(^xwDgV65B)!pKaWm1E+Rm{kA>EEe&~CCLL>abOW3NInofzS)8FT4cN9u))LNX z-Gg)*fV#kJVN?Rh1lV#FzhNLVa#bYK_E)b2f<-KLw<8`^Xf)T0O*QjF5loLXrC1;1e1ysj2U#<8_{}u0SS%FXXgNFUf zNsC_O`UHI>AEqnSW#wmmaP*LI*gqB0rajIDHHGNzGC?4C_x9hS;#$$n3sJ zbfOe06TE1~L~*ZkZo))hTr`s4|m;7Y7jMCuX^aVWZJ&>>}$ln~ssL>udxL6>=M^A08dTZ_Gh zH}^qhdKFmb_Vz;#Fol{770H(Lr%(^b?*WP{p1pvu;2N(rM;?^rY6$ye$q{kxSp8sl z9yDQtTgG3JVS!GsM#7*P@{r@uCa z=O=XnUgJ{)OS>0R(eNo5D#oH< z6zVwlL6YETJXGpmA#g<5_9z#mH?vf@>j?0J6;y7|AscutO7EZYyt) z3SGq~><7c8u-)~})TRKcNMW3>H)}1rXGdYwu3ae%WZu+lUJs_PADe^zGS+;U>PNyGOt-6{q02>HtzgLNf@X>XfkR>B;Y3+9 zNLX1Q)0&5)Dqf|?ZlX|P>4|>Wd}Hd#5SlzEpl&M7Gs?-Ls|Mjiwn16TxCKFykqtg0 z7+Qgq3pLcv^6Nw(imc)1xtOcD&{c!+C=<5BZuh!TJ>U|Hjgv2sa4U#Y<-Ou>Ds#B6 za!EBW9N!@Z9STdI>hb5Ut-yWE0*U_jd|nlY-xf7_XI^i0++jsv%FvcA zSmK@RoOS4eLCye4l@f${o-Oou%;`TSRf$+JU2toaJ^f~<`2&S-V0x!`7$@U%eC*v8 zXk_U64ORNwY9rSue~*{9*6WvlsPRGdp&5kUne}cTf9SSYk2$({HrjT?e%8>9L^Exp zbj}+x|2%A>7)E6HdKRkpU{Te@`4&Ma5f=p}qpIumNdvEKisI8v4s)%72f5ghq zufe$}Pq5;KR8H^~Jj3}EFtpb|p>M&JWAHpj=&6=D&iLr0} zkxNo21fAtp{p_8#t{~U1Ar-JZnKT~Y_t3ma9`K!3xtXdWco3?{RNRc4u!`pDTmF3l~zg*48}VW{b$-EL-hXl-{<-l9j7E!gSlHed0t z8qo#V2bwb21cDsNF=wg-ah;q=%lcRNa+@%1$im--DME-w=Cq`7YnXrvsmpO~0WSn8 z9X-KX5;enRmul~g)rW4cMn|OjNr|-0zg1Y&tf)9bBBxy3&_=PX?NblwAT~rhg6bs( ztdtxLofLjmg#z8|E_a!3OLO+Rmpop#7!Ma?&uLgERovzQc5W*obVra*d6l^HQNDK< zE!veXv{lHgM2w2Cfj(C_g&tngvPEAXa-0l0iTqwLjxfE3ImIGLl#N#>ho=EUEtaVM zW$lG!U6=j08%S77cxXOvy0@sVItU??*y zHQ<>&N0c>=3fE^0=0~I*_K6i~jt~=7$RSUPiuq|dMI~~jH*!yA-f|(2(+RcD#dyytLYv)X8 zDZ0Z>?DtHw_y^gg!UXLNX?3#Yc2li(&DL!#RJ}Bg`sE}+4wcDj0gPnmUYUqH_`ZGg zk*TiCH{etA?UZlJAt95t2N((*tr&45_ey(+SX3F&|2)nolWp;>YB1zPZ&YZW>oo6K zcO=vuAHx`e>~{H6?Ll>_IxzhND-#WP@w$AD*zBQc4tq;{rpmn{_zQ^MTZTXnRD(YY+O&V`ZDuYXw%?{VM7Nn_GLUxIZ2U9v;kNEy8%(=WBbD?;kH;=kwYV;r7#HmKF*mrVXg3!z zAMJfi<#{s;XIoyZ8=9Is&n~GGFxFb<5U_|6yqU07XOUtl$hfT_&oJ!*N(W&V^v|^G zRX!$q+Gf)fvW$!t2wccWQ+%h?m~|_tonH&_i*Enc_q7OJpFh>|dRKT9ssPB|Bd(A` zvU2YY)jYIhMw0|Z#>O2rTL@GS94X76XWc+Ld~>Nv>31?^m5akKSmQ~-q0e1c3s;D@ z>myA>9pVyGu@TCTNFs2BSk?+%7~Z@X)ftN4Iwub!4pB!x3m!aZ3DF>k$_$X*!_Kd? z0uyzE_|h|$*{_P-kG>oUbh0^>qdIfXuG8dDHOx>kz5zno&e=hnnONyUEL2$%`Xv{K zhE$mUY%;YmYs+Wav{FG3gBSB@D^kSz4jZgQaeo$}gQ}+tG5gV{sG8ngJn{n>2Axo! z)!voc?*sG)QD_S?fxwLxnZ)T^|JlM7SzWZz*Csf*r#b-Hdc7=@ozt%@K+N%#Fybd4?y#kxen)H+&Y^l_Y7qp^%sWC!8! z@SfB>WQg@AJhF<~TEsvItctxu7tcpj+`>R6A`Pu&d-hUBS&Af}wlaGW+L6ze+1f?V zP&3{pW+`TGL^;$fC5{+)bYFd(aM+tCIC&I4%N>j4D z4hIyxY+}$~lJ>sa`WlL_FSj-tJOdT5mtMEi+sk2NUo>c%jTkW^!yD|0R?DP#mcxV* z*r4s%06t1@Vsiz5^wx2ukoj5e2An{Bs-eiQupTys+GB~x<5(Fuxq~AL$zgl6)#OKa zD2uRW{K!e@33*AI*78Unx;sZ+MBX8-8;&u~r4V-m`GOIXTcVTs5MHS{S{bR8JO&E$ zejuQ(hBh21`T`_B`Q_b{ZYpK+~k%5&jZccalQqLef5Nb!ua2)@}IeV zL=3r9KTX6h+%IjXb3#L0jURz>qYL51;%9Lam;^rf zS&UL2Jd@FwHo5knyA>`b%NNvL6y#Mut`^i=E3Wu6(;Z7?PgrTXDg_yValE23(9*^z zc|J)iIED*0;U`zm(~tA?jGU(H=*|0DD)I-YxyQh|f*FE1)NmIj$Ta8Z@_d zi5yRMw{v5Qn{3E|Pd7vo7 zqvQV0b1cKGxov{BpE#WSPzz+#(CHttJpZ}v-Jas%2ZIvNcY<&f6j|Y zs0eBWiS{e8)9sRdTiNS#*>ddY_XA@JiaQ0i$I{xVk~8-fLz_m@okbItt8fZ}YCO6M zt@0FT&cE4sit#k8mIu$2YNVmX9-3rkIIY$p=`OISk}))0(wKXgW2v|g_C9P4llv0& z!#id%b(rU1_&mO8lSu+SyUmp*CK^f1A;Bx%G|UpyPZiYQH_#?0Aj{U)eol_gwjx0P zm{=WRvPkV(4{qsv(5~0lpcYrP^k?*uo%23*f24xEz@MLmpne6)u#FEQwoOV$`)4J= z#Svr?NV5>iNe!F}{nvawyOtS`Q!}OV&bGwHaGMhLU2*5rW+lRK1#Yck`dKetx&W#!hC~{HVaqT zPugc^C#)QzBy|j$XY;&CiJ_4g5#_ginM85w*Kni#Hwced)VGPhWLT7`rg%W7>Rm6E zU9B_itg2V&q0&>ssA27m*G0P?QNmQ8k(pU|{R@3KvX47%lpIId6ut+%buHo6uhR$D zJpplvucE35eBJ6GS_j~6yx|6FIDp>pR@FPKxGk%=_pX=qp*3)RtsD!`NZ?=7T|*sf%ZQ)i6%?rpaYY61J~x;LSGh=HO3!fx2)nbkA1qdY1r`C3vsiMOd0%s6}Z;>6SAk)eGxFPJz@dK- zq6^cy^%pad4}NWaNwwM`!#D}RMD&_P*vv>3GxT2v3Rx<#rfY0@gMYwVG5k{)ZCh*| z-2~>7pG$j`{M^<5U7tQ1)DR45Ws|fX_2fP20~R^;h02O}Z)-EZTK>A^t8z?#XlyEM2?T`UYdNW9+gAKBvS#P)Jy71c50tfp=5TW$S>|JtSEG(~!1n4Fl+0&NbHs6Ra?&G@**pKde1sKO=Tky2`N~BPIDeE3RKyG)vZI(`;g@A_T<05UH*d) z1Oc{cYipk-5e_nO7;fOa8~No?*Q)?})bK~hHZPE!J2cYLHiV2eo3)Ah5LwtMGwPFDi5S2XpN|8L%5J=>|6+1_109Kh^eiTwGV18H@V|aB$5lDK zJZDy_2bq>jgK`b&nx(0!rG6!i(!oMIu0cGN$gFoIdG=}~oA?~o4|A7TiK-D9f9$*j z9bb1`>G%@MeItU;IGb4yHEMRX(gc862xE_ut;z{2VM4C&@>W}&`d}j8O?jKY-~5~f z!kAHk;2gVHiLep_By!<^7fqk|;ii$zAWd_4pFr)7ZJhp7pw-P8^!tt(2uLYDEgemq z%k2C$`j_#?+mpfC&=8}m^u+;`U0%^tOnkA7vwHdj#A-n=gAQz(Fw9;STU9I# z;>NS|imlGQI0CeSH0P=5+LE&=(%?8=3J)u-wCFQ2`21V>zRMpq5i_eQH&{0ZT&b5) z<2thO1>+8}o1l>EL6468gYFBsZkMKyK4(JYDF29s?1&b1l@>w1gr}9~za>(5{hci^ zSdFAN%6Z4lS12uHuQu5=@eW+YV|PN*(c?5Q>^)V|5VfHZIqq+uYp9c!aIZaeQ8H2w z;XZrQ3n^9C0jGtiU%@HokTkz9i!Ckb(6;Fy{zc*8fth$!IC_)rs;{&;EcN$N+Qa2G zCNx?=iGP1|a-7_#2;TE$u*eU*qfnHyaR7zHmL8EEc*-Y4es=^+p;x~SO?h>N5v(^( z<17M%XCZEd8yphyTOE%`{xN%kzD1E4rY17Lvrm!>L>Fajnboq2k`WPz*^t4vcab`G z^~y1mB*x&R=icD*rxRCcoF(^NL6i+$ct_9r>DLX%!%NFwM!2a}IG$NK1swUc+)e0P zxc8HX#XbU6fiA8VKmrOPwD|l!G-(S2h}PTu-8-?Xuf&C6EIqVW)m^3H?ZfBJxXpR> zVyo&?bI5gqUiYSig>5)=)YuRsfLFhmI~xL<$sfLt_BN55=(;8Z#AyJd;qyRbN&~E+AOVinhtQ^r1Icpb{a`;1?;9$864dmvK&_tRWvFDzA07 z%ig1q_|{QqfglMsy2&J6N0+c(>beaxJ=bHcH2G=^N=EO;0FSakvhOdNARQRAX$l@C z(}9cv9dz&tGQA%ZK~nYd5qc1FLZxcgz#^^7sQ|6FIf> zg8aw8*2vk;I;~J>now}!Ayv7y1Cw}UCA(fxC&i9`Vf?5{irAEkcJ;3K7o0u=<`mp0%kMUp?z|tFOT>gR(mC+M2mRhyG-Zjrx~M;GfmcQ zO4lYx@`{PW4&dl&#HEvn!I+kcOX@XLM0m)XQ%((s>m;^Pi;)Op1uy2>l1vCl?R-@Cmm7#r6~G> z)~kJcL^rsWD&8TWqe4o5UMAxW#Yfbp3Rmu#f3Z}Cl7y4Zdh)SS@H2%L7do#XCzr8@ z+B_t`V9kc8;2XR)QfbeM#Zz=YKQuf&tg^DtS0NeUPIe6GH-eb7`5R7D4KZ@X*J1h5 z<)ZlB$wE=hHMjlWDCt6Zr7@HQH~NcCmR@IRoD*mqRAsl4PBo>@InaCu%HaA?4LB zQT&-69La#IX&AZj|9}px5deZcP=cdXh6RHw9-*Im$Bzr=0K+LmO$f8i#S!3oP3o1N zsQ}-$CDX)u*0Ltd(5sjWHv(qS0B+o_-71vI5@j|NbtL|u4Tu>=TKxBnE6nC*1OrB*_2#Flg+M%HRNY39|ek@uwUORWsf}V=YqBKu&&RIgvFy z$TIAzD-tdwIn%?CbbTbZG`=Ck_Ew#WyK}Cn$TBe@lI}0eHX+NqwIi{!^8{iz zQU~vCUgUYLgwqCA?(+m)%_d8pOQxFdzO8z^=DL$Dei`F%-Uoc!HM^We#0-P5&_IrO z?@7TTw&@DRm5_ae$zQsGx0N^qS}r}k6{cEv`k3MfQlwr5eHpAIQpIdDrs%p?EO9T2 zd%ChM7Kf6CS6jXnu`RFb$EP>f51DYRa7#WXc90nu828C_cB|9@kyvHL&m2e{ zpbM(3v<}aUIAILqoZ?nDvgCfoedD@Rw%}-``nY1R<=%#@mvpMFF)Wo!r{(otggLVd znQzF}Yl3gl@+l-{>=PEaR3yxb>AWa%?pGk@cyitu?}ESmZB{Gj+gk1;zrCZ3-(Pa} zH;$SFnNC|XtJJ69`pY7ZZIdnrG7Qh^ zC|`gnR3V515r~GKl&CNi*o3VDA^9tTM2Gs`{FMaN6gobML#%ul5JA;T(5T;wIo#+) z8g>xLIC9{xwXYi#q^rc9YQq)iY>0)>%F)QYQbtc4LqT7u)zii+13ItBzbVQmXnIy> z1c07(b!i8syqiZ&C%XOYO`{tFn=Ofw8N;2&I+!;xNu@Rol`qD)z3>PH-_wHsyw+Nf zmuQ_Rm@`+ERaw7`-x-p*c9X&0G-{ZHxus+4Bj1;!$D!QW>sws2L=$6r>K6eaZs`PG zfN{L3OHQK;glLct2dQf8{Qk-G{5dL6QXT5D-rZ=LftyC4ZN+@{L{ay%umJFbdpoK- zoAsv|6^yBY2y(Y%N;~WTQ7ZTYO}U+}=K{GjICkg&gwltz>f)ivwxH*efmIAc&<)zj z*=)--4RTELSPNZ>Y^<>TuB&16IH=j^MB7wLHF)z3@yz=te2yj$xuI+@V6Hk+QE&-ul4PbqtC`**v z`lm1PvqM4qBFHhKtq%UOiR74)845_U2KaMFJ9}%={v2Dk%;81Ol?OuS6}z*W;yg|j zdHE8}0fl#7DE3mh;6(qVd+M9c1~sBt%@f&m9=Z{XD(?4Ez9!)T*} zPl*Tl8N#oms1&tSHreP14*Hh%#jeMMjYi-rH^#ru!682kT&-~ZR5$I1BL z7CjD*|FcD}1ylv)0*y_^-JN+s0(Kh-Noj#l7Z`?77zQ^HX@OR0A!lJ*BFH6-qB=Qw zkNu+kbj$hIuliQIab>DAZ~NBwr8D$BA(SmGnso`O2q2`d&7(cQ$iLJ|D-eJnJ`Wq> zXwb-P1#l2Y&`*KJj5od#8v_dQlm1&-JsuP$c3iV>&&)~zLSTIxv2PN74;ASU6%7~& z&_^Ku%n#;ojS&DRG<+SaKn!