Merge branch 'master' of ssh://git_opytex:/lafrite/2020-2021 into master
continuous-integration/drone/push Build is passing Details

This commit is contained in:
Bertrand Benjamin 2020-10-11 18:47:47 +02:00
commit ed24f63c66
30 changed files with 797 additions and 35 deletions

View File

@ -1,6 +1,6 @@
CLEUSB=Cle8G CLEUSB=Cle8G
COMMON_EXCLUDE=--exclude "__pycache__" --exclude "venv/" --exclude ".git" --exclude ".gitignore" --exclude ".*" COMMON_EXCLUDE=--exclude "__pycache__" --exclude "venv/" --exclude ".git" --exclude ".gitignore" --exclude ".*" --exclude "**/*.ppm"
VENV="enseignements" VENV="enseignements"

Binary file not shown.

View File

@ -3,7 +3,7 @@
\author{Benjamin Bertrand} \author{Benjamin Bertrand}
\title{Formalisation des suites - Cours} \title{Formalisation des suites - Cours}
\date{août 2020 \date{août 2020}
\pagestyle{empty} \pagestyle{empty}
@ -11,4 +11,111 @@
\maketitle \maketitle
\begin{multicols}{2}
\begin{center}
\large{\textbf{Suite Arithmétique}}
\end{center}
\columnbreak
\begin{center}
\large{\textbf{Suite Géométrique}}
\end{center}
\end{multicols}
\subsection*{Définitions}
\begin{multicols}{2}
Une suite arithmétique modélise les situations où l'on répète une \textbf{addition}.
\begin{center}
\begin{tikzpicture}[
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
]
%Nodes
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
%Lines
\path[->] (premier.east) edge [bend left] node [above] {$+r$} (deuxieme.west);
\path[->] (deuxieme.east) edge [bend left] node [above] {$+r$} (troisieme.west);
\path (troisieme.east) node [right] {....} (ad.west);
\path[->] (ad.east) edge [bend left] node [above] {$+r$} (der.west);
\end{tikzpicture}
\end{center}
La quantité ajoutée $r$ est appelée la \textbf{raison}.
\columnbreak
Une suite géométrique modélise les situations où l'on répète une \textbf{multiplication}.
\begin{center}
\begin{tikzpicture}[
roundnode/.style={circle, draw=highlightbg, fill=green!5, very thick, minimum size=3mm},
]
%Nodes
\node[roundnode] (premier) {\makebox[0.5cm]{$u_0$}};
\node[roundnode] (deuxieme) [right=of premier] {\makebox[0.5cm]{$u_1$}};
\node[roundnode] (troisieme) [right=of deuxieme] {\makebox[0.5cm]{$u_2$}};
\node[roundnode] (ad) [right=of troisieme] {\makebox[0.5cm]{$u_n$}};
\node[roundnode] (der) [right=of ad] {\makebox[0.5cm]{$u_{n+1}$}};
%Lines
\path[->] (premier.east) edge [bend left] node [above] {$\times q$} (deuxieme.west);
\path[->] (deuxieme.east) edge [bend left] node [above] {$\times q$} (troisieme.west);
\path (troisieme.east) node [right] {....} (ad.west);
\path[->] (ad.east) edge [bend left] node [above] {$\times q$} (der.west);
\end{tikzpicture}
\end{center}
La quantité par laquelle on multiplie $q$ est appelée la \textbf{raison}.
\end{multicols}
\subsection*{Formules de récurrence}
\begin{multicols}{2}
\[
u_{n+1} = u_{n} + r
\]
\columnbreak
\[
u_{n+1} = u_{n} \times q
\]
\end{multicols}
\subsection*{Formules explicite}
\begin{multicols}{2}
\[
u_{n} = u_{0} + r\times n
\]
\columnbreak
\[
u_{n} = u_{0} \times q^n
\]
\end{multicols}
\subsection*{Déterminer la nature d'une suite}
\begin{multicols}{2}
On calcule la \textbf{différence} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
\[
u_1 - u_0 = ...
\]
\[
u_2 - u_3 = ...
\]
Ou plus généralement,
\[
u_{n+1} - u_n = ...
\]
\columnbreak
On calcule la \textbf{quotient} entre deux termes consécutifs. Le résultat doit être toujours le même et ne pas dépendre de $n$.
\[
\frac{u_1}{u_0} = ...
\]
\[
\frac{u_2}{u_3} = ...
\]
Ou plus généralement,
\[
\frac{u_{n+1}}{u_n} = ...
\]
\end{multicols}
\end{document} \end{document}

