Fix: renommer le répertoire des questions flashs pour les sti2d
This commit is contained in:
BIN
TST_sti2d/Questions_Flash/P2/QF_20_02_11-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_02_11-1.pdf
Normal file
Binary file not shown.
70
TST_sti2d/Questions_Flash/P2/QF_20_02_11-1.tex
Executable file
70
TST_sti2d/Questions_Flash/P2/QF_20_02_11-1.tex
Executable file
@@ -0,0 +1,70 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
E = m\times c^2
|
||||
\]
|
||||
Exprimer $m$ en fonction des autres grandeurs.
|
||||
\[
|
||||
m =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
\vfill
|
||||
Soit
|
||||
\vfill
|
||||
\[
|
||||
f(x) = \sin(x)(1+2x)
|
||||
\]
|
||||
\vfill
|
||||
Calculer
|
||||
\vfill
|
||||
\[
|
||||
\frac{df}{dx} =
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Quelle est la valeur de $\sin(\dfrac{2\pi}{3})$?
|
||||
\vfill
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2.5]
|
||||
\cercleTrigo
|
||||
\foreach \x in {0,30,...,360} {
|
||||
% dots at each point
|
||||
\filldraw[black] (\x:1cm) circle(0.6pt);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_02_11-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_02_11-2.pdf
Normal file
Binary file not shown.
71
TST_sti2d/Questions_Flash/P2/QF_20_02_11-2.tex
Executable file
71
TST_sti2d/Questions_Flash/P2/QF_20_02_11-2.tex
Executable file
@@ -0,0 +1,71 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
v = \frac{d}{t}
|
||||
\]
|
||||
Exprimer $t$ en fonction des autres grandeurs.
|
||||
\[
|
||||
t =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
\vfill
|
||||
Soit
|
||||
\vfill
|
||||
\[
|
||||
f(x) = \frac{1}{x}\times(2x - 1)
|
||||
\]
|
||||
\vfill
|
||||
Calculer
|
||||
\vfill
|
||||
\[
|
||||
\dot f(x) =
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Quelle est la valeur de $\sin(\dfrac{\pi}{4})$?
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2.5]
|
||||
\cercleTrigo
|
||||
\foreach \x in {0,30,...,360} {
|
||||
% dots at each point
|
||||
\filldraw[black] (\x:1cm) circle(0.6pt);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_09-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_09-1.pdf
Normal file
Binary file not shown.
75
TST_sti2d/Questions_Flash/P2/QF_20_11_09-1.tex
Executable file
75
TST_sti2d/Questions_Flash/P2/QF_20_11_09-1.tex
Executable file
@@ -0,0 +1,75 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
pV = nRJ
|
||||
\]
|
||||
Exprimer $n$ en fonction des autres grandeurs.
|
||||
\[
|
||||
n =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
\vfill
|
||||
Soit
|
||||
\vfill
|
||||
\[
|
||||
f(x) = (2x^2 - 5)\sin(x)
|
||||
\]
|
||||
\vfill
|
||||
Calculer
|
||||
\vfill
|
||||
\[
|
||||
f'(x) =
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Quelle est la valeur de $\sin(\dfrac{5\pi}{4})$?
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=2.5]
|
||||
\cercleTrigo
|
||||
\foreach \x in {0,30,...,360} {
|
||||
% dots at each point
|
||||
\filldraw[black] (\x:1cm) circle(0.6pt);
|
||||
}
|
||||
\foreach \x in {0,45,...,360} {
|
||||
% dots at each point
|
||||
\filldraw[black] (\x:1cm) circle(0.6pt);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_16-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_16-1.pdf
Normal file
Binary file not shown.
54
TST_sti2d/Questions_Flash/P2/QF_20_11_16-1.tex
Executable file
54
TST_sti2d/Questions_Flash/P2/QF_20_11_16-1.tex
Executable file
@@ -0,0 +1,54 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
E = mc^2
|
||||
\]
|
||||
Exprimer $c$ en fonction des autres grandeurs.
|
||||
\[
|
||||
c =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit
|
||||
\[
|
||||
z = 1 + \sqrt{3}i
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=2$ et d'argument $\theta = \dfrac{\pi}{3}$
|
||||
\vfill
|
||||
Écrire $z$ sous forme $a + bi$.
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_23-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_23-1.pdf
Normal file
Binary file not shown.
71
TST_sti2d/Questions_Flash/P2/QF_20_11_23-1.tex
Executable file
71
TST_sti2d/Questions_Flash/P2/QF_20_11_23-1.tex
Executable file
@@ -0,0 +1,71 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
\cos(x)^2 + \sin(x)^2 = 1
|
||||
\]
|
||||
Exprimer $\cos(x)$ en fonction des autres grandeurs.
|
||||
\[
|
||||
\cos(x) =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit
|
||||
\[
|
||||
z = 2\sqrt{2} - 2\sqrt{2}i
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=4$ et d'argument $\theta = \dfrac{2\pi}{3}$
|
||||
\vfill
|
||||
Écrire $z$ sous forme $a + bi$.