+1Oo;zhU3#8SPPcAOTgF zlRTb!Z2|~Lq0xUmAbSt9ng$1OLxGwB;^ey)!3N2VA-xd;KJK4BuQenIn|*2d1(KV* z4;iKr*dky{paze?y06v^aF#Y(pcnga#0czcEnxenZ$kk)y)=Xx0stJRUyUFfd#fMU z2-XR-&l$KWMFsF;<{$BHyvz@l?cZAi);Br*>E71cc_d(}7SI#VsLuLl4an{0wgf9S8^#Adp`d4gqik1mLN;e*Xnkb9fE&QGN6cI(Yf| z>Ke)gY_mt}|JBb%@CKh+n-u~M0pRQk{{H#Xda#RxMo-^|WdjPV5optoP~}%JXc#|@ zkICn$UWeWX0YQ#O|4*Oy_&N?ULu*YjH2;bJxI1{PsH!rrs(A3WeYZ=csrk>dmllN% zv3GzBGSCi%0st`x|MMGLU!fgOXglXey%MC+|JEO7XyyJ^8l;obzgu7h%OE{v8^7YK z-_?&cofrdX!M`KGkCy`A&ENmGFvvb71^8>;A?WeG6$(T@)2}o+Ohd5R&lWu|AE9qx zd3gXEn$M_>1mf;Er1mfC*d==qAkP*81=B?J;g1-|9z=Gh-((j6UV0AoS+9@3!w~X^ z_K!OM|F*~OY=5TNJsN)#{P=MR;?c*TtS#}ZNb#)n(Kmc`iG{Dno4E(ENa zz{sKDOfSGK7%kgeiugabJKxShISE<`+$fn(JKCc5ERPWNyVq_cNCT@zUlIY)3QEK4myqYCY7Ebq^N~)a@9d7Tt ztHG?hLs_1ey`pJdAABcd0fQTq;F0{KDrjwq7@bWO$gAy`y=7r4kKF<0Z(KLV=#nt4 zr}+=$x~AxOXnyA;qo<-#YgrNSr;#szS$85%RpoN0pg3Bh{p>;x`f4lI%IByj$%Wa4 ztbce#fh^i_O8q9?9Jeu~>|xi0zuOMy6%Z>0NeUf2w`YB{12wh&-B{dzec25Rp2GZb z0`ig`kVl(cj%|Hpm0&q437#ma^iu2;z}AeoN$N-ao8!+lq_fXJVy`_Gr}T%`FhETr zJg)*DO;P>iE0eTk})Y*kp}HY7V!c@0Go zq8v(v%w+J}5-EVcw2&-R5%hu2WO1o&{;6ino7dYmO>u^7Hu^99R|dM^YqwIX= zridS=W#5nOc%ZI)wnR?>_aLR3V_xwt?d1O2&&l(J$08v#wLJB{XM!WeG7X^CBeK~E z@$2$MoYvB3V46w?hIq?0-^ONoN zfgIxB!o_eQg#dNgEiEDAP;lvzUdIWRVW09~7lNK3ZtFPKO*JyeHl**nI*wT8q1VUJ zc~O%YC~tRc(f%rXsmCdW&6k|lK6VcQ3QDV&RQ z2F))`L9Dj&5xxyHZF8%cSsn?rY#YlT9Oon@@}^4dwOkFxGcP&i>5m#khpn5R2g=n^ zK^oy2c%&xBw22HaNa*K?!Ba1=xx~ePA1KYue~kg0O{*i8r}47VCC8D?XTq;V#kY#X zG@PunD4eRXLfptUAkioL_DH;giH;3#Q6qxT2EK z3wK@#`CrsvEygpVV7BjTLu*rp1Z-N%-odjss0rb_>C5~}D(N!UW-ZJ#&wQ?(5jBiX zN?Urkvc%brK%C?kuuuiPHe*G7wLHdSs2~2=P3riKy)Sn;T+D;zz|8=<;#Y%)KXc%v z(DxNY%IyelQuQ-xPj2Dv+9Kh|a9I%xf1$QX%CQ1m`#(=x;fAkjxr^O9F63;RDvd#Q z!3Yk-^dR!CB5!N!jIDI0hwoz5T`(wJOIAEV%XYl6F5?sEj3a9b&l!Am+DPGxiah%c zo7|cuOvP=co&p$bUw8^T>ANYL6OH>3e02THr0vr38Ym!QH@3?uZpFQSmi-9nYL&= zRnekq6i|u@={h6VDYY*-<)&6lX|Pi`kQxDD;w`wQ9&-nvo5T}bQ8`)N4y!cMsi?bZ zvsm0Y+_b{>S=LQd4c|$EPHEguKK&v9mjV;Pi!Qrw{X#(L+VU7pB$vqlgK`nnE-C4m zvQKU*F5#!nAa1%~uGd}2U(o1UrjU?VJy}-ZO7(CD{ENA}G<@we8=M&lAV{uz+ztcR@T-m_}E48q&y&@v`V;s!f*jVWQl!hp29Hfz<8Z z6Fu{Nuo2sSFKU}HW`mPZgsW$5*+8399a!S0)!bbZesQirS5U0ynvl#IGC#(s)V6P8 z*dcBt1O0H-CBGDl8$<_SCQ1}QJetUTF29%ay{4ly3`(^(as@m%+)U|&L%8V)94s!< zcvDUEbQKm8yoU*)P&<&N+WkySZ70?pR$Owid|C&7iaQv$?^G01dlyY4gBTN)Ejw+C zAh4tbw`kEhB%F>h=Vqa071yG89XNpeuyIRXJ}C;p`nKzM5b;QjUrW3v$LLvegnzIT zkCC>IYYhVl^CzLs5-;YF6V_+gMrH9v{0by7ey| z4b^7z?1mc!hjorbKj`7PY?I%C(bHICU*h^yE(b>iOg&#ypvm(J$tt>1OO8#I=64u~ zrTFgkx)2Ds9eu*XVWF?<^5ZabM@7MjvV)VLY6HZN??O8V3Mp2-JYerUEldk@9rn?1 zdLw#LkYiM2(w04aCwPzo{x&mU0DbiXap$c>-%-*#9R>8K&^Yj@R$&%8-Y{Rni|K4< zbZ8K;(_^0du?zkV-?{7O0RNiG^(XQonGm0XW{PU%=wJ;LX& z0;7dFf18UJx`7XZoakQG^*T59wXIV2VB8sswDl&c*#bBQUon9!!}NBd4p-oLV}QV* zTd+*39pzc7y>0FCIYQ$$t~C!D4+>EaZ#qj<5#)(SDP$Zp6#(6*r-YoZB71Hb>4~Y% znW>o8{S*$g&)bQ6!2`mnB`vT(IbxoU6N_x z00QRo)hlpidJmikRZI~9YR^~r@E{eFz?d)1PwG*nR1iirGGfakRO|HP^r9ry_{+el zt#4_PQzK2g2raG?%29avF4sp(l9ddfyR95fS(kZ%brLv&G42?*&ya&zGuiQSHSr4( zJH2C^n=p~yrR%xLFyxN7NRE<)MdDiZO{gxTgIS~~c4{o)=zczA+`)sKaFVIYN-UtA zv&p42KA)A?_)ww&%_ALq=jl2qZ>{s$D#LZKF90YO^25$Z(Zn``y?UGU5m7fcf@B(o z8^;~}`CUF;OGg)}tk;QuiiNrX>aTUk&>woc$_T^E5dq@|+mM^$0s)#xK_Jc!t%6S+ z!o;w+4ys&hz(CVC>3k~9g@TzUC;x81musW|z)v0F{*vem-wp6etoV32D|=Xh_bUe6 zR$m*?-@`;C-!;_N){yqLil9p~)*;^A4HZ34N-(PJ0v^(?M&O{anN0r1m#)h811_%^*E{Wz5*h<-U-x^hxRA9^-02N6z3-b_(-4O+rjxV zfX(!k+VOnP)fe;3l^6^*&k=jq+|YyLRy)*<1J~^NY3?c`jb}S6-iF9*bz3nbVhYd2 zwzutUCca_jO7#Vf59D*IQH|lqr$!u;%a+=?}$;Y+z3;nd=_@(X0V9Iy``MdtnS z>Xa(3si33{kc~SBiww{_t=YsPY!Z1N4SK=ZlrBK}qk9n~Ps`m<290qgFBjsefBLu> zZZI1!)oA;XagrhvGqW~o^`vX^G5*z*+FBpg$hl^l%&11war$3~Jimr_H*6LVTI^Kb zsx+WePqEaxBE$OT+qGpkQw*~hCguOVTST#^6nDYh^_&U5ZTAncEF@OyTB)IwbQXWF z(+;nvZ&bu7=r2o{s#ZC8D(mdUv85 z)3z;Y^57&?O#TCrg{K8@E;&t#<~_#0SvdPoGZG>KXNe)8k`LywArnHQHlV!?XCwOz zQpQfnSI+*f2j;A0A+E#mC$?&$dk}MvMW1wFrKW3VFmrbNak~t&l`jHeMcVeSQ!q1v zx~m^+r3#6^%Pl7noMvaivjVf;XA_eDLqkeic$m3(PJ$xOq_rNWedFVw)vWFY>CMR) zt_sDwt4ZK(%qzg9G;?AsWHICRGaDjYt7!Fv86{e=THgOe%oqCyR z6kIbDpfOv}YF-=D;NW5gG(ths8xbd23>0Far(MPZeVB+~zMK0VW$P|$Tqhva090re z25rU#_ciZWPq2<1(S!gOH$e#bPa0O>LQisa+tr5P@{2T>fo|u-(@#jEO1^yVr1x)^ zihx1oHNjcpjhMACwM4m@gxuchG0HGmgR8jdGsjJ?2%g8UD=2qe+RXopT*0UY*31RP z0-YLV8jWx}yDa^2^+|A`w=R)|%M~G>Jo2^^zqH9QM5N)0g|@l!#pa;44Uydz^T3Jh zp!ejYyl**Hy4P5(K92aKI&ets-$EC;nMJ6yPLw!lfAJRnhBNp#d5pkslhUv_(T6_j z4k3Qo#g^j%(5S1wafQjNbeZD_(l*riPN70Sck}XG7!2p1&H;+n4SZ#*DgFh;XMP$o zY(alV8*W_-LbFZ)|6*aNG;yeD8obzUnNR{VrT z?Nxq6NtHN~_DHb%#xQS<>{AEOAsuWUSvXY-4J@?QZ-i-k zz*V%M#m};X#Ek|qWe2t5RTLWKV9Aeu8DHQPHjZC+d6QK zC7jI%OF#K=;&cYmBmZ-pxOK>k@xy;|y0i1|stVLJ$#nZ>>9JRJ8wS)yCVbAiZzYh; zo}-u)+QZk}6t__y&Cj`(Spf>UmJD>~WLozL?ew*-A!3eD@?D*nB8Y*uv2Yzai&RK_ zYwH4=BvKG8hNtW6Nvj`-4nHPk_vQp0Ihvv-lt_m;;qTKqv{i;3nSYRB+LGT^Pt(N_LRZ0dpTlN? z9wTCjPC>s4KETQsOjzXyBxe9OvW;pi*r=We{TL+th;^i;h%6zbRaA~)M;y$l`Ll9_ zqNoFuah};bp&Vd)$EdQ79L96)j6+o2D5osXag61jqJU%{FL?^Pcbr#UOD>%)S9YCc zOA+hzH_*jERbyPNIh<5=MFGV*igwm$e8kM0y~o!+H1o!dqv`=qo}!#xf;N zObhb+i`f0pI61iVAg5s{jGw-$ME7&pSS?|oNp&SXL0uO_fa~fi9>(-bBOGl1NKTJO zlA;=3YC#ImLL1Y)EIuMDYS02qII^-j=Ay%7IJE zYv|rWD(3c9{*W8S^OhFt4JJ1-k%`N|C%C2}v%gir5lQn_N!@B+B;otXd9c4*hLnzrG&^&PPAk88PWeohxI|26gK zBA9PFxtYbPzKm=s1>MIrKRIhx!s_Z#5*Sh@iQgJqYqt(D(UZ!Kt#|!5hS(f!&o!Ar z;lT-oWpq~ED&pgcpXu<2o}Q$$^k~|);ndA~Lu|C+M9G%IkH0E2Sg|Q>bEA@8)nBwv zQb-s!(cjUzg99?7?S}#KthXY$mwmS(=ecQ&P@9PEA8puWgCA!J9v-_X**a!pzNDUd za#w}L_lWls4_vC!BW;h!WJIiA#o^vAMsuz9mI2A=S#tRrdg1XbLkSA1P_=O7vkvvs z5x8AchxZz?qzK$sWNp@J&_5I8(Ad_%@j-OMQOX{zQdhoc~6-ehnBmaxIO(gM^w*OYAO zQmGw}_Ty8S0EQ@voY6o4Y;<7Ica(v#r6Y0WVim*ZA?~nspx~18ZOF|dm8K z({GL;lz{}RF7vptdx4p^0$x5R?WzH*mg32+{;mpjJwep1)UNhCR-F-hMehMzpFKy- zhw66Dax+1}TbB9?Nfsl<&8~>Al$dX z(ZTE07LMwH^I#=wWRvOFOiNw2Wi#PoOu@{Ax%Q{&l>W~fkw*q!LW6q(RnPKLA)_QA zXmElS6@L+-vCtlosdzy$72m2QZ7zFl;ZqPHktvE#Z>Qw_Q%-WCS z#Y5Rb%T{uHjb7o-7~!2+q(%X2RWv&JO!3tkZ5#IvH3vh*$F}EVQNN z7E)$v1u<6XIt#WS)!7RRyYAE9`p1dFZ)Tk?>&wWKI;$x>roBv`qZu&W}w|Dsgc zPy~hB78I81Yvu4$b~a9pliuWJ$mr0LLWf$1BFVGii9cBZ#6}6qlmpGOfe(hnifB$& zxn@*%(?c2?$VSI0ytYK+J3NZ?(xKE?-hr@D zipP20>eY0_fqWaD7757%l|`!Cg%2h0(Iv__9%O|K*g?aD)-G#zH-Lz;Ef}5 z0$q*KOCH{0)z(vI(JWh_UAR4C!c`Z)8x(U(&q=B4S7o>ZJ#jB?aCf0wYuVao!FkB8 zwc$|d-(pwG9oTxp`o^T{7%TO;%N3a|y&@O8SMMrrLA|0X;V?*OWn(goxVhtqgz;;8 zUUs*^Fli<;)k)Q12QI(t>&dB^A7CX(JKoh><7lBbLDghy*u=Oi^;9Srswd^2FnRsBS=bjJgQ2IzKk>p3|`E3Eqb z(5oQWV0wXIpY1Bfl?|~eJb>*2$G+b2pv2!tAiNd6+QP zZnS0Mt@J@5(6<+OTmGAeEjE+EJilTjc+B`iRb!5|?4Eg%t#v=l*# z-b;9IAG>Bhe{&yw%ucOepF0nF4&1iQaHu&yyc=A_vD1-|_Q%2Z!KDC>S)PRh^y>)t zFsK3c_UQe+I{JR{0N{u*CV*pw#lO;Y@j!z-3m8Dl$Tp;rBLFHq+5rdy`NP9Ogq49{ zz@Ys54}KYh3rPH-(Is-l`u=s7*Fb?ACNAQ7l_w=d(1>Xq$!agTI)d<)RTA7ws(9SQwMBe%l;rPAU zpkd0Yi~4WRFUO&SiLQJx1$DUN&Hc*QP;P*l1+c$laiEkFmq7*RpTAYI!)TyxPR{#p z0o~qJ2+!0ooRd%yT_42N)G!7Xf$ymJK-r;8qi#Cz&tBED5ykO^`*It3a16|TD?zyE z*y0I+Zf-!8RNf|mU;%&narATe4d^kbDdE5dwgTw&w8Z9W_rQE@>vko_=rFSV&3p3ske|DN>f{QRzcQ%(Ga?EPlO{nO=4+R>cSJ^zY9yM%PUeHV*8E>9v) z`^b=Z0werdS;Bla)@0CgwWVGDTB`8mpW()fu(y3}3%7+KZK0c%0>3u7di)q;bLfddBpiiPb^YMDJ1?gyM4+M&X9GynD|A{s@XXWlJ9`N5dyzohS>>3M&E+P}-Qf!(Ks1CEN_?