View File

@ -10,9 +10,12 @@
step=1, step=1,
} }
\pagestyle{empty}
\begin{document} \begin{document}
\input{exercises.tex} \input{exercises.tex}
\printcollection{banque} \printcollection{banque}
\printcollection{banque}
\end{document} \end{document}

Binary file not shown.

View File

@ -0,0 +1,25 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Formalisation des suites - Cours}
\date{octobre 2020}
\DeclareExerciseCollection{banque}
\xsimsetup{
step=2,
}
\pagestyle{empty}
\begin{document}
\input{exercises.tex}
\printcollection{banque}
\vfill
\printcollection{banque}
\vfill
\printcollection{banque}
\vfill
\end{document}

View File

@ -1,20 +1,35 @@
\collectexercises{banque} \collectexercises{banque}
\begin{exercise}[subtitle={Continuer une suite}, step={1}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}] \begin{exercise}[subtitle={Continuer une suite}, step={1}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Ci-dessous, vous trouverez 2 début de suites de nombre. Ci-dessous, vous trouverez des débuts de suites de nombre.
\begin{multicols}{3}
\begin{enumerate}
\item $u_0 = 10$, $u_1 = 15$, $u_2 = 22.5$
\item $v_0 = 10$, $v_1 = 15$, $v_2 = 20$
\item $w_0 = 90$, $w_1 = 108$, $w_2 = 129,6$
\item $x_0 = 90$, $x_1 = 54$, $x_2 = 32.4$
\item $y_0 = 5$, $y_1 = 2$, $y_2 = -1$
\item $z_0 = 5$, $z_1 = 25$, $z_2 = 125$
\end{enumerate}
\end{multicols}
\begin{enumerate} \begin{enumerate}
\item Identifier la nature des suites $(u_n)$ et $(v_n)$ \item Identifier la nature et les paramètres des suites.
\item Calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme. \item Pour chaque suites, calculer les 3 termes qui suivent, le 10e terme, le 100e et le 1000e terme.
\item Donner une formule générale pour calculer le n-ième terme d'une suite arithmétique.
\item Donner une formule générale pour calculer le n-ième terme d'une suite géométrique.
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
\begin{exercise}[subtitle={Placement banquaire}, step={1}, origin={??}, topics={Formalisation des suites}, tags={Suites, Analyse}] \begin{exercise}[subtitle={Placement banquaire}, step={1}, origin={??}, topics={Formalisation des suites}, tags={Suites, Analyse}]
On veut placer sur un compte en banque 1000\euro. Le banquier propose deux solutions. On veut placer sur un compte en banque 1000\euro. Le banquier propose deux solutions.
\begin{itemize}
\item Placement à rendement fixe: la valeur du compte en banque augmente de 5\% du placement initiale chaque année.
\item Placement avec intérêt composés: la valeur du compte en banque augmente de 4\% chaque année.
\end{itemize}
\begin{enumerate} \begin{enumerate}