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(a.north), xscale=0.5, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\draw (1, 0) node [below right] {1};
|
||||
\draw (0, 1) node [above left] {$i$};
|
||||
\draw [->, very thick] (-5, 0) -- (5, 0);
|
||||
\draw [->, very thick] (0, -5) -- (0, 5);
|
||||
%\tkzAxeXY
|
||||
\foreach \x in {0,1,...,5} {
|
||||
% dots at each point
|
||||
\draw[black] (0, 0) circle(\x);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_23-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_23-2.pdf
Normal file
Binary file not shown.
71
TST_sti2d/Questions_Flash/P2/QF_20_11_23-2.tex
Executable file
71
TST_sti2d/Questions_Flash/P2/QF_20_11_23-2.tex
Executable file
@@ -0,0 +1,71 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
\cos(x)^2 + \sin(x)^2 = 1
|
||||
\]
|
||||
Exprimer $\cos(x)$ en fonction des autres grandeurs.
|
||||
\[
|
||||
\sin(x) =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit
|
||||
\[
|
||||
z = 2\sqrt{3} - 2i
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=2$ et d'argument $\theta = \dfrac{-\pi}{4}$
|
||||
\vfill
|
||||
Écrire $z$ sous forme $a + bi$.
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(a.north), xscale=0.5, yscale=0.5]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-5,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\draw (1, 0) node [below right] {1};
|
||||
\draw (0, 1) node [above left] {$i$};
|
||||
\draw [->, very thick] (-5, 0) -- (5, 0);
|
||||
\draw [->, very thick] (0, -5) -- (0, 5);
|
||||
%\tkzAxeXY
|
||||
\foreach \x in {0,1,...,5} {
|
||||
% dots at each point
|
||||
\draw[black] (0, 0) circle(\x);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_30-1.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_30-1.pdf
Normal file
Binary file not shown.
71
TST_sti2d/Questions_Flash/P2/QF_20_11_30-1.tex
Executable file
71
TST_sti2d/Questions_Flash/P2/QF_20_11_30-1.tex
Executable file
@@ -0,0 +1,71 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}
|
||||
\]
|
||||
Exprimer $R_1$ en fonction des autres grandeurs.
|
||||
\[
|
||||
R_1 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit
|
||||
\[
|
||||
z = \frac{-\sqrt{2}}{3} - \frac{\sqrt{2}}{3}i
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=2$ et d'argument $\theta = \dfrac{-5\pi}{4}$
|
||||
\vfill
|
||||
Écrire $z$ sous forme $a + bi$.
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(a.north), xscale=0.7, yscale=0.7]
|
||||
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
||||
ymin=-3,ymax=3,ystep=1]
|
||||
\tkzGrid
|
||||
\draw (1, 0) node [below right] {1};
|
||||
\draw (0, 1) node [above left] {$i$};
|
||||
\draw [->, very thick] (-3, 0) -- (3, 0);
|
||||
\draw [->, very thick] (0, -3) -- (0, 3);
|
||||
%\tkzAxeXY
|
||||
\foreach \x in {0,1,...,3} {
|
||||
% dots at each point
|
||||
\draw[black] (0, 0) circle(\x);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_30-2.pdf
Normal file
BIN
TST_sti2d/Questions_Flash/P2/QF_20_11_30-2.pdf
Normal file
Binary file not shown.
71
TST_sti2d/Questions_Flash/P2/QF_20_11_30-2.tex
Executable file
71
TST_sti2d/Questions_Flash/P2/QF_20_11_30-2.tex
Executable file
@@ -0,0 +1,71 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale ST \\ Spé sti2d
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
On donne la formule suivante
|
||||
\[
|
||||
\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}
|
||||
\]
|
||||
Exprimer $R_2$ en fonction des autres grandeurs.
|
||||
\[
|
||||
R_2 =
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
Soit
|
||||
\[
|
||||
z = 2i + 1
|
||||
\]
|
||||
Calculer le module et l'argument de $z$.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
\vfill
|
||||
Soit $z$ le nombre complexe de module $r=2$ et d'argument $\theta = \dfrac{-5\pi}{6}$
|
||||
\vfill
|
||||
Écrire $z$ sous forme $a + bi$.
|
||||
\vfill
|
||||
\pause
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[baseline=(a.north), xscale=0.7, yscale=0.7]
|
||||
\tkzInit[xmin=-3,xmax=3,xstep=1,
|
||||
ymin=-3,ymax=3,ystep=1]
|
||||
\tkzGrid
|
||||
\draw (1, 0) node [below right] {1};
|
||||
\draw (0, 1) node [above left] {$i$};
|
||||
\draw [->, very thick] (-3, 0) -- (3, 0);
|
||||
\draw [->, very thick] (0, -3) -- (0, 3);
|
||||
%\tkzAxeXY
|
||||
\foreach \x in {0,1,...,3} {
|
||||
% dots at each point
|
||||
\draw[black] (0, 0) circle(\x);
|
||||
}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Reference in New Issue
Block a user