>q z_=CmkmiYlF5I_XX+}QDp<3I@hv_`}2pBxoXq&eUX)6ARNI9eFOe118dQtKz##!osf43{9h7*jXs@j3hmAW%EIe6VR2LJ zR<_dQ+~;j2lysD1C7P-I4X7tivwKG3?q9yXVGv!Otij?t+gMKxg(J?yG`$w6CDZc0 zAXCXjix!BkTJdRQMH67L(2X~`Yb&+-+<-)Xk11XQzRMAw8OmwIcEDQgaLnlyiFlqO zkNf#t^`-ipA{RG0LvvB57D<7ui~4scO&`M!PnEGh!S2y8F%)$*DGo6=^Pn%y`QXhs zi^%OLRD&i29HA+RKpjQDg*@J!^_=f@g1@gYC^dT}Iu!9U-O&EZ)_=>i1MB(Jf1%)g z0Me=UK)t^f7XxjgUuhDg0RC%_!qBehvrc0LH`Vv137Hj+z&*u?(riJmM(Rh zver&JFwW^yaO?%B1Y?roVz;41uLmWCuiD4eOM`?}IVL7VR`KC&N9hE3=@8S-v>em) zn0Vt!GL;;Gp^>&8DZ>!k5ZaKWJ$?gLO*Sy(o{nM zT|zEu(2L#>(N+WCZa1%_HT!(?^m0=*rY0cAf8}sEhNaHH3TqnPn#0Sby z@cEX|f`v;PVM~B}rQB+?7f!qlg%^cdk~2Ql?nYNw6vqI!>}G|F#QtgAM`lP{@`KV0 zc{es+4mbQVA>)P?RX0=i);^edDZ{~1ZC$?w~@ zwU|+`Y_GrS4Ejczp&0%5)6kXlaCi49bv(Amg4Tr@WDxO z2t#!v_-gxoyv2vyqVaf zecvK9Vyi;9G7GenQYu?wm7-O-I>ndxp={5d7&p+^fI_0bFfTf>v@Z0zzgCjFr92(z zuetPPs`g=`*`a{~>lOy2k9qdC4hjgpM1*)WR!L)2I2;!XwKw#8wvZ8BWt$Qbv5Rbg zr!9qar*6e6?J}|20gR6XUY+QfI^Kcd>ih#+(bJ&*%@=Luq<8R~EhqUtGv=1sY6l&+ zFU-xeVRk=`-?}A9%2}9kL!0s9I}zc-{AXxV4Fm4->&LdM7(oxK2)(l*i7>lN{t(W| zFLy`chbTV~us4*BuNGxj&A|mOAp`<Y!N(tgm#bLtX__l*>a(V&cYsg~{Z>2c&}?_1ch z33cOgA5uWLyMko^dKc8_3C8_tPEgP`Xe_M>gXC>5hEWd@2_wzm`O|O!Im~|<{Xge) z5=QO{Sq4+i$T|ks#_7-WYOAHgB>hSV%~VPFq`gh7Ge^&+jy9!WOCHJ+wjCK^VIif> zUJ0G*lw6k2404AP+SYWAjK(Bh2%iT{Sy5ZE-vf7GqbJ%-oLB!&YPPQrueIZ09wMuS zN~_Iq*Y&Ov|EsJEv#BncSpo(?jYu*Et}i9eo*GTTrs)~z%PeIK-ee6K+CcqjrUu8W zm#y_@QYVpU_6;nQJyYaLSHR!(`pxB=_|uwQ9KdZL$28>&7=KK8N7&|xGRrx>b9X&B z_p-aHKt7*YC+QUKBvFSh7kDRs`V}JT{+?6s!85I6W6R;Lq%y=MsEytG!}Jt7e;YUN zG|%qf9J;G7);(dvpng#D)upt&Z6j`@W6C+4_n%~0UBD7 z8!*?xY!`g3^DjKijN|KahjcI2)ruc$Xu%m(uU3q(GgMW@^||F%xYQbl5LKI!&yfrTy>^I_Zs4P(V7=#*#;unoR?W z>J}=027UH2Hl~StR2@#=;-Mex0I6k8B95FTYx_AU7`Ll#OUu`H5_Lc(qW!Z zcQWJOm)h(3>pXo!JTDe85)VAJD!erW1@Ej%04$4URv#7oV`-CIYT@D3wwoi);9IJg zH<_|h-?9FRBXR=&EgvT(wG!TGriJIW)feu-Eq9k6xbZxAU)ukt zu^)!WJF3+Blxj-A%+T|o@gZ7X&(0yd$)*rEp zw2Y4JJJN*w(0)p1bN(>KJsExzPMWjA{UFJNNAe(Q~_gh?v<>?l}Z4*?1~|2@5@EhR*=a!RG5v64HCo|&c;N; zBoa@;ghe&$-3L=OyPtEd?mmAxKFBO&?OP`_kx=1D>2v${`dIedgMG%TQoqo#E{%hw zU6wbBs5!v_xX(rENC6gGdX`J>Mz#v;usjdp64yiC8&`Lm>RSS;mJtjfdj~MhkzW+g9Yi>!C-d-8!`1lQ=yj$u1*N zy4d*4b(}Da4+}=Z`5r<8{>=;Ic~)ikrb#>SrwaxWz^ny1RYi>lSi; zTyC0k2&!3yR0mHWvr*P`sl~DE#cNE))5<|?P#C^~jDdopxJ(Ju7Jv=%~e#fE5ji#<4paJzy}VuMzr13g?(PeI!N7K z_ykHu)O>7riyW$b$|ea{77dJ_EgNY!hY?FK*PIkCIrN5Lc*X1ZU%~$jA8ydLyx6nx ziBs0o*qPfzl8+50bEH&l=}S^Yl(IYY?vUfOn2|prk5;9sQ46ikpjPmY`gJ>x?!R0B3qriNqL>aK8aHS8U#nUNgYh+ z?uQ@BZDl65G63&KpzDni-868$D)W<{@{Ay{Di)@Cx0n1K+b+AvPoh5Q#GNXPwMmx| z6TY5P>h~98JC`zfPUN{Q^_G1TJLK`? zd`^8^z%=?Iz%5*Ubb5gYYYXm@x{~|{ly2@)?T`44uW`7ydCi%AgVvF=pKm*0`SB4E z_=M&BNq=5v^*%U7-+aFmR-E1tS-Ow0=)1vM;^0Ra2dftRwa9BQ1#nll>Jcx>nT zyjrSpo5pD#xVt%AUTR#Ppo|)mSY>*B3M9AHPo-9Ni>jxKb2qG>a1~_~?-^?`>`|le z?KMLX^n@U}RIRAzg|U;ZbOxSjQ%IyI4QF$I5S+9&llr$!aB62f*N zrREClk3W(dRGMxCQR$LdN`pEd)a71JOHJdcEAN!qvvPz7!bZ`cg~CN&U0xgOJqB7< zXiybz3h#%WXz#XuVLGN+tt4S+y*mh-C*jqK5!%W^t)hXyRdq)de{wSF<>z_bIK(Cj zPnx2xHWC@1B;>~Vb1sL6YYfj3of}KAlbS;HG0R=&!KDpI`n7-hOX~SIC+vXcgKsA0 zcPuJGBR)~y^5H}`**Iy8>L_zTZ7Ix*j!c3Q^O`KQN-;^MbvH;xd4fH-!h_jNrH;qP z)xy8<{uW>EzzHn7J^1G=#{(QTm8z@ZsaXb5800P)%y=XEOB~oOg|{|Xl(bw?P&GSJ zZR$2&L7$5i5hIoZ5v5!o&N+>gM`ameHM>K4%5#MZ0gX%M zy2kZHCAy8}TSHA9(}&DT?Gk7|+&F;BwB6k@>l*&kH?wcd{2a8PxyjR?qL8*mS_~vr zWW|A|I@aF^@vQOQl|60T?RNb|S&9Fb^kpACCwA!*;`s{nUNoleHTgbeOBr=#+8Yv~ zKt6|U?G~P?;l+Y7+fx+WOa;yl!z*L-ck7ehvurCL&EQtBvvH+`=JRUqXG|B0vWh@% zMEB1^)73%zmTQXYEKL*q#A(TtvAV&kc2O;PkE>3L(P*UvjY%oM=waVVskU(bTy0tk z!%)_f7jGcLiPr3tjH9aY=SHJoa6=V1O@-?suu^xSDv>D&!L_zTFo#+~yK6NO`&WVF z^vuI$o(RlXQ%0T63MVYJR{N#Q6^Bl+m%E9l68R%is9PK0x8SH?tm^HUX9Q#Cv}P*;!Ks?86R{Sd$vEwL6Bbc8n-N`YE?AKFXG^f zF2(k;bBi@GyS!BYwM!^qP(V25=xdY$Dv(ygB%WO9gOFeU))nUCCjU*TF$;k`lTbn% z-r-;sJZPX!Ql7{rO+KB{aVG`F#bcUEDhpw-R3Pgoj-xZ<)p3UFGuM@2)+SzgoC`13 zCR*kWjyOb7jKwyOGubHS2W7HH)>IBWISb=+&G}cJV%(;1H9SnIiYVfPIGIXv#8a&# zjTZ>cmQ5LT5+Un78JT9c`((?7RDQugVIShH4VraTHi1nr-5POtwMZEX2VN=-Z)8Lo zxcivo(1v1|qYvn0?D*OY4n%rR8`_e739`(F{h05(R?@w#7W}BDn$8t$o}kSC|INcUIEO zZ+zN}j`SbMuc>L^$#?LIMiq=@!Nw2$46j^^@tDAAOcOi^6{XzuV6M=pnpwr3X^mW*TPD!kB2jKeVn=S$ADTHtE< z4UE9^aVcasybrh;L$Uz-y00x&0E!(C`vK8%YCp~0IF!Y1E8Rk1+th6v#@V$lZ&7@R z>b3a$9miuhN;j`<%<>eZIYYnXQVc9&quP|#GycTcS#z7w4JC8|0i_Qpk+v>TUYXMX zOEjdCnAOuu#-alr#}0hrMfX-w1H{vNbkZO7FMmP zb88)3&!3Wh7K~2K17}j8EvHEnLW2AAh4?%OJ?3Jm;b3N$wf;1SC=lubiK(0oe78eG z0=|q;<@aZn+`m?(eLGi5ok&EvD|6L1whg$x8OxJiSdO|UBfs`8vv;tWO7z&}%wx$) zK%0h^jsof5UslwceLG&{onz%RGGh7QdM9f$uxI~D;!Mkim3`%qv)EBHhR5eter?;S;oxN3wJ+MK{<=1RUwq0GG2BPFBBgKyYxO5tB zkVC5{ut?lEEt?#KJ*7&*_uRt!si`oy$n?#&dJ?g;tZa`?2?g3|+ZA`8mGn4?9~&5e z56F1mocgJ#5nEYJG%3VJv87QD79?9y1u*@6wKqc)IJxwe z4u2ctI4TTKuOZLBC=k_=thchQd%1BP^_W9GupkbZNf}ane(>?hj_RVG1J4k49rLZd zhC*`$%cUxNaYs$QW?)K{tI$+Mn6LBcc8*TD?NrP+)?*1dPqa#~O!G84G~e~x-4AL7 z!ai|YAqg1me9;M+u2*-a1>KaDxLh5PHXa|CFPlXkH`cczKNBWy>9nb%w{rTp-gfvn@M$@TARTK$}Ngf4C00hYB%1^=Nb5e~Juq zHFqAP^#bNk*fDMiYyYzyzx^$n#2m`6(hm7M+BON^fD!CA4aTvct2j3*%TlVR5TY50 z>s#&j*H`-GSpIIuhnj(h<1nqK3cj1a>I&{SLG&~Sl6iXZP5tJOz_WajB;V2? zHS`uTx}2#wJ9D&(hmZ=7OX~(7$za$M|6N6HRalakoN+im(b^sK&nJ=K+EyHoy;^V2 zR2NI>)@ZA9Wt-&4R8BEh`r4wk1J(GM$;bp{cvPU_d9(v@^YM|1xa;ZoLL7ZD$%_ur zHl8;{B3#|{X&tCaw7nirRl^F^k6hdA)qVBcBO@u&?u z_->zLVBs!JQo`K@!3{dm-)shfOkz>#*T|}O$cGt!e92HMFsT$6Iu zPDW<)8wb6IDnqip-tmtcXQd~lex}`idv8_-em>$&!KBPYWNE#+G#|GY^B3-n%*}rh zCQh)f*^;S1e~QG*>ZCA`qohC`sP+M|S8}>}9LI7Yomkt$_^#99zb-x|chW7=!?hBT z#BmR{s@N5do{>zxvJX&K7`sj_5H!dn7tTNQPRxvtl97V@amUAj^lp+cd$5|meVM~Xnj`#Pev!S<$Rkq7U3BU`WgC3HB(qaDL5pFcDM zvaf{g93@zfV7U@D6ypTBlnhcthdmFVGXx{)dPyG)4q6>^bw%3I{u7;78LJ$0X!olU z=kSWd(6vj(D_%QIe`XUx29O*H&j=}%bG>+Yy>S$Z~%!3b18^w(RdtfJ@;)8_VTrmjVBYdZJa5TzoNhY5fGhtUNo$E zWC^?qR}(ibq`T=1Msknpd#Gzx2WsjM-LXqsDp89JBcF29@)&&FzUCpDNa zb@lvi`a75B;(PM87Pst-Z&{!rtBoni`ZBpSQzlM`vKN;^`@O(gvzX3vTDHWeQqi{3 z!|o)up)gZAL`qbbS9yz658GEx)nSRLIe0Ru-%O_Ho;*}TbvIl^q1RL8oMOCu#&I|R zbykEL^J;|RUJikdIF~_QG-(XCJa z_5Bm65A*;GLPA2~?%NfdoKr}iKAr|B&nC*jpWVm}WPJcIR2%^&@cv5-f>r|@W<*3& zer|hPr*8$5#$R}S_w)p~ZIB)g02l%*&@sp#uvhY*ih@(v>0*yPm65}eOond>K&JhmVZS7 zZy%c0e(uK{0m>9;5E}pBUauv}7b=+76eUC*&XdX_iOP68bOd237rJq(nE{ zeHdZ*4=ygWP@Z3P{kK>@Hvk%c)mJb;pI)t>j)oyBm?+U+&Tq-DZGB#BL&D!s$lKh+ zUlV0TK~I3L_mEWLc78!Yn7z+gcF&eNK98@kS}>qU5b^I6+Lx>!+4bu< zu(lr<2)4c4dgplcV?hAzU$hUSJPd?jALI|d$?w+5U%BJng0EV^-`i+qo&CFA*P334 z-?;4+Ot9Cl!9L1W)Szr28xmJEgkKq!kS~^w4FvkB<@erdEDWtHW^$sd`p6S>BvgRN zpOC@13VL`5b@)&~j<4d3Ui(A6N3bwL0#9+~t5saEOHh!XG*~WU0%@ey>mHZ*krNHRLF+?takFT2s51yKYbrL%={p8QFq?#(}uIplsP`RE%wp zwXg?tw9Udp>24uW2J9tz9$e;#MHMkT3Jrk0?Tf#Pb|vJ_&J$q)X1CsBhxeaP{vjmK z)G)Dz zp2ZY50nGS+C^)2$fKS>DO($7zn4HjBNTqY%jULcj70||OM6pH&)!JtD>1L8M3eI{w zYSg>L&ogs><9D{76_3cp8VjYrWXMTzQ&xpir+(V-I4{amnKxNY|a0jKlBCD`0MT&Lu1Jp zhf-uJs$M7~Jk}6HUJ}!^;*jWKn;{iO{t=gyq{w-V%Fz9-PRV;GNn0mNtFVCo_Ov+G z-wgi2HGhOk)%vvAyImJqFN6yLg{)~|+RW`(M=`hW9gY|iuxvf5ZA<<)4iraRn#P#o zoBpM-gxdRq9s1+zGphEIZ242eG%{sBZVwT%+Q^q`r4~Fr1K*`rU)mOX{oMRSTKiSL zwugO~E3fHNDe1-lb|xroNjQpyeAZ1#3`5I#(~>2739(=UJdcHJH#~%T##mSlSi6d~ z!sSJ$2c1vB6QE6Igaes~wBg^@kt;NT9ml>kbPG7HHoi&HLcAO>pacPk18xpGPpPf@ zNGvnc0=n7QAs#sa&5{P?5O1{Um(C3!QNu>363r+@gBL zv#s08>@#pjAm53{x25e|zsKGbOEk*u=}0gtEqBa+Dd|3}+4i%N`9W0VS-_TnP(6x) zt8$BGW|c&hEk~Sq^z}5Ld`g=nP$4;>@MA0K^Td8L?iL%IV*IAFoXZ^d-9&B=ixa%V zSZTU}d(w;fats@kM4qb!