\item Placement à rendement fixe: La valeur du compte en banque augmente de 5\% du placement initiale chaque année. \item Pour chaque placement, calculer le solde du compte après 1an, 2ans puis 3ans.
\item Placement avec intérêt composés: la valeur du compte en banque augmente de 3\% chaque année. \item Combien de temps doit-on attendre avant que le placement avec intérêt composés devienne plus rentable que l'autre placement?
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
@ -28,12 +43,45 @@
\item Calculer $u_2$. Interpréter le résultat. \item Calculer $u_2$. Interpréter le résultat.
\item Écrire une formule qui modélise le passage de $u_n$ à $u_{n+1}$. \item Écrire une formule qui modélise le passage de $u_n$ à $u_{n+1}$.
\item En déduire la nature et les paramètres de la suite $(u_n)$. \item En déduire la nature et les paramètres de la suite $(u_n)$.
\item Écrire une formule qui calcule $(u_n)$ pour n'importe quelle valeur de $n$. \item Écrire une formule qui calcule $u_n$ pour n'importe quelle valeur de $n$.
\end{enumerate} \end{enumerate}
\item Calculer la valeur résiduelle du véhicule en 2012. Puis en 2050. Arrondir à l'euro. \item Calculer la valeur résiduelle du véhicule en 2012. Puis en 2050. Arrondir à l'euro.
\item Écrire un programme Python qui calcul la valeur du véhicule en 2100. \item Écrire un programme Python qui calcul la valeur du véhicule en 2100.
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
\begin{exercise}[subtitle={Évaluation de suites}, step={2}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Pour chacune des suites suivantes, calculer 3 premiers termes, identifier la nature et les paramètres de la suite, écrire la relation de récurrence puis exprimer $u_n$ en fonction de $n$.
\begin{multicols}{3}
\begin{enumerate}
\item $u_{n+1} = u_n + 6$ et $u_0 = 10$
\item $u_{n+1} = -0.5 + u_n$ et $u_0 = 15$
\item $u_{n+1} = 1.3u_n$ et $u_0 = 2$
\item $u_{n+1} = 0.95u_n$ et $u_0 = 10$
\item $u_{n} = 2n + 5$
\item $u_{n} = 10\times0.5^n$
\item $u_{n} = 2u_n-5$ et $u_0 = 10$
\item $u_{n} = 0.3\times 4^n$
\item $u_{n} = 2n^2 - n + 2$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Retrouver ce qui manque}, step={2}, origin={Création}, topics={Formalisation des suites}, tags={Suites, Analyse}]
Pour chacune des suites suivantes retrouver la raison et le premier terme, écrire la relation de récurrence puis exprimer $u_n$ en fonction de $n$.
\begin{multicols}{2}
\begin{enumerate}
\item $(u_n)$ suite arithmétique telle que $u_2 = 10$ et $u_4=20$.
\item $(v_n)$ suite arithmétique telle que $u_{10} = 5$ et $u_{15} = 6$.
\item $(w_n)$ suite géométrique telle que $u_2 = 5$ et $u_3 = 6$.
\item $(x_n)$ suite géométrique telle que $u_3 = 10$ et $u_5 = 20$.
\end{enumerate}
\end{multicols}
\end{exercise}
\collectexercisesstop{banque} \collectexercisesstop{banque}