^zg{r?1Tu$)FD8YAka0p&vm}B+37~*GrRW?O^_2}ztYX7 z>I+t^M;(hnFL1{{gMlJ21NH+dys@CZ*0w8m=~ zBPRf8;$CZ{cA?uxwa0h)wHZ}Ii6&T2&YC0jsgKHpU<`L~s63Mrt)*8ZwcPmKyn+59 zNVq*ej&ck{5FhLycL8miFHR-b~5A@GEC3uZ{;m z*%2Tf-f;%8SFmdgS4=C5Wx<|SaHy~a=R)DHVAGQs4Q`-rTRUR#TE?q>xdt_hhO5)6 zYqARPP%*tUoq4102m6;la=y0pN#5JmDphbJpc@ZlDVq;c_q5zf{YbV&i%pKXPr-9N zRF=l~Q0<%!hN|F15s0EzDT#BT@&MhXzP{@6-L!7@s1g+NhF_ByToz-~|A(=22okIb zw{2Nnwr$%syKLLGZQHhO+qP}nRk!ct#T)#CJNpJ1aUwF$By+`HTaV>nE0P_!b~R~q zbWY~B4uL8H9M+Mnp^{^Vf?`rK{99A82hDoBG2Kj`y!4^|bikqAd3N)kLnsB`Wc&>Z zq(N6z+4N77Zk8RHf}1!AM6Oor+gL!a zql-Kjb0fnK`Z~H9%e2ZQLbHpPkpuyxY?My5$f_dd|8 z1$f`M-Pu(xucl5_0!!}jR}4eSsHY8OgfW*f(D_gEVvDcGB3Fj+zw-DqJ-}Qan)fFH zqyVKp9uj1!q;}5LOGk$naGOFTV6$pTCa^GxNm*;>E4rE|@ivV? zEkCl`9KUju`?Y_jPq093WoDF-;;}6daJ)HcBTeLbr|M6X-Z_`Wcbpxn=^yE;YO)kg zTG;@WS7rTzN(SlMBz;qb<S>L?J2_K_490(PFIo@(RXa!6i|RbC(l8O;3z5Z+73T zxrn+7Nw76uC{a8vg$)o1)UJt598?)#x;o<58lJ4gIo%V@DkEr+X^VA)cla9o8&977 zqXGP!xo0&CEt&gv7Hi{bd;7>6Jw9!4BP~}B)}7|Y=E?K7)6-MqZkhsVn$?8#=%bjE zn8is&w%uY;#?&@jS!OGh-8a-I7N2UdL4#Z~p0$LA(tp*oJIk_p$LPV1L7}=1nHHf8 z(wM&ZL4)5|{dU4z)$sX*8uc2EWfAPiv3ciQyb5Bw^bs+uvMT)JN4y0NhiY z3#?+84v6eB6+{s^Ctk*Gz~Rjk!xijfdk1_gh`v5^)bqRes1H6?ocW0uzp_MVICs_a z%QZypq4W3+ZSG3f=U#41j%fKTFlU8KmS<0wR)MDiy7@8+`C*R^qoQKTBrRZUX zeA`1nt{&Nmxsa8r!&x*CG1BafRC$@r(p}L=qg9b%`hCp_MRBO1OJJW2?^nO04p;s| zxohYU4yO4XxW?y4Y)vFc*7DgsQ5>0!*mPC{(aCh=8~hIrLBHcd8FjcHIW9`QCtbgO zX!{tN#7@e@@awvdmTLF8@hl_a%p>NyACu1@gF}Gssb}Af-p(G@QM{2;YDs6$_m^X; z6D|RjwF#0Zn39DH)!RP7YV1T)%awIQ4qD3y9jIwE<>i)$YaW0Q&ct zs`kd;P96GJ1o*r|yJ2q7sepo7rWlx>W8SZUG{dCs$V6W#)P<=DdrAt7FsH0ns&N7% zet>SX$mJbInr&}Hd8}@0O{0q5@f#FwpVR%$4~#~wk1Q92s1UNc#^Yvyowx2V+Q>K0 zc4+~)n{sK8k@mKv@`og3pK3L6mrb$rn7~kY#4ycvWW&{b1p#hjXfBflUCou-SLR~L zM`&6z1_68UTt!#$Vf(caj)^-)cSSa!K^uoyFQur)Tk_STbtw8ptI=;Gg~4-{&oejv z_;aFHnW3HYyXpyv!V-{(n4~mW4WY;)xYpNL)@s~7s9Nd=xT5(63`ggIYwA#?KO_2R zyyol@uXnxS=^(a3V$npcIcK16IodJrW8YDd!#=s@Xp7JDmwmhZrII+P^u2f5+L5OO z1_#Zq@=vE!r=E1DhiZh>qWN1`~3(h>QXv-D!_JR_pP&2Q0kmh`kS^_+{GZ#TYo<3T0~_q03Kq=CtWS z$wkENthublH}}lanvV$s$f-5VpEr|LxNS`FGMb`nEE{FHC}cyLD)~^kUi$2 z57-@0875+~EHg4g+cA%v(#y7lHBxx1V-!|b$RpR=Lj$LZ2hPF$f!ndmEMyky z!8Y^e+3_z6Xvdx}X4wo8rA2Vw(NWp(oFnq1dXN4kq)B&3g+2n!9>;O{%}b(A_NC;{ zhpJ%rB%ju=m)YudgB=j~bF5#?^{djHtQjt|b>zco017nJOVll(?~+(uRgOpJg{6v@ zR2$-5vf*n=Y%9m6s*Y%OREEx9`b{aHm;RdGtQq&QW)m(D$VJCnvL=@ktygtZ5_i^| z<|kNA6px53qEw<;`xAhlQG^SsYvOsht<=j|8prSOObmmv*8bWq<%6=%2hN;!@Tmow zVmXL9`Aq6+t~tX6+3u{hf8iWzk=DtwdszOtj;lz<2T^10MdIMXpTk>1j8Z!7n}O#^ zo#9JgiSWKgP0AuvCypK!@2`k?@*j!Fi!$Pz=U54mh&GiW*5V(K{#k6(X|x?|9ma;l z>hw3j88IqU`fz{!jEd{0)zB<%W>wj#ujm?r82Se2MESpB0YMKU12axr>EDBMi60Hy zL&e8gj{r|yJr_|pPZXK%>5LP5t5V}^ z9`dx)PRD{uF{l>K#IBRf~fA3;K5Av#Fr})>Rk!rJbW`JwF3D_ zp==&sE_0%$iJw2vh7kmv&nsGMQ>K>FuYwLLQ?ZskyDql^J)o_RDxR@CU^D#QyoFNO2Cz z&f{nq6<-ZSB*gGJ(o`0+kf45$ zScyE1>(d*vlht1CGGe|K;lqvPHBBjZJ~r8|N@`DIl9sk`wY=eL`>ObAQs{Zsmn+oE zqO5GI=jXWl;pDx6yv-{4aifomX}0Y$QnKONgYRzt=Wp`&GHYkno?_hdp{U`a+xw(m z#B1EXB@?xeGi=z>RT|fnj91nCD7j9MAZ%Db$4UEesVLiY^scUD%IPDgl2pG^fHCg1 zirST+W$i=7d0~tgEamR#U`e<$Kj_l9zlbtAnWRa$V)U|ZZ5E*w(~uUJn;`T%vSSCg zZ_6~{Fj_B;<|5aJNp zAU*Uz8%Z^eYpxiEF2BaT1 z_nes6sXjL>tUdqaI31jbzYLsvdV^5dHH7`G{3}7>Us)b7;>_j2Mgm`(D@j$$ZC|VA z!w#->F;t~<`vWoXb5s&?(b43^MXFB3Fku#ULIZkg>_RL%X;i2wxh~gFf3@%ZWA*)FNbHT76N$FXKp4=?^|0 z$88k{LVwV5(wEhk3pMQY?VUbN*@r^|8k0!U@}i{xPYud>T=3_>7ppVLE3|_2K)A=f z*cXorAJB8#D7#lNt`INT8DrC^O^!!NRR!trgvHuabia0JfaY`Tkl0Po9{VFr6es#a zCT|ChjEDExKF-X>LnCkdz%qwxc5{@Zrdz!e$Yy)ZTEUJ*ooDE?cn}nQf{3F4u|ZMp zvW4|i=652VLLXF_BwK3KpUSORUUD-H{Amf8Zm#mJUYt5acg5Gu{g&x#-T|Q0Hly2) zVL=#sjbq|zs^iOmn`4X_B@mK-r;21{``pVEOKF*Xggv@4??&9Y`?ZxYi(H`58s`!i zctl}&S0VZJ-7lAmiGju4Kx@!?dv)r{mx7^w6;N_V^9oGR7GGsS7k!SCOP8_-?kS3^ zx5Z6btlj@n&s-DBU0uF|;jexesk?b!)4K}OoaLYD?sbCf%BO+A=2f+uxnF){OZIdDgL}k+K7@~5TGyh`a^x7}Wp z{Qyd*1=1SjK2@_&yQXeL3F#2mClNj9*&e3`CeSMfTZj(yr!2au7L>*vgc=tTNfrO0 z@a#vInUummxH$F;ND9hJXkIcuT{dVnzcD{Yd0X&4T$A;e$nZj9w<3F@p+Y@-y6>BDEL*O zk<*ABzfVtuSzOU&coH)T!|%5-*7UA?8wnGl8V)BikNa|*b zDT(Hu6CNZ5S0<`+YL|Wr8vT{<_CR+>)pR_{TvYgX&6M0Zc=KkFw5%M3Hkzns0MyDK zx`%dGzEFS+*RzzHQpy{q<*29$L)UQYp})}@Wm~LQp3Cx{FHj_2Ff=-tx+8&J?a5d} z%q!@TYKo%{XR4nZWxv;Gu4kr~?`>YLP~mgAXp)VWG+-rmaeZ+f?qtd)m=r8FKvlTk zddE!;#w&~206f=gryiUF-jO=7Lqo7`@%F+e@u-jX>*?p^Z+zOWR+7biY-Mw0dUAtQ zSFtp<6v`nte?CdS>>+j!<3&f2wJ)>Ij*xe#Z1Pqlv5hOeTtDUMPozVssuHU`ZOq1% zNs)AIu>C9f67`trYR6E*AAusrmSxAsySXtQ7-_~41p*UY9H2;oa6kXjLSkWr%FU`2 z9)x?#KOclZZMhi0ch-Wa_P#>%ZechQWh%{lN)Koa#`ZuI-J9wKdaaa7(xseq!<(hS z&*LRLLW;++?;K>a4OKk!>#xzAXyNmzPvJc?Ql=J3LZ6+laduR8d?4T9p$ z6|9um!f2t-+UYno6bHe6%Q)e%LTIUZFvFeAyt^0QuxoGR>a{dVfbuk$xJtm%U)xjI zKV~19Y3Q?s`=}*E)02I4!&vRQdajIaw@$iQIuf01Onibt3wW>N`D~YTNqT*!Oav}K ziNv?=w$utAbmGH_^O@os(Om6kkGPwkNtpbC?W1aOCN0ixr*pfa{PA~G5?X}3PB#}(@vd< zuzehcM%Wf1q6Fw%2Sc&Me0CpVh1bjYcOvg7VKcFb0+h=~Y9=PGP{rAbZO|fe@q~Xt@^L4;j1seX~sCc&-~a4R4K`Fm35mux+o9`ae$s#Ts)Ln{15CPfY4MQy%U=P zkYuWOcu*34!ov2#_I6laAKL}T?fcB zLZFxf!25@A;G-qyXkh>^FQ6_juPp(%<$5$#p-~mX0@bGZ%uWZ;jdp|;bczWzSSkZNUoH;JRz83&(5D+jC_peHj&>$G7 zV{%xKj`sHZ0Gup$1aV7>nNR>W^a-#$VCN7*?feu!U0`75KG-?F#Cybgz$Yuc8DBf? zAe0H1s34#@KOShHV6H+Yt-TaEVt{TAepL~eymN@)UxLbS0&b8mXI21sx--7xpNSu3 z2(aI5=n#H**ciPwaA+Htx`1^dz>ElsE^^l;Apmrn_eh8qSJAx3{u;eBo;4tuw`~se zJn}*qfI{#uOKwvL#FH?G6X%fiUrdCzO6ZRyl)V%O2yk$6>|^PtN5YB_8@t+GR2BNR;^kTbYHe(P*?oF4w6cgVU1VnACpZ%r5x}6gp`c(;5kNUIfF&FQ z;4fvJ*+GO4E{G4%LbAJi2Vr)gsyQKkZ#@;cC%pJnrZp5Oegf@0UY%dAyIT|l2#~rU z0Xcv_Wh~HtpJbhxp_@M%MRj=*Phjcyg)HGf_CB9KXE&Lex~LKCJY#*&dT-IlYYRV= zR8u}@hknDyCkVFyb-3{f0AkbNApj1<_=JVu0eOFE3qeD^m%(=V+9~a*K=`j@Th9zX zIt^EQLHh1fIoJVzYl{8(D^a2L-o%bdyac`ApMal!X`Xi}e%XS5D;|Ck-+kGN&J1jS zxu)*9etd)aVd*_%dm+r`JM!khO0H0#bm-AET(L#S?D)Rcwh{pP==M7E( zAs-$ffBN-jBIsSqicz6K>)(me`Q8?FRT@M4^EDt$|22dD;f##E?KLp-6}Xz)g)?oU z^$pE4`~33M1!V`(f1fn{5*z@aM}&OAKM*A<7@0~N$tK)m?T90$Os!}b>}1(;*{ z0H}f&FVJ0`00-dg+oPT7o!bS__~aKOhW5twCBld20|*1r{OKvs-Rs5lYr~H>Bl=l^ z?C9)W?bU`0?hqmnRy>3lE7aSJ*!#FOW`wrkw)}ScBNa_&5WO)NEO&)u+hw(Mrcn=NYC1pwCX%hrfG9J^>Tkj$HzXe&kHSNN^TCWo9!C$r|mM)Ga_@p+8!-}8YH;UWMLjzjeYn1S+K(L z#(;3ZrQa{?S{MtFVC&=E-&>tOp;{|l`bCTR4>T~-lVQWrbQJY5&Ixt?rmoFW!AGId zrOu{Hl;T~@!KZoh?Yh=~S7eUQbQI*a;yX=!joNtQE1a4d{W0iiFJbY0qi5R;<3c|7 z0Ye5t#uGZ;iyJ=d-E1rE2-t!g#tk+Y9Q)S_H1xx|#_51x^H!l5sM<7|S>_%?h$YLV zUE^(6o;IM_JsF*<#`u3#XtvP+hv2-2W&z%*QD_G`d&n&3%aDSVZ&-R?c60$71JqJ0 zqFW`SP)B16OkvTZZ(q*S2(--A0)Bj+RY>QIm__UwYWh|h`xnja)7}Z9p>zawoNf1< zV53i8z+a0k1*Id6a_}%G=qSu|=by0U{QeY;AGbXaj-Pzd`^5AH>MKW+ad-LDX`du` zWw{V(_thsJ3J74lmOJP_0gYX>VI}Nu@kU}p_f}H5`s@7)^K8uPl3H#}ZXpDs)t71X z4&>#!x@0Q0cRqZkBeDAvsCQs=9?yg9Z>Oz!ZOW>l*h;Ah>lVeeE^+VO2}|DRdz}yB z8jeRqX&I{|FG(do=h;QVN_oO)lZ;+6e#mK!!v|!rnmiQF9Fufaj9j*|!l6kDDuD4E zaIV>Cc6FCIYku$=0p6d!5+w-WKpt0Bb8>90BC9qJXGYFKSO#Wcz`?vJ%jPyfQLb9H zpTOT?Uu4?NSqF%4o(5Otg*p|o4KQ`y6jAxJywaci05 zcUX+P&nd%C>xv`d<9ug%V=$5}wFRTSGGj`&kTyL&cc;d=FADWfvxvA!VA(n=&_Dr< zvg5otC$jYLhL1pM-jTKIn)L)~;I!cU#g@)MsFfs<;=Op`zgrvyIHzL7dpFdB>co?< zORX>RQ7{nvarpg2iN^%xgDgvJ9XEwgLYXjudSB1*@t4qqv90emp#Y4o z@zJICup`fva%7A7>tXe-(mW^jjw?JWNB$FwWeV#Fcn#63?DdK%M1}D7RG_f8x9uZV z;bTM(!CWY-Lcoc#A6Gv&#btXyWZy&RAi}AQMiV<)%u07qnR}U)tV{+f1w>{jyo~b&a;|slLluLfa*s_uF;i5hQGaQ71D{jR=X4T3LU*~u; zTE?32eAzJ%(EtIhbbW(D_v~vztua-F-FJ>v1q~^)P`j-nqvhygZc2@1s(>0kQg>O|;qmfHI&ntZ_H;W-b zg$-dF!9~r1@4yDnQS>#XQ{?jzztC?qNMt+RE=cucja+7w@@?xmlz_U0dnksbFtPwT zB$g`tm;dH@0S=ocnCEm8;|fIKbyacs6FOK5`9p2&FiAETqGipPU~AVMBU=C*JNNK> za?p85yeVq;oVH9DW-of})HTD+Ud)3Q>7y1j`uhr#+udw=XCv+rnH zC~6+vx0?fV0`Zg@n*l2b$#8_q`|kS~PmdCPU6{=B${C1;6$@dh{GAtVk^Rr_bCw=L zh|R=Cw}GUq_Vb}vv5r(o)?y#s);`j6tB!9&(P{LFP)YgaZhUsj{0p|lkO#3tOHZgi zJAZ5B_q^b_NGYEZy#2Y4%h|w(6)xF@0Ho8Gc^!PXr95iX5e0V;AInx#az~Yf!rL5u zS***y4wu+z+l_}C6Aj~f!pXhEU|#GxnP>yc!z*!Z>^V>~HplSP|e z66oe1fMQ36bK)HO&$E%V?&G9>t8hEkoMA;OpGXRADYPO=U=Wd&Q!R=$a424T8!6Wp zX$5M`U>%%p2I(SNVn%Xb8L;i3^V0R5i$~BKRn(3hKS???*wuIO7j5rp{!#plouh6J zwZnuFhlH!YLQkmSeO$S^y%khd2!3#LMHg;?L(nLEeoWxmVrb|O#fK2 z8g-+--?vcq7pt0d_x^fWv~@Rhha#aif@_XPOd(*kx{_P zn7!pOgX=wYBS;s)mT7O$xZEFqFk!|@6s}0NN78?t{tHLBXgks9dzVBQf;wB9`4RJ{ zJUZY@Mw|G`=Hhb&&Kdv~ErG`{L`ezaA}gm5t!XrS10 zl}_Uh`A%mGb*k^^U#h@l0XA`d zXZOT#Z}cTcBC6cbP4`z^JN=+G4aC=gJptJC# zGx}Wxa&1^&9Enp*+j#B@_LYB^KELNNl<>D@>*O&(2Gd%v6MTumj5^B`S&tiw3VGU8 zs}bFevf<1sG*veG9JB%+6D~J~j3L%>=&Wqwft&P8*s{@k=&eR3u!#5(<#>VKymC8D z>jB%b{sPAE9hG6cB!lI!K(zNH`J;ux*Vr2jXTO2Pk*-y^OE&We=3nK- zw6aO9^#)f;CXwR9!3QYmrCM;J2obV(b@6n$NUyd>c24`6bVp+}#0ZV&C)+;Lc@3tv+6W+`WCj{s9(aQf54V^7NAlwx z^l-VzsE_CGm0*G@IH8WT4ptheaSoLGVSv>!PBL8gH~d2TnZo9YbBo{P+rZo9-UIs2 z)m{eXUcyQ_jGD1UC+TStr=UvW|NQB+3^`Q~q3RzT~2GVWC_DL;9;>RGtnP`YM5Q z81F4?yQV--G^R<9hq*-M>^nm{hK)o@wXhmb5#=t>8AEM@=vrUPwnAqNOVy+i@*e@^ zKit-mi=T?ah0A^;LnkwHB5=d$+tzdYo(n=Sdmw}LGCld$dokV7n^Yb=&lkrTs7w|m zQAxOsGl_=aDDRvJ9#*EOeDs$@06cqGj>DC#o*R@E=$YhVyyy`7 z;w`U{DtQ@ML?Q(JT4-XNPW*MeII5%v z&Tz2JSf}s0dNbsC+w4L+E06hyd9EBBj+MV6N62BP13^`;(9`9Flm)tB3Y%VE*W57z z)1tb1I0%HSv3Q{;Wp>3H*yibWDIwmgLe}IdOv+MKW%)oC$~)5^ya)%f_yQ?BMtI*F z%)r2e{`LmSHM<5+ck;$Md<* z+MY5w8qB$6lm>6T--}#m3l+b~#=5aMtg$K`6MbhLM0Xaxs1FQUq;-sR7Dii+Whzx1 z>VR1WPM}PX-6Kw|8i~Q!+P37jB%2YYv#z=ky7l07i69sYa<1usq3d0WN1B-{f-KiU z>J)n|^+yvc^}@qWS*ID`J`O>&BPns1gbWgV8^0HVWm85i&^+y(hNdCxiETeO1}jr- zK?fW{Hn!~xX2b45<+8!4CM6;yHKI)SxBG%^lY^(QYlDk6+e!E320} z20Qo=#sO&qPuE{j1yf7%H|!v*4^@0~d1gr-CbFC=uu^X96^>&LUxVo!CJDI!zmXf4 ziqS>hA{pkkl|T2s-R6bg5>;8`L7?6|@wP{Pc^Bg{*|BU;Evhbk$4kiDtZ2k)-fF_& zaw44ff2ki?zaS!WUrZ)s4A6bjF)!vyDK@QuL*`vJr&8+K)Rg`0ZpJ*38CmE zSfp;}+jl|&Kh0q*Z9Y0ds|~&##A~$3m7sdNcvnVq%+kh_!3a_0E{kxhab0ifT1tGP zJ=LMoPn|O4tSjrKt-KjQoSj(Q`cPpl$VQ`2Sw5M>uEzI{B{rm_e4x=fwV!Z9bI2|} zfyk{4jHG~-BvraH?YQB#qSYTS#Btzj&Ozxc3 zZBM>O-SHwQ`&S~QL;vDJR=sDo1XZfp+Qe6yUr`xh> zp0;e-m9{{?^{4H5Ve1>hax=C17G45fk!H++eS7-eIc71lB8`dMV}LYS5{H62_=;mC)w6=4*qt{$FZ~L z@djh2s9tW|xpUV1k;NOb^S-$z@gF`Fpsicwo9V zE47B;3d`|v1%g?0*Jt?hEZ;Uh)wvr=q6@;?Z;r14aPx<|CI#c6W=P>6XEiZ;Yhq5F zFAIVYWe%G!K|TK4XqWM-`NqmO)?p9Ai55r=qwW$TpDi}92KG^IYsezh0-4I9^xe03 zP@2f2JJ$_;8r0G%ajT*qDnl80`?zAPM8haiiB8|H56YUA;%wF@ghZhb8y#c|^Ll{F zAgG5HkaUUvK!>6Vzg`+t9!ddeiSo<2z%kjQNG0)*Oy6SY)S>nUZnFrneLM$#%Z9E& zS^)O1hi~n}MBmwhCep-;=+r&i4a<#@xFw1eJO5y40F$Yky9apWYR&I-IU8eVRuM=^dzJUVbfpz-L~%8Ck;{a5ZdO&=Or?_j0&&q$DO z4yreOA5)e6V=Ik{jiX^Efv8%Y1}Dr}y`DDw;?qLg*Q{iQQa&(Z#Exvet(y`uM*P(F zTx*UNd7BOk(&Rq~w$-tVJUB$;EByy+9lQhUn-LqOdeH*!*b?+e6o)!M1CQW$+!j$q zRc=UdT;m6^P|lpGLJ{S>yUjGjPwukQGN_fx9!8aYnTNT$>hv$$cSzfr2RfGXWRglJ zpI*t-fQMm)68KIOz)>43X~CaW)Gwry=asST=3 zc9Vun3w9G~iW#vk`+Ou_KHa{DZ)UVBjnTrz3#4?a4ywiK%?WAYW;ep8rXG$T9R##A zt}MVXqM{U<%AT_z^*cow2MrvU}rB_fUYP9)`6=Z_DU-#Wm{ zJ;_W$XB78#2M~Xg&{pqZy9Tp8h8%yhEgcE1-}^o^`)Om-36ogu?%zhf-+dCZ_ah!_Xn`)%R6V))d1 z$_*J$_8&SxCu3meu%W>O_(W;0ScQ6Lkllcu2=M!|oi(yqQ>?ObGfY$@&C=F~QPtS? z>`KZY}FbWW?QREcC!C_SSZ`GzbTTZK<<} z|4ZNo`X6$C*c6A7C*_+^O@4!kHg-8=XN!v~VO|nlP_w=_TMU!wXd>vEPZs6UcAi~+ z&oV*eZ!Fr+Rw}6yu`C8>t5X}m@ZNo;Ce8koqT}#Vc(Rj1y(s?zPk@dj{1-1|`!8O| z%KZO($XPiU|BDy0vobOMUwNT*sxGr~9tq@0DZrGtVrQOVoRP3vFu@%obDygsc5w$eo{v ze@DxfMa>rGzvl2xCU|JkYXAPXsVNV7HnKCm>bEH{IS@oJSA_3DSy;ekC!y+b&5ryn z6a@ObC@LTb1Q5Z#0(gCSdb&6?==V*87kmJzWEoeF!dcN;Ea}fyqfYqefRpM-)(hD|yn*UTJP|O*P$=OX5s2~9Ayp~@R7%4W8sXu1W zqRk+H0l)uDj?>7+8(=pFN8YD3=I79$0ZuH&%{k`wKZYK@onsRN-F`h=@PPDjnW?#O z5c??p03!H;{J*{>i!DLlVz6(tYQw{*u*mPN7Fe#Uzm%_UvtDaIOr9=#e2(S=+j=W< z_?vi+U%F@_u4JXY<))vCFTaPz=g^K1KZCcvIMDgN*XVKAzj!qVCg&iHDfab_ADvX_ z3J52l&GRAc>YKpUG}&=;zO|Q~Yy1d*>Cwtqu^~S%;Q`wTyu5x57aK#>xjOjc#g|Tg zCqbO+-*Xe7Xjkm8(jsxsN6>Q$A10|mRtXZlm8vQWd_PFHeCPhtwVhJKv<3yg0W!ZMH9e+w2LV&pihZy-=izu5%(%J?(+;ERzz*a}+Uo^A)9TL*QC z_^;bY7Jg#!m4sS+@hgZr`QVoqa%akN^nCFta}V*t7A~H^3x+s%2`=sd+PBJuf;;m5 z9^ttpdA#k8#X^Pr4n{4Ud$?-JG3Is(#s6}i{c0Z}y;~yOfQfuHT0>Mo4&jAa0KJ13 zoH(6Q`zh?3#QOa(h$Y#u$-dzMlAquF`=(_qm#{W<+$vt!#Hsfx%ET&o#G7k_?-rM( zD+ti@$j@cIp!K}(I%-JAyIdLC5~i;Qq74n|fgH|)mkNc@;dnRW*re>!GyVg_s-612 z|7gbFxU9E#g5AzCiu9KI<+4ZJqs%UmR_7R5ivAdrN1t=~f}};3X|)y=DJ`GDBSf@J zac9>Z<>r+YQ&cZnR+psCXIT&K*rL(3^0u7YT4|#n6-3i=IzF1l-C_OjrePrn^r-NG zd{opEB9Ne_F{75GNtN-aXkQh5L0oY-8?t$dA70tpi$fH(FHXgQU|3D@()Bfb2W75_ ztvG4TTX?TB69#B(L!BGByq+l2Kb#h@kVcJyFP5XeYvdAElhM7h{7vd*0311)+b8g+ zn<-;&0&8{Y6t_FlmWQ~GX*w(Pv32B%vm-?KV|;TYXI5P1H_dhvS`ZUplDsq(r7m5m z{P;#VgVxt#yf4)dc~4h6|0>_@R2nMXC(Q-S%E)LQH(y3MbS|~V&(aZqw(zn^qTILPtKz%s z6)$%T@2f7EU`7X;Vo*AstF0W}Xja)R_C?>rr@i^Bqo5*9bEhDhrr30G5m42gamVw9`C*`N8bAp!<1b*RztYkJizh(}kNyR# zo`FXnnaak!1oww)6DQn?QiKX2vgp^$R0^X}bFU;F!1^;>wwEnu6vxEii< zqPJR;?z_pq4(n4jPYhvinX_|lW^+nl;Ta5{-WeprzbY*HQ#R3CmhV|2Rd|`mQOF#3 zwx!y|W3-6s!X!MJl-<7DElQT&PBUAJzIHU+bI-Bi#NJ1XqyM;8qEPw(M*-DVstC>X z)KCUBHXBOy*Vc*Y=IG>C4;%y5P9^3TzEi>9?^zW+d1a1fUGEIEh3H^v&>xTPb}H!s zkG|fN`@St~;}mEMx;ySpNf#3)-lDYIi}6o;vp!!br{p8Ra1VKF<(k*BTPpH#j;L|W zUd71y^&@XLZGS{Ad>B?pL5x5-N)lnh;hTwcvrIyDdy+B@L0Jatzf3BBEypzuuFVC{ zRV(`?2n?%l@$#aif(FGsDWx%d2|c=pm9t%jfH!iuFQVO27au|sP}-*_#0ex=jr1QA zGt(p_GLdUpl2*61iJfy=NJHS#Oj68Hd6XwW$kCCuFdHME=Ggxrdlt^`Grcsy#`kJn zCv9HkU`p6U$duuv-A>}S(EU9M$n)70fL)SqA*INd?xWlBx|YSCdZuBZ3aR39N9jc# z&vjWB6ow}{F879KQPtITPvUTasy)w$G{hEPY(yKMxQU}U&vbj}+03!M*`zVx(_IfEedR? zPjHlkVbsFUV&pj)4SZfL?O&m9_!)Yj;zaD2%R;;S9tW+?9)ZVwfyT2s;fx4{y(ki6 zZUvWa#ZBacuHj|q^IHZsQv^&tJL|y(zriWLrRaTwiF@?{z;+Xf$THB+B(l;-bJB8R z!AJCb?Xb`&^ei9g-DoyIi_idnI-hUIvR8gc3+GV%=K`Q`*Q}<_bXw*^O=XUB-0Ff9 zCu=mUDk!#-lvI_tGI+Ni$!(@SsXh5MZk%~7^1O1~M`9S6V(TsEBbQor!a8mndoB>E zT(_X=Vg9>2TcRduD&Cc(u(k(nSJYFH9W@3w%Nkp7W1BY?Rl8vl^_^1;$~k#v{iD`U z^rM_#Lar5={5_g9lMd4x%*h5iP7X}Z+7 zqhn&{yb*99TXVB1%fQ+iFNGB3MZuN)G;ZghceBKB{+CkrzYwDmr^&IU4&3bYwToD5 zVy$Ln9qA{7`*0TvO|gSaN7sS!=+rq$_g4O(5tnWFH#wK3D3p@{h{j{7l&e&cE zd|3{gYspT{9$Ei*;*JJY31*^IXRZlJ=?RqDvV)FnE*;(G4u9labWJo|Tlm~>40{!a z`d2!pXl2DrmSB9GstA z=gNJFtIzzQx4i;WDv{Jc?dy6aj}^9Lf1D@q^%QvM{wxV8ljZ{Zq_3uol5DjOvv?>%v+dRmJh$h zK`)D1x*>Q2YCYBKry3X5@rp`HFrNXJ-SWr=Cn($LgKH^kaUmLws&L8W6Z4##Vxr@T zosdqAw09jp!*Z>h-R3yY31|^_dEC7d?=Je3iGZ>53oX3;qkPrVKc|jZSuE;y_UpoN z2{y?vUpz!q#(=x8&0sEFWFCmyG)V-cK)ru@5wfL6^)1W4{|d>{bJ`Y4hVM05xI5ox zQU?&HVn=fde-*AdwA^fbq4#gHFX%f7=ZRmp!{C^9VmuSucy@CbN>%|zZshqqbuEl3 zh62KN%Y>Y2=yO%^twiL)G6zwJmqkbBEF}F24?ngn6B&)xjd8JL*{`HPd(b2lXOAO% z(_-=mLnKCovx`L*<1T=!L~}H7AY9f?s9R1B1Ss~s!B0oz@h|R6H3^WWU-1IdC1pY z-;j@wtUNSzIa&|IJ?