View File

@ -2,7 +2,7 @@ Formalisation des suites
######################## ########################
:date: 2020-08-24 :date: 2020-08-24
:modified: 2020-08-24 :modified: 2020-10-08
:authors: Benjamin Bertrand :authors: Benjamin Bertrand
:tags: Suites, Analyse :tags: Suites, Analyse
:category: TST :category: TST
@ -11,25 +11,51 @@ Formalisation des suites
Étape 1: Trouver les formules explicites Étape 1: Trouver les formules explicites
======================================== ========================================
.. image:: ./1E_formalisation.pdf
:height: 200px
:alt: Calculs de termes d'une suite
Les élèves choisissent une suite géométrique et une suite arithmétique. Ils doivent calculer u100 et u1000! Les élèves choisissent une suite géométrique et une suite arithmétique. Ils doivent calculer u100 et u1000!
.. image:: ./1E_formalisation.pdf
:height: 200px
:alt: Formalisation des suites
Formalisation dans le cours des deux formules trouvées. Formalisation dans le cours des deux formules trouvées.
Étape 2: Technique .. image:: ./1B_formalisation.pdf
:height: 200px
:alt: Toutes les formules sur les suites
Étape 2: Moyenne arithmétique et géométrique
============================================
Questions d'intro puis cours puis exercices techniques.
Étape 3: Technique
================== ==================
Calculer les termes d'une suite à partir de différentes formes. Calculer les termes d'une suite à partir de différentes formes.
Passage explicite <-> recu. Passage explicite <-> recu.
À partir de deux termes + nature ou de 3 termes retrouver u0 et la raison. À partir de deux termes + nature ou de 3 termes retrouver u0 et la raison.
Étape 3: Moyenne arithmétique et géométrique .. image:: ./2E_technique.pdf
============================================ :height: 200px
:alt: Exercices techniques pour retrouver la raison et le premier terme.
Questions d'intro puis cours puis exercices techniques. Ajouter des exercices mobilisant les moyennes.
Étape 4: Problème parlant de suites Étape 4: Problème parlant de suites
=================================== ===================================
Type E3C Type E3C
Exercices à revoir mais sympa:
- MATH2T-122A0-1125 (avec graph exponentiel)
- MATH2T-122A0-1130 (avec formule explicite)
- MATH2T-123A0-1126 (formule puis modélisation)
Étape 5: Programmation
======================

Binary file not shown.

View File

@ -0,0 +1,69 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
\vfill
Dans un club de sport, 80\% des personnes accueillis sont abonnées et parmi elles, 10\% sont des sportifs de haut niveau.
\vfill
Quelle est la proportion de sportifs de haut niveau abonnées à ce club de sport?
\vfill
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Une quantité a été multipliée par 1,01.
\vfill
Est-ce une augmentation? Une diminution? De quelle pourcentage?
\vfill
\end{frame}
\begin{frame}{Calcul 3}
\vfill
Simplifier l'expression
\vfill
\[
A = \frac{2^3 \times 2^6}{2^5}
\]
\vfill
\end{frame}
\begin{frame}[fragile]{Calcul 4}
Déterminer l'équation de la droite
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain=-5:5,color=red,very thick]%
{2*\x-1};
\end{tikzpicture}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,69 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
\vfill
Dans une forêt, 30\% des arbres sont des feuillus. Par ailleurs, on déplore que 40\% des feuillus sont en train de mourir.
\vfill
Calculer la proportion de feuillus en train de mourir dans cette forêt.
\vfill
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Une quantité a été multipliée par 0.1.
\vfill
Est-ce une augmentation? Une diminution? De quelle pourcentage?
\vfill
\end{frame}
\begin{frame}{Calcul 3}
\vfill
Simplifier l'expression
\vfill
\[
A = \frac{10^{-3} \times 10^6}{10^5\times 10^{3}}
\]
\vfill
\end{frame}
\begin{frame}[fragile]{Calcul 4}
Déterminer l'équation de la droite
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain=-5:5,color=red,very thick]%
{2*\x+1};
\end{tikzpicture}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,69 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
\vfill
Un entretient d'embauche se faire en 3 sélections. Chaque sélections laisse passer 20\% des candidats.
\vfill
Calculer la proportion de candidats qui terminent ces 3 sélections.
\vfill
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Une quantité a été multipliée par 0.65.
\vfill
Est-ce une augmentation? Une diminution? De quelle pourcentage?
\vfill
\end{frame}
\begin{frame}{Calcul 3}
\vfill
Simplifier l'expression
\vfill
\[
A = \frac{5^{4} \times 5^{-2}}{5^5\times 5^{-1}} \times 5^2
\]
\vfill
\end{frame}
\begin{frame}[fragile]{Calcul 4}
Déterminer l'équation de la droite
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain=-5:5,color=red,very thick]%
{-2*\x+2};
\end{tikzpicture}
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