#TWuX_!g1PlkTq&sza4wISV&W|Kq=H?K@Q5CLxc_hDtc4SoPO{Sh=Xkfn%j36W}_!97$e22#CUE<9k%tyS!`+K$NV3g25JGt$x(SYO(ORkh5IfiJ1k+tuV z<`Ule{Ix_iZ!{l)-^Q!AqCgtZu|D1wrFL7#9fO+8nHla9E+wRZ-)!lP>#_Kvqw|Gn zxQs;8x)MEBZRyJZxfeCTrAdc4Fo@Ox8R8E5rI+~d*2YN5w=-d49E`KxDxfVkTTGJV zWp~y84)!P>!ae^YZh%T}a6;R*%Ka8D2 zkYLf4MKddHo0Yb0+qP}nwr$(CZQHiZuE~$?i0(np?i=078{F7uoxSMKHlI2|r@z1@ zTrlABJo;-4XU{PG-r0kSLzH$_RI2Nq-ioqe|H zXhyu+7mUhX6K}GKN)l)?Z8t0;r3i9l!7=YRsZ+d3ZmDg;gJ#Mio|43lHE0bXdt689 zOl1sZuj>8R$@k|&(A5SwOSR0c`2^mE^^?h^NXrGbNu=&Hn9uX19C4;*MVw=L@g4bc z4?`Y?$)pr4FQKfAKBoRu4_!aV|CwaF8u^55)$BA>yJ5J0EkL^y{SHpHuQ#%6buxwc znZ+C@L^JoQjd~o|xTL3sIX3;ICVec0Ll3{uTP#O$SyMPOtk)g8n|OCk^rj`x@TPu% z;i-@roCscV@HpeKE2ZcfLP{*>Jbe?ntut*}x}+;dl+cK1ve_;CT`J46q}lr_==QRhB3zZMZ7cFVb#t8J~cO z$01fXoRLoV9katCXUKoVV#`Uio6L#*0AKA23Y~W)B%mFmzyH?rjnkMKeGa!verk<8 zG7pKB!TScV%F!Y5$R_sGE#76HU!cd6q5HpYrg-+u0D!(`Z!MXS3A(d3c0Kdm)bEqa|ZZ85Z^W zq>6t%gz~gvjlZgu3S9*5ELMKR^loYxWSerqnnsky=~i{f{j~3PI#Tt`#(Ab?c)BP9 zeO-oXN6Vb*B#Vb@Vl-BsweqN*qF3giwjPtSqOQhx9Gh zQSN$vuojDxp?bRNLXEBK=CLsC^;Vh@uy67HE*K*BFrWN9@A^ZWPl{9OY7pH2!to>O z57_UoIxr)f(OD&6AOoBnwgSId-$=r_AjEG9zLsmsHqYlF^nqSKz185Q;2>A=b8XdDl2(+#YJTt;n{bY3G?Mn zUAM63BCLjLxLzSQbx)jUcu#=!{vg;OG3Ze%0DvT3wX1eUbe!6ehwx3yKY`~h%$0v{ zSs@Z#3fQJxF2qr^k3Mp5qNDo$w86P_`&bQ|c-A0Rs4P{#pO-=%CS1&us717>wwY;y?B@&ZORTtW7kp$OjM@wm8qnOvd*4UtOZLzy&kknz8Ly4P}ho7r7c6vPE z$Qcp!1kUw9C0wdU<{GKwW>L0% zZ^zS@QN{CdQLu-xJ+Ooxg#7Jh*-E0XDJWsLG<-+DwYmqWwdo8Z<8?m02%Xaw4}4k- zPTDI;Yai{6;k0l8Fpa#Zu`R7T`(Ksl-e3Q%QnuX)s^?2@Ba8`b!0}uwl)s; z4K?}!$<@8b;Szly@U0dE@}CNY9^b2~y}!5uOgJe`C7`xp3-K`-12+~xmN&!HRQMe; zT#^(jYjfEn8;8+~hh2+nr1GvFXsx1d$HVvIOUc1Cz0~S}Z)h#(a4uA{r8ADjxA@Rl z3$v&;m~@t?YxukUb+y^U==2>cQ2Z!RhN=npDQs=bNC8Cg0N!!a^a((DTH;bh!5>PC zOpAC)yo^H5ASB7V5NoOX`;8bZ$tFSj$>SLGKHSW_#gc08AsdMK%1+OYXvoMd<{m7h z|z$#u(!Sn`Y16l?1FS* zi`@`P1gx}c*Q1{x0sUk}%-qSaucuZ#3&=cxrkPAr0(Y$rm~(1#9So7i)=qWhtPs$4 zJZrvw+gO>zUinROMlI1PjU=Q7JmFeTba?96Toch<_TaTPFQ5(2HZp4t{S&y?wK3vT z7YyoK>=qjrEeNa*C!L(5c*a}cQeuNfRMiyX&^|!5li$R%YYJbZleqQg^_$bp(y^mQ zwcuwq;4LwZKg|?bx?{%qo5bf}^g2cAo?p#I{L1ZUuQhs2{DT7^3jTI%BKJ6e4{f>{U{cjW8nPkQkaPtnti=R!6zH==j zjFMkuElPH2J3e08D!8f*4$^n_JzvTqxUAHS1kZh09pd zU=Z)a!%4};EbGB~aP`9wlMmys6r1Sk>oVk3Xizfm&0sUF0rohL&TCV11E&&?w}Q$T zRf2CzS|Q^d=#bH?&9Xc65P`rgh6rn-R-Owdm$vCs-Wx=95o9XTjX*0$KjneN_ya9> z3zw2V>;0pkg{(bldu!|vdN0i6Jcl-bis5VsKH!L@$Jr#*kkarhL5YrUx}LOq`dT;3 z#@r@D7*+yn#7DaWrZM=h%U8u1YO10`8K~aY@0o_n?P{LWXK@s9ActXS)V^sJlEb9} z zL(uwf13F3dn_G7Ju-7avo-d6 zZHE>}{;Ar)-uc@r>(#RZ`5hw#D-49{`rK8I!Tf5)T&0Mk<^7BRBW$%7`6i~YEA^W{ zfC^xiC}P_6JD(9Z8#hqDl$;OO7!LOvj-gTYbQdkvYf-u~8~_HFT3);{GFdTtv;0v< zl?Cifv4uLQM@ScS^h{tuVz+s2NZUb`f1Bj$<8<^QQT=j(k}Ypi z?mtAAVu!Y$a0K_QmOB`(O);||E*Wn!yO4qs?_(swbK-L9C8Dk3jCGxXc3HjLY9$5k z@Fr3@ekA26Az4$VQvG+f^YiFhAOjAS;E;G(#ogTUq%5EtzMelhP64=zlD;;30M_V!ISv&a19{nR4e_oYujAFxh@rxU05gs<@ z&Cerl6{sh(%4AmTSZ@+!G6L;P*Yey%s$nUNT*IOLNpdU2;>}Pi2s1YAC@V1T}3;p-E))uI^r+cqdP zFBg2%dsA8$;fmHXqnMMu*XtzQ=@`&Xg{~VPuYyZU_W51l{`;Kfj6;NyL7wZa8wJvW z&@WX8qMy}_2oq4241s>HEib3y#blU0>pO50EKZHGT|nyAp7AkoAB(uImWU{y8vl>u zmBiVk%q)p#+a=pnJjRm>MKn3R-lFD24=4sKo*f$5wS0gh|8rhFCmt``ZY&8)fyVLV zosfU=9XZ*z*283#i2@iVb-ffQmM8u5cNmH=qxB16{sOs1$Af18ACuaB$3{R%cmkWBryIJhAj&I#uy9IKAo6k_bRK{}uEkCJW ze{nXxAQ8yX*8^KzZX1&J_8~?ATq7MJ*?BeUQKF$!Wzs^(;hNqx)Dc@D*FEh^qpU|P zB06Vu+8I14>?+hOVa+jmMP1sNJ^Ohed#dN4qp-03spQgBg|fFB70jr&+O_lnZ@MHq z%F8&9WSFw^zrIiLbZaN=jkLH9fh{+E4^-rvt~Atw>W?8er8C9dgi*6Q?+daRVhL9t z^6sMq_W1eLD(!t+O>x=n?rgOL@-`UkHCrMLo6q_evPRV&(?88eHlNVyQAB=;VU?hd zZdxYfu!X9ZxTp6u#K$hQoCM#Hpi$FjUgpZck<-RB>kfBWjJCWfN65tddUx`liCQX`@EFUFkmk>>lU-O9Az2x&@(4<(`fN z>i+RC9ABv0(;>!?O01Sk3F6o>E4>JJGfv>w*(1{&o*lV@se4A~qsL#IvTzV@4{D}n z5hv#mf_5{0)0C9&K%(xq7p0*zMX}B7=`Z#K_3k*@(YN@5EQL>Tbd8UI^i|3B-=+1cso|G&71v$L@hHeUzT%?;uJ zeju=`D>_wM@Lo+I3?|pV4^lQ@oULt~fPcq7{5mf?-Jdr%oVQQ8H?lq! zSfXJ4zrsll^>p^%nu#p--;-eNYXC%9S^(Hx0I)9nus-}YE&!yQqrG7h_@Zc(k-ZvMU)Wh$ zTL7Szs;Z>?EG(0~amT#)Dq+Nxfx(nmhr88A*i*&W{d!Pfs^FMloPAp(Qz&{C`o@QT zBQJ2|(zK*d0APJv0}s8c5+pS=EI9z&FTJ7%0Cm5HUzR3!tIh3&f!(XW#gv(T)Bsj^ z%*IT_#pyrXy}tHD#5ml5J5<zwWg~8Q%GLmBY$fw+0!)J z);8JH$~Xk9e(qxcsIaxPe*MigHq+MG)%fszZ-0C7p}-!0*Azzjr{=dt`XTf7Ee`Z- z4h(*32YB@uS(^O5nmd2$TCH#$Rw8;vyuu zh+~p#&J|yZG$zVA<2_tcGdrRMd!izQHhnRO+j`&_H8eG&>ItPT+A!cWy$q+kf;RRv zr>FwmHhv~%gy`c#1KnnegQ$+PoY0Ku_?Z3B6lZxq-Y5h)H*fgShfX^CvM0gLST(J} z@qSNVl6YXfQg61QPfMF#aL=R%+qOw5_&^%7e`)>M$_J`A)@Jc%KvTL@(kGd55l-&4sG&Nsem<~{MFB41$Dg&D7| zgwp(WK+KprB$mO=Da|f_l4FNnJEZ;2FxrzgXmDyb;3dijZ<2C=PJ(NnZg4(?^aPZ2 zf0aS=QF10)o$iF(T4#aVO50mq2!x+P5(QMbCbj8eoBzs>_`BxqNTF1!1?>iz`KsOH4SyPsFjGM&58x3eW6_3-R!>T0))hi@Un03Z z1480ZAymqfMHJFHl|EgeJiDVnoe4CZ7eFKJdi%hz~d1N~%;?UXFJbj9#PA z1?B5`*``e?_d(@8l(%BGYi$??l>&0>RSHsjz*T2(J2!f$FUSAAXyPmWXb40RycJ$@ zkNosmrg&@}Lm3F?AV@8Tgq}KId3d1g$W{SPjZWc){+sJ!n`r?k0QH6--je#4A`D@qBzZL^% zMG}EwTo7xqOsn#*n06B)2(}|E8pN=);S+Whv4YiY=7Qgx#>SAdUNstOmh2gm%=73N zZ^f-IVM7y?Jr&Xhv@GU~-?G3HU@-zgU@Fa=7N4CQpO6WkEG7ih9uX~ilGEj3=)R3- z>S(|tu6eL(qc;>0i64KQvU;Ac?oZ|*65W!1Hy(A_Z$R7mYmvPMI0QrplH6j)h8b9-V#U-$pYbL}0D~N8sj;PS->EDIF9ipcO+vt2X{23egPK zK?N1u6&?uLhLnwk;>-b&WUUkC362uZnhjVy)<>CuF9c}yE|okaBaq><_`qj8ZO!Ae zkrZ8dd6tRFsCNc;1CXxv3fesJpa>x-mzR)cm0DLmYH~!VnQYWHbz^!vgSca8m=dWj zCIbAZ_7&UCl-zvmcRKsFA4x1nacsH)ofJTS-+`n2Yp|p0&jdFqjj{@_6W{8FP{;wY z75}9pQw4$hQIr2CSBaS)i=cJv2CkBTcL0GdcT~AJb#SvXGd&Y7E{9Gc1^YO&S?n4GwgKSsK0EyMK3_oM!~l~i_^#@?;hRmvx850PQx zHri$Nd~WrsUckkD1_8};?1v?_(dx_#jXQ|7Q;D?kRpBZyHcX=|sm19+6nQT&e)x|@ znfP(l)@S^LTK_EPv$`(N&CE5vsH@zqF!JehiRJn!ShqYidOhTjrwPGuAa6m>10qd?Zc4Pt= zq~mJZU*9K>7tqilGkv2phEBZl`=k1qWW3=W=ddpKqm=mnvgBDhl7*IJHnPk>+{4+8>&# z6+)dpNT!HPf6j>wvO+umrFMl;@w25A6`B%EZQwCtHWj|Q^JoTES;-fxXGjt1GCm62 zxf`!et(cmU9h#R950{iSW`XpJEFL2Ah}2uBDTcCT?e)fxIt1X&lE!xo3r-N;GLnGN z>4DMA#|0!Y#MF)(39-Nt(*4&sw|2#UNFX1o2 za7M*qm>>AVZ(qlyF}k2US6$G6>kbw@lIU7zA2Rk4iHGJ-TGvlFH8NVAB0r$2idAkG zP5Qw&@sw)en*%Jz!NX@nYlLJAdiK@?M(3NLWk~eTTl{(&dfYH4jayMB{U#W~jHEnT zCl09@3obxciY>A>aq*$ldFh2%K$0NS85Q1#dam3p&k>^!i~87L^gA$4}Wqa<1hLNh=X(tGnCwz&o!nqyAi=Ubx&9KU=AvOm=16 z<{L?`vY8ToUr!K#A$D1zlLuUP#pnY}#y!GuCv>sCforBMcrYPFOW+`fs;sf@X626H zv-B}Hx&Y!;=?ZvJP_56R^=i;gcPYeS50P^2mQLTJfCNLD^Q+#?Wz%5RYbUs zq4*fjpFuo|ftkvglg{J~jmRX*%FN#j`-p!-RWm?`a6J5D?e0A;NRH1ws1#-nc8<@*LPdPq&v368Ngt3@6qG=x-zCT5}lPJT3PfOYb6&j z%gfyDA%M4ksC~F)CKVSY%O$!>uJxW&a;x-8Pf70&o}&903%AeXZ5OTuaYq9JU;FMH zKBunSMKe^yCDc1*%q@$Dsz~|oFNLKECm)&US1e2mV~Mwh6+Y#mcIi3Yena-EO|0RH zkfe1xVDE{p@cx$!eJRgQ>LHdvzX^(+Yu;kCf1wW6n1|`Qja+_KQkASnqNoCDpFQ?b zZiBf$PHpWDe%p7?Sicxbv0m06me!Yv2qln(J{fZ#-5Q&uL^E?~mlVx@uM`<>?^%+L ziU5heN3ET89NT+a4tchU!knZ}ab1lgn3X9#Tav{7y!B%=^jS424AnTl$j2nPenk7Y z5{v?Oe20O{08*3!|8N9S7#1Iy;7e-1bL|q6o@C!>=f801e?xQ0(QIb;*k7+^w>K0e zyVE((3DA0_0+kOp)f$zd$-ZHL{8dVM(5?;kEp%?^8JkL?P}G#XD*K_fetBK3u|%S{ z^kWebUuT)O0)b6hh?wCs5$isLvQh=Pp64q#3=LsywH1k)uNxT6ps*&}+YOTt0WZkf zR}_Z*%a+bBDeZz*D=i-gDqhLA>e608{yT8*5??ulL?p6=5WN z2-;rve*0pW#fLIR2y@N~AUde_D*5$|o51oi(5gMel@Zk>89Ngbyal&^dhW$L;C4?w zYhEZn)+|^xHq8HY_@aYo`q@<7xu%TU@kn!EJ7f(2q!BvoNznrjk;}Db)YDd;a-*K7 z78k@^`&B5vFc3lnzU<`tRITmC26VIT!VO|K(Xjg1-&J+#oq2$bV4vS}1U$`j{0Urm zOX^emhf!9zu5ED{N<5d)klI&2t0oG&(dZp^{5=hTEncNC&KZDqrvLHqgof&H8jV8t z1zq}%V3r;@1ziq~*JMJH)i{883x2j3p~oD6$OP6$z}83)i-T#)?qF3PGMQ)~MjUdI z1L!q@r+crv2h$4pvqe~`hEBq5`ZRZ9p;&JYRmK!f4;r}BW}HBj2ppSmNmtu9j(_Iz z??(#o4~9l)xw&I3oF-?Qm6!mR{Dp^38+W){HW_QuJ=g8-#H&dT?!#9!%JAE_joAo! z>*@+8S#6&prUu!*^ldc@MGH))(9@PoswH^#569_@bieF@0mP&NuQ%Ik zEDhqAEO0g&)-N4LyK2rHGayC{>Il@mw=A`RHmvz)r22X6lUV69IFObdx18(OMd}r* z$G+$&k^EGB74{GvTW#^S@sWh5K>(^v$tV0I=ZZ!XX=C+5f3RmC6mz^)52_OyE>7l) z&kDpT^ueY;tXbM`U0NkmiK^WX5b>N=g_j-i7Fx8!?HY2COWYZoGp)7*a=2m8QA_+C z9MaOoaac-3QP7HR4dY6J#)lB2#nTmwk7$}^wdS% zQBB-?x}A9HPT}6Ou3iHoEVu1QrMULm9sK)h#eKE(AxzGoO?sMd!iq1dA9E`RAP1oWW&wdGE~ypfyK)EKWJP7|xExdPHn6B9pONsCxiVKZ7YpV_?p6=wp=!RyB4zq#wK7eY z6);4Y{6@s_)D9BHQ{+L_q}amcpJrWwZR@qF2QUv%YI#5E>mbJh{IwMca1uLinc1=A zHjkmM&)zIe%%@1{^CB8;nEpW|b2*F-x7EzaLEGioWh*J-MslE% zTpvX~(ZT%%8Nlw}h)=>`G>?~yw`7z-Uh2*?b7!;hH6m#;XQ66?&WZuC8-yhxPk018 z4yM_%g?_bm>B*R;!ok!ZS67?Ml!mNc-h~0VOsuX96z0Ohgm_rt)3$EQiNH!HsY|r= zx*M=BTs@M(q}EA@Y-Wmg>v; zf`1S0s3m~!`UdMpCk(l1T3r(m$1-{lDW%E2U>P#C2R*gOHKn_abb|9&gjm2ZUOuD2 z1<=|N>5@BFhYeg&T~{io?$#4XRZO@nCWEHM%tIJWIEmRo3uzwjH9zEP8Jxm68dNzQ zE`h{Po`Ip0nW=m)$g1&Kr6QeubH6X@iTuj`NwyN0yvMqEAeB(e7hZ)87-7eEmU{f2 zi9gnV<JV_R=^ERYr+5+{pH8_`Nnl@OB!dT*02SW0Ak9n98Y>;%T(BfJSR$ zZMVFQua>0`1z%XuC@0>=jU&UUCZ;A_iI9P?eL05<`zBL1x!LMUzyZ~eUDQuel|IqA zUYfSvMsqSZO2Q04*LJ;_|^_dQGJQxNKCMTz!TIJ?+)C#oS2yZW~QH$--- zj6*n$+-fTd^vBGZ{CukA02?cB`cK5t?!Ty6LSr7fC&CV6)7j>{MHpI@fL0{@V=&&# z$EnS1>Fr&a`z7Wu)c96a9m1T4a!*=)St{>#+la5HQ^}ie>}+E;ocJUXmiV!K%1TbO z9;rK`C+PE;2>FtQjK&<@Yc^&YnjK9!yrzghGBLbvo&8D5HW=~{r%5`BEX7~J-reOd zfe1t=uJ)h1!3SD<;i39lVUInyPBS+soVXm$Hec6aO7s*>$`bPxM3uUf&6JrNDU2W? zMzWZhQ)w0=4!anMSP8P1I#<{4gRZ0o6{CjGBfOOO>4LY5`0IKodH>Zd^}!UY1*0AG z7`nj`2jgo@(Zl#XN=m9D*L=$Ah<5*8M!H(aZtX&b?xVwN{l!YzTtx*L_Z&{eHcyyo82I zB)U>fPWW7jb(|HuOn7Xf!$*5T}*E~kjDI~)Jpx-eFJ~#y^j%&YGa}OPkef^xbEW%GWq!y$z z=v*D9WVA!tD|I%dXvOqehMc?LF8|u)zT}Hwmb~7I+%i?DL$)p>ITO7{J1M|)UW>$K zruh(+!_51u&(M3PI1~+)PkdWpJHg4IhDjtCb!CY@%AS zW`)=|B1`v!+2i@Q`bS$(*97i-6x)s;FRC!AZ`ctN+kZ8m4eCL?++ ze3-@x$;KlE;5Vk~!p?4o2|M>`Uwg0m^O9E!wvIvIS{2UCK6Zlx7;aH}7_5ZB_Y}p;V2%daZmRZ42AZFhGD7i3w=gvNUc@!>;=m!W!H$oFg@v zDs}I|1lW_zJ4_R<{XiLojYh4%U?`bv8wp`O!^y&megk(apY8Gs z+hdj@VL!JK4nsn0N`N89DZrcu$LS&!JICV4ky5HEzybP}mV>c$t>Jxi{%t%8`&A;{ zp=gN0WQO$Mhw8=SH&k#-#C0#W1qCfRu_?PqhOKHn(dX{=KC_{ zw05{y&B(nbN|ysPy(o)caF}MDTt0;SuCtfW+zyMtaIXr6oDlAq_>K?}@Fm>iIDSN~ znRtAe#jJc+i59{aj(1r!vjC8&a!mF5wJ|q8>ip~nC@m>e!H$bPCq0K$?)QS1p}2Rp z5^Ve}JV2_69EBnyh~&9#s5`fpnrmO(FPJc{J-(id&&9`8^o{jnM+$F-%irrOau3eN zuWMC_Cj+hnZC2SRRc6XzUiXrxxW`j_-9>|0yJ&S!X=dsWS9JPpKqLqgxFJdo^|H4Q z_4#_<7Ndz_9N8HoR*AcHeThK(=*W1HmQqF)3QMTN?=h?}muzR!<;=NNS}u`Ek5D*N z$aILL2LUgVmEN&WZ-P{u!!-WEpQ4J!KsZC)vLMwk0<7o<_%D)oSVi%7xTGJ)Xnk{G z>aQ8Fis>r3)TKxYTneR{GRl)gQ;)^%jKZ(Liqp<|ZGN`3I8I8Qe)|i7#qR z70WLun%On#OO3pxcO2D|;~uFL(T4d>`rI=DtR>d!nvL^l4#XA_R*DC$%H)I>%uWB= z(6t+0WQS6oM^Gq^Glsh0Qrskw9OV@;`-u36(S^gR`B-6t$VzI~k1&+&P#8`wGp?@A zzj2W#Qe=hY7p@C)Esn*7SVzbBAM2DX3{7G39H+!9jv8%@6%3y?fB54lpOXyvB&nZI zK?HPoY|!4t#3G?K*Y5H0UIg)~c@#BXz zo<;&|j+1`ilPCA*o->8-XX?4_=vIDYYQDFZ43O+un{KkTmVx3TdT%&e1ery1FvF?1 z^if4~88HmSjJ8_Vm?>K?-)1loF}N`xY03=bu}hAto|$U_b6pjwjQSmNsk87{puCrM&ODAa!I5Kj?$TIQv$OLrMu9rA%ke|!_ojxC zs&fgFIypqmwU@JLU07$+<`3m6yU|IIv#K@|3X@$l>1HaZEag6qUX?cY6CZ=VfK~)V z&z+H6ye)(&Bhd_x5X69X%@;-uhN!-=h0XNanJP}#BOw^2-z=CdS=|hplT0?%u(g>QR6!jSm*6})VIcF%5)^1mHZApbI z#7Nse1=DL~`d}Rg-tm{r?7(A_h zuJj}ET}z7L=wo<)T48lZQhMDNGObf>2_LSEmYe$pa^ZqB!`WZ=cF-J`hesI>2%4JM z7(EL~*)+p((O)%>2B&MOU6@E;$YEuj9C7T8=z>(s1UI#Ra5u6z=z{LzroUY^_o6tX z@c6khdBr+AXshRJJ4Gk1f?F3P{1(Z-P&ELAu_%G75L-=&2VKNhsw~WagKv{#j}rrs zPZR7J)#rbfssIomQl!pmMjqS(cKUQa(D6%~3mSQFT+ecD3AXYBNP3%#e!z;&kZ5`p za+%KIb6hRYdgs&M`ZHRo6=`%={iqGMD{sHtgQ1J~O+c-Y5mdl{;PA~l5$zou{R(Hfqcd?9(G{6LtV zn4SxYp(8DHj^&@5WQkcZ#N+~3GqOHFl9#~Y;ohx65t!au7`d_6M2<${=?%Zt`AIw0 z0OJz!2NA5>XpK&{5fUGQs#gD!9I&RshO3JX;mP}@`@nmd3+_eeF82a)(>vo!MH)RV zD4%Px#RcLxH{53sJP!~@?^}ne_6ghc>5rj1B+=P3%2)u9jZ1XM^7dTG*_4q>9}Z!@ z2}RD5<~WMt%@`4S0O1=Q9`3Y4?tNAJ+)vn@?$;KA_oP7o3b$9S>6|@7aqfk9;tyMF z_O}qKSFpo%tz<~<@UGv^?4$Ce`=IIPbj^EYxdZQJ?H=LbELxAb_@gTi&DFVu>tFLx zWD+%+Hoa9bg+t}t__dOeaatimL!TUS%4U#Gqp)|cAt_TDRG8W@7Nb-WddM3- zjvfj>bWl1R>6n$(`0??uCa48;gUF@fQ0eBLUGhXvDc<)o8Z)hwF|McqR&yx@+mXNE zRXOpUxG8k$xby2No-Gu!3(C?gV+GSsnJf*8+>B(1sp_IIhg?Gn*sA+~X&^hNd;%(m zgb_m)+M5#u#|(2E4@I(yVbU<>5d|)ea%-?pBW>HY;V@BwwC7^Y8abZksR* zQ6rzDuef1-m6mk&W+Xn2`*YkRo^CL6syX%p&9(e6L;;1dS<4xv*xe!6m~+{8XCbT< zxYIW3<(l7>QM|E)*ds@`CwDoW%o0-ZI7bxkbK0;8g(`O`CU3NyJ$@hSoGLz3`v$=U zb7i3Ld~M5_-WdKCaBI@zs+qX+fZKH4rA(sG&WtqtF1hq~alTZnbwYDWitSKvGb6}+ zpvtsRL*m?we|J@-h2MQ7ipt?5Yf;U#k?`u;w&T{99B`L^tk7C-Sl#n4LY+R$k#%+HfJ6?COSn(hR+#I65+| zGkl}G2rR^$!NNAe(uRLkC4KQ!FYhQG%C=B`Zd;xRni{{qXN=zUPJtx0cLe0&yb$bI zr>BsDX*TR1D!xTZLMd+*vl-C$WgUwp3dEBSl45j1AB(i;2DVa@*0Mu;4^MD3 zz`KMDGHmW`-8nR6^{>mXyzaw^%YQV~QVKG)z*SzF#x?y2zd5A7*40(+B#E-HPE`u zV3QlBiXyd+Wuf^MTARekE?$!uWg-qd&_C5S#`+uk(D0_oW9xI3?o0qdpbq_N79 zZ-{Kx06a519*Rz+t^j~`NWyLZOqA0|+Q+bsvf+Mi z2^L9PirD4MX{Y8Ku^NH`5|Cn<{>*Fz+aXah4wtL@PPeB~UDSi83I2W;N98f&Rp`er zAj960*pG>@Kdp5;&+vNp%02Q=OzBc+x$XRMy(Kk<479QBm%7BUte zs+FMOS{RDycitf(kILxKp?G;=0Dvhs=f#*f>McgFurp()?1gQhn5%0M$*w9fwKrmb zKm`FwUzh-!qiUtjZmNIy&*`;!yHv&6@YnGwhm&p@aqqBmQ^Puq49v1PsIel)wNBV1!)92wJ37&V6&=!c-WPu1h5{ywgmHs;4g~Oo@2lJ6PD{NGE zR^8nnWPZhc!jA*h65V%@gIdhip!0%co5R00(!4gK5YzTsV=YgY0GQRsxg#e<4HwLp zy7MnX7E6`caHjvCcO7EJM5o5CP8n&NYS{WN_4GBIza>YLq-}JY!BH788#BfPOEsP> zGE526NcL2aGtOzU@1<&adJMsp{UvR+DJ6m=o$6k;`J8+kGP`%W53w!1fselWf4q%; zu*cY!^%82VUxhw-BjTH`f z(mQyPXp*FD5KTm!?wZ(a&#}NxJ^QH;yG1v5@ro6L_9J89_CVq$4?_kwy^67EUvfFB zy0H8by+;bZt>mR!WJErF0ct3b1O7KH$HvO=KWI56cROQzT3G`NMJH=WS{ZzLx_?p@ z5pxGer+>^G^M3$3d?q$l_Wv&@cde!Fh{f9Cvs!!BDo(K~WM~P{s-So*9ezk0Ud@(c z^e{)DiAaiEZYO^A_3_>lNV1Mxu2$e|X<<{JB~nXY0WU`%99}FujLM=H8e~7C5g0+MHFranth`@6IAToJ)tH46DS_2e zRKVazecn(;wI{BDrc5*hp*;^Uj4W5ab`VKnj-N?IQ4c)T0bWeV0b$la8A5dIa*6#uW}#?;EjaP zXQsrL+wgSOh%Z;3IK@Bh5C*~xNK~Q;-}FR|O+1MK$USZ^0?e2=2u%e%_gxsXrtmy4-`?IuI;@TVoD{Yu z1yc)84H(duqKU7=vrG25UbAwk**C*alL#sq1`u(BlXtzp+Ai*|*XO+%KV5GRlLFkG zzgt^m{l2RL(epL+AQCBvqwfsKhL z+d$in#)Bi29Pv^;vKAV9a zc)312Y2UihV`i@$($llIqt8HorP6=o9#}JG>t7DMGzB82Pw>)pTZEh6&(4B>NABOk z43{dwm3~8c#h~5(zPsOFDs%UyF+1OTc8V=GazDP4B*ygP{+-t1SucxSy0_!V(a9Ry5C9@KCfMaf}m{Bio%{9$s>rVx9fK1dU9X70{$BMUls-;SM( z!?ObmzZg7N42x|-iY+O8*0*0Xi156@Z;S@7?E+xm z2?(L-H$=_%wGFr)R457Gixi`#6DpXhX&1x|ZoujHHs@cs0Ta3%U?{0z*dgl?v~8!P zX=f#Fu_36ikFZ5lZqJHu4i!f&F6}8+ajP)&35#t`ial=CUr$_S4#&^jBN^8KG^PMh z3v^HmWY9vyeEqjv!!}F|EN0u(VuM3*I;E&2x#$O)wykT~aPQ*2{0z5KVF#AS>kk;k z?H*?#4y+Z(@9tpp<6IHNJb8%d!91vLet_gL^*6T1^jRRQ;yzgt>sAM3jHa+{xO2y) z-3^5-7|vrI7>*cNYmDv9?S2Uco0S$2D4gfqU%$v$dQ|$bQH0^qISc`>fwTcW?lT=F zcq=?QxE@|^j*c4KI*k_nC@^TinVL{8_da2;oc{3Oz-d?Fr`n@0rnS`peP{m~Ccg(3 z-jtkb;vlttP(obK_4iY|IySx&aO?G%7HCTV1JKc?8d-9qJ`?<~K-*jPWWT&+dtUgR z1<~NyOD+UE>Nuk-9Z1o%t=R2DKsh>(W# zeXGm3AjctW$OtBFR@XV+xFKDjA@m;_O?{fNi^6z5LOmSC^MJpp#Ocl}h(P15G~<~I zllQIeY&o(ZrCLm|wrCDz>KF;YN1{e@f2Ht0Vs?|5#cKUe-1f*7ViMVbMQZSAkD=)p zjgZK}G~aMrpZ2wvB2Ek{HqX{t>8ih&WQ#+D0aUibBY4I!mB5Ex8mfM^C-Sh_C zBtUNfh#(*`0$0a|ma&wSA9kBDfk&T1^@mWGX1Vo1k4$_fc+L*By5&Lsug1PID6Vc< z8;1-83mR;I-~?uX0S0$>4{n1yGiY#4@Zhe&C0Ga=Bm{SNd(q$;Ai&3a&pqEgRp(Zn zyKDd0-OIXqbyxLTz1MnT7?x^83tTHNI*)|9eV8LizwTwL0y77E>gq1AmIU#}N{E+g zgy~f16c`}0+GVm_i^iKLGQ!YxA1xO&Fx}ESmxrFbA&j5bCRzm%PGc8GjOzZH*G?wx5 z$2D@nAnnJH6hb#W#iUWjabz9*twO~jCH9F=5+4$38w{DY{^~sa(XkH8`YNF;`%x;k zKS_DCktjd;FRyC}H48M#6*pz#5;m~|a7h8+(niiwS`+YDc!{1CLEG>?G_YRvmxrNr z?d~X#ENlQmcXq?z>QPN+(k0rUTifTZlV~mO#X@hEDy_iteDrfH8`4{feVwtFPRySN zx;$n-s;eK;!hF6n4sWUDK~9tOP!*#`aXn(h|W);~In z$!^WiwHoIM{}D-)LTxLed9AT<{qBp>s^KxEf(dtAW&enwOu~TSM@NG09j-WhEp8KK z+2T6Ney1-lgNo4Yfyh_i$hT9U*(9Z!+GBTw3D%9 zh@K;|U58}v81x^$#Q4meEIUjt(Y2teM)v_I~9NCgas+(mK=L;)ChOg!NF}4F{y(+tPAyTV?`#_J8kBE|^Kt3hg znWW9q!g+pHd4Lv1^$EG2%Ns3pS$p%cDsC?ZMOsycUcnR|Ylk4t{>+TYNZQfOoS`Iw z>m%bI;3c)%S*rJ*NmKxz=(yHFTzg7~+q&V&xg*E91fOH&yk;zR6dR}_4n$0|*PHHi zHA)n*9rlvV$i9cnq&C}Q;FD&`G;8mxSKK@G>gYwuUZ7ZlKrf^WYpGM=IUm@> zc)0as*9@!`^#gj#?8NUVjfT-dS8Fdu?>btyxM9J^X&SEpnb~(LQR>&&o6@)J^ZXhG z?1A6N6d6V|tP5K&wuR&~h8%1~+YhVD6wg}R`hH?^zC|p2y>R>FDcGX4a6wldq_532 zE8ZH};q@ZFuv8xB!;W?_2dbZ`(V#eW7vLx!8=-r{tYgd%2G?ZEw#`xTM$!Xj^ zpX0gc4i=1Tw?vQTw`i{5UWQW21!{H}!8In%4_%gFE^)MeD-~Vdhsj&0!!7+xf)AIF zpndU3TB@k1ebwk_^$Ph4Xxa+_`AgNq&a3rBht`ECqn$t4@pb3t(eUqlcD(OvtVT{o zetXy#5P|H}0lTU(vZZ8FH$O6@r_$H3DyQjSP{8Gx%Z&?45NJFjZ9i$tsx$UoxB?YF=X7h7?Se!Pv?mm>kkqVm8CfvqyC=&R zv{#(9E;>ZZIcJ=s2HME8VyC@ay$1!`E^1#Z$rSo1c-@V7RUar$TU~j@V`3KzzNkJR zZ?*moSkMk|^L|$mg{MoJ=OCjpB6D@PdAzLF9S)J4E=?cdQk;g?sARGP+FP|rXkQr$ zYsF1lTuBLQ_Z_fZHTo2HsE^HHUum>!td*Zk-yAgh6sk<)9aP<^w`)GBi6U;xRn$lF zJQlG3-1V3R@E>t<%$N%yY2PKCe5^$HLLJN<7@LnM;zzq+~ zpb#3lD1PJeogC?7#=BPs=3tSUlBgl|_Oyxt=wG+GGd0ax?ktsDKg$H1A5K|1f-{sb zt>ew0rZ`%)1MSMI`TK$4390yjy>j6KRdyXh8-<5>XF-LGLwj^JT*x^imxOSBs*z*2 zH$`zQyeL(|jpQ8bDX)9rHEE$~TEe0EV~c=RRqe3d)>-ZOhssJ9>uCchZVlTz5f5jb zx|dg7ixlQVe=>BGI<;5aT60|tHlN7xm0xw%q!^GU;4~s5g;?_@#L*NpB)7<(Cu==~`E0I#f9L zSa#3po{R>d5n5T2tfK*}#IhVTCv{^FyX(uot1o%h>}-5Y1p{;+vA zRB{6MKH_lmOHQjHF_}r-Tgb|fmA!&0xl*6W0sT!4&pL}f1{l7$@3}(zfoJV^8zs~g zh;lVEM<;xnc>hIphqBE2!iVQj^e^a7!85*#o%6TmI7+RhB~t74jUdt2IW?jxsWf!U zal9SlH{RiAUXh5zIK}R=6BFTphf4$C<@ti6{1>nV(+m7bVbHmIRwB)o0MUB8M+C|r zL(NVT`cBlNlsEW;RdT09;U~oKFnumV)?*=GsxM*zPUfvGjyj@3{tpj5&S)M1Y?geC zhuy^Lax%$$1~(ygtgWRe?Hd>Z+RYNX+gn?Sd?#ovE^KgK#zV_&r-_NSm2af*g5v^B zY>D+51c!D-tJl>|Nn&n?2y#-5Gs`E6R~`l1gP)~Ra(@&jE9jI(&4g#pAgb%q`$e+( zgUzMZ)2yb%QR}DniA>y&$gSoQR4jR=c@!GdGKqND03FX*5O`y`3BaaT7stO>%xjBi zoY7B0{9Qx*?I$by>rl6q9ds9j4<_c;sJ=fWjIXI+w`_URY$$%V8twNprQrSIsPF8K zy_@o@X`|7=?CIcapw*g3-ucm05wVa}n~7591>{xQRlKNvd6CIG?8*EE)-A9bxWqpz z;Cjv~H;R14nq~ZRC^NFgt!z4RZtc(MPC}lmV288P{M#LB{?i)T^HGr>)%&rT#eyEn ze8tPr*BHOJ!_O~zoi59-SbiT&G>Q7%_h!~(j@3|))9V|q9)p&_Cm5Dx(|-&;4Wlav zRMz&&k{a9^MnT;%JU=$S;i^vX`xdR0;%ZL;rwn-G1zXqW42k|M*mkLE;0(#FfXWzz ze;&%?`K38qia=X=fmw&$uEQxXMcCw2_D+wcj7e3MTG)2rt_5lmeXxHtI&1XG*));? zal2LYhe2ry7P(;AAHKU+o~iQgCZIdcA<6BON3WN%m9Asu&^)hQ;Gw^j7o{~Qto5y> z$DMy`LKif4$mN!MJU4`o}x{s?XG>}#G7$~(6&pXm6C?kLp+bnG z{tO0&#+Z<8dG3NkpyQnw15^-~buWLW+=-nnNR4cYbs*Kk*f zB{f$T8GYWL5mV6!cZtuFo*v95zkj0);)xe+f4Z%;xH)$3K7L& z{P>ViJS$d$nz3gTefgpWNYoSg^JG?<=i!uuHdK>LryFH*gy+Lg^N2i-q6bRa4za^Gc%5>qf%k!ArtOx#b3a_jm;Z_C%KmhE4=D@h@j`4 zcdaFSR+Noe-^TtcBh!e!rQ^u-Y;=Wde>L>zcYR1p;VdkDv&`>T;dFot1{1e`d$;L| zeVg_-x7U-IW^aJwQk&ZpSO4=EfJY1nmh3bUzw4EZiAQm?2khh`ov&_pu&Au7S)qm@Hb` zXe@t^<8ObnkS!`GYQjA~oV@L~t*<(;m1aM&rM!9r*?B|yzLLVR)1Re`I)a-1d*LHHK$q{{Q2Fiw8ukiSR|0YG(M}RiQ_a{- zD@SaF|Gn~^VxsmuH~ZJ?*yg|Xev9pO9ItC~lcsRqu-<+K`BSc1aK$>w>D8=9deL{k z15*pMIHA|QjnXCG;afGdXX70aTqYc9VEr9up|X0~HtE}}4O{oJPyuxEk{&78-H1$T zb;nfc^){UXMG1>t_Nd3y;9}C?$WN^Hqk>IOQil3x9NDo0B2$kB;RhC^ zjK>j8dA`mjk%NLXNtRY|cnZy3H)Ez(lE-b5+aA>|1Y-dRk$v0<_F81rTdLLv5+b{B z&UBdPd8l^aQ)2N8gYtaV@C$*T`rdvx=_?lIbYZ zcmB%0y_y~hmKhMAGnsqcD_UvFyLT4r=@XmH@5TDigr;I%W}!3KR?x_?Y$q$l7HGhd z`^wRLt&fXYNw~;ye!K#~a);||ZtF(o`Tq212Et7!z+ndt6YWMcVAO;MFGukvsrWT5 zdo{Iqv9}6$Iox|%%y$y^8AFs$%EL59C}TiD;eriRA2VooC~jpgvUdHO(4(~VEqrPH zp0+R6^1wMES8Z!(ePi?9tHSVUMpF)^z0azq@89H6HF-k${SnVa;$z0#Yu=*`-{LSjO z_^+QGOn!XOt)9w;%eraC6^r!qdX#J7Ky(*&l%=lPlxcEJKd_QAVtZU0R+HOwh&Y;w zSrz@TGLeosnKeV$AAhiA&C_ITQo7cHF9 zi*~j7+G5Q(H(FWQn_#G(wgT2fUQ;T4PuF2owp+;>t1V)SGq?6=?v@E_-dQk=LH&s= zYfiIZYando;2zvOJCy-(1=U8F-DU3=Ttiqybm^-OmJ}Rn95!tZR|K^(t-qrSe*?h?Cyq{Uh3i)cHdb_Vw zD}EI7vm5hs{gL-RdZxRx(KLgw+|lAI-_|A7xy!}*K?0f0E~o83#M%+wqB1=sQ*6zS zb#nnII2&Ev|4Wd-2l?CCdhXI+T1h_z4U=R<8AIt@Q&g`*)xR^j7rssOf&X)hFik6$1iwn#W$SGsy z;0^%+39IXdpKSmzKUv#@z4oe*9uKzkQ6xQ#o^4CwLSUGQ>nb8xW$L`449jI+5N z0LlmY7k&I&((*ZW`bW+Z4Eq15FhCv%&p%R@z`si!;LkF1$~ZhLMha%(Yzh0jcX#-+ z`WyjXi`iPr_RApr_FuZgwV%msizY}z#dwb<37Le&8%*I+OxhFqZoCa@L z-8ANf(ByC%-&mcRy&68M4d!Uj?7lKR*-@7onu45okn$dW7sI7x7ZZ+%@QXs($VfV$ zm!%pSmyGR76*)-iiScWECIOXBYmPU)%DV5pjz21Ei&7058yaHW9_i`^88-Eu`9Tiv ziYbvN$O7+eR)=J z>iPPAO^uw=w2auVJUUeQ$d7h(3_t2lAkzJ}zLFR|L@;mv!4Q_=!TaC5i1**DMo$A~ z1>lr-vV?g74M0FBAD1A;vJ*t5ZNNptZ?$viXprMS5Hq(y-Lxyti6|5yS5xxmjh z{$J03Hdm^7d50WXs=l+`C$FY8uMb-*v8nvAM_wk0^RAoo3zU5-l!Bu>4DxI*CG6gz zy^%1C!0=%vG%u4P_+^GGN5m1@fcZv?MSFt_i=Q?~>@8t1D$tGf;=xGdZtQo=g~-Ld zumaA_vZqj{#*0=Fx6d(1Btq+3DQVNi-?6zO;=@1CrUDL5*U>Yh!5{`AC?*`$aS%Q>ewSi|v&fmH5&R(vHDY zmMuM6V+}*_NZZ7+pnVce`Y8;}R{_of`HP(U)3FjYFvydf@7ojm6Ryk8+gT}n>x7p* z(qw_yAgtXDe)b-G_AXFX2!URxIzP6B3&zh||6fYjAml_4`Vc1!P#-u;7J4C-Dy${Uj^&c{(nxMz` z%=&tm+%#z+d>4HUhu5e0ZH(zphLnbU#!-(@rY}IrBT>&Ek15Sl3F$7hQV*K^UK+n| zsdakEQ;q}Y(-@Y^rN4@85Y~9?Z^ie9(48n5BEKfl4eIXI>YKB=M92%QHXaU%s;FKz zGTDyJ!c7HJ+Rr3t7GSD<&3#4mtJagXYt|Y>cxgmqlEpIPC-z7olJSzlL|x*{;R4J- z8q6VXrGW}VkNV>$6~QQ!fp(=q`a`QuQ?j^{5irpQJD*CEW7`u-xc>EJ(?RazActP4 z6F;`F3r1`w%4N4LKj2~<)7=F}MO-v16qz461ccpZh81pxCS!*4(+q{t3{Y(Lv+ibX znx4H!Ltm%3?_+>D=N@#lWV=PgEl8N^P@0kInt>7BC0#z(02v*DPPEF(JYJC(KPT2z z6Ef)X(qmn~q4VW@=-Y2EmRzu%dZ@l(-wdY|PtpImNv95aFDb8&Yb(DK1PJA-Kb%|K z>Xd-#tJuqMi>i3>PB)#FG&(d zZ+R0(A8`}UzYP^dAA?z%s2E|*Lq+dz(vogP5`A29%RYS|iHKmoGQx3V4mSVq`2_iD zq*9w*ggxrL;wj!{np`~&zuw7PaM;z=|Juo76P7rR!IVd3m5*w*4pNe2QW7UslHgMk z!;9`AAPX_(2l%<*+?gR^Z1CfBfucK07b>*xTCB}h50g3VyfIXIf)_06hTHwW*j(=+ zX4IMBxbQ5+Q=}AeCV%RrZge#+QgK@&6b3Kyqyqr+K3m?Uu6WEhfc+QTx&N6;*15O! zc%qrXJ{Pe$A@AGM{qCDnERV|qIl1mPh8DM`-ZA$v;YWKpj@2;Ahq`@!IjG5^n)yCrVT|e7 zLl*He9uDvK^Ve?MuK7Wtme+^Q`Wnb%@;*N6P(4uq<<}C893&ygMd)T(4imE~mGFi) z>%og@O#{{b99G}po9QJ@4ApI6=fK^t(>4}=YMV3@B)~39z6qMocIvQy;oNj$`FE@9 zF3*NHwyLN8J%@PM)3tf^i(K~)s?#dc9*H!2Z<^BKUz*b3^G)eQom7lrZmII(D;64F zf=U2*syyupnB})0V{*`-?<&$$ys#e|hbwxu6FP?jdbKS&hc$Y&B|3+BnA=cxjc!)ZRw{8>YFeLd;N||7{#!p;IKGmR&b9Cp}+-4kI2DxL*!DpG zmUII-E9CwQn!q7U4QW?A-w+8MK|r+1pq7^^PFoWg{2hh0ht)6)q8DNBLdCm|;m}P| zs=JiJxwj;^GCkFk^~hXb5Wriqzu9_+T(WcCK&j4zn3(O&4nefkyU(l4Ay8ae%3gh( zV#vEh?Ci5gC<9#hGq*v zz^*>~+G8qpP?3>|{&7iP%l87|*wHJ4jwdZe)^&b8Sv<;!Bjyl#Bw2dO{AWNdtig$w zvR<*l{3wWq9|Uz%pEK5}!rYU()FnJgn2QTbViyJU51AVaw_*ncSCRU#H{kWgf!rwp zEm|h2MJwgoxp#&>1%2P;-g7?~Km)EpXMM6CNS#Z_?$?wJbL8H;F`WIy_JKxNx$Wj= z_~V5$L%E1rdFXkTP|mL>8Gw%At;(G(Lj5`*20zL0-$N{SxS1Q=%k4R)dXD$`xWNDh K25D6p!2biV