View File

@ -1,5 +1,6 @@
\documentclass[a4paper,10pt]{article} \documentclass[a4paper,10pt]{article}
\usepackage{myXsim} \usepackage{myXsim}
\usepackage[europeanresistors]{circuitikz}
\author{Benjamin Bertrand} \author{Benjamin Bertrand}
\title{Complexes - Cours} \title{Complexes - Cours}
@ -10,6 +11,8 @@
step=1, step=1,
} }
\setlength{\columnseprule}{0pt}
\begin{document} \begin{document}
\input{exercises.tex} \input{exercises.tex}
@ -18,9 +21,5 @@
\vfill \vfill
\printcollection{banque} \printcollection{banque}
\vfill \vfill
\printcollection{banque}
\vfill
\printcollection{banque}
\vfill
\end{document} \end{document}

Binary file not shown.

View File

@ -0,0 +1,64 @@
\documentclass[a4paper,12pt]{article}
\usepackage{myXsim}
\title{Complexes, module et argument}
\tribe{Terminale ST Sti2d}
\date{Octobre 2020}
\pagestyle{empty}
\geometry{left=10mm,right=10mm, top=10mm}
\begin{document}
\setcounter{section}{1}
\section{Module et argument d'un nombre complexe}
\subsection*{Définition}
\begin{minipage}{0.6\textwidth}
Un nombre complexe peut être décrit de façon \textbf{trigonométrique}, pour cela il est décrit par deux grandeurs
\begin{itemize}
\item \textbf{Le module}, $r$, c'est sa distance avec l'origine.
\item \textbf{L'argument}, $\theta$, c'est l'angle orienté qu'il fait avec l'axe des abscisses.
\end{itemize}
On écrira alors
\[
z = r(\cos(\theta) + i\sin(\theta))
\]
\end{minipage}
\hfill
\begin{minipage}{0.3\textwidth}
\begin{tikzpicture}[yscale=.8, xscale=.8]
\repereNoGrid{-1}{5}{-1}{5}
\draw (0,0) -- (3,3) node [above, midway, sloped] {$r$} node [above right] {$M(a+ib)$};
\draw [->] (2,0) arc (0:45:2) node [midway, right] {$\theta$};
\draw [dashed] (3,0) node [below] {$a$} -- (3,3);
\draw [dashed] (0,3) node [left] {$b$} -- (3,3);
\end{tikzpicture}
\end{minipage}
\subsection*{Trigonométrique vers algébrique}
On a un nombre complexe sous forme trigonométrique $z = r(\cos(\theta) + i\sin(\theta))$. Sa forme algébrique est alors
\[
a = r\cos(\theta) \mbox{ et } b = r\sin(\theta)
\]
\paragraph{Exemple:} Forme algébrique de $z = 2(\cos(\frac{\pi}{3}) + i \sin(\frac{\pi}{3}))$
\afaire{à convertir}
\subsection*{Algébrique vers trigonométrique}
On a un nombre complexe sous forme algébrique $z = a + ib$. On peut calculer son module et son argument ainsi
\[
r = \sqrt{a^2+b^2} \qquad \mbox{ et } \theta \mbox{ se détermine avec } \qquad \cos(\theta) = \frac{a}{r} \qquad \sin(\theta) = \frac{b}{r}
\]
\paragraph{Exemple:} Retrouver le module et l'argument de $z = \sqrt{2} + i\sqrt{2}$
\afaire{à convertir}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,23 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\author{Benjamin Bertrand}
\title{Complexes - Cours}
\date{Octobre 2020}
\DeclareExerciseCollection{banque}
\xsimsetup{
step=2,
}
\setlength{\columnseprule}{0pt}
\begin{document}
\input{exercises.tex}
\vfill
\printcollection{banque}
\vfill
\printcollection{banque}
\vfill
\end{document}

View File

@ -26,5 +26,85 @@
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
\begin{exercise}[subtitle={Impédence d'un circuit}, step={1}, origin={Création}, topics={Complexes}, tags={Complexes, Trigonométrie}]
Soit 3 dipôles dont l'impédance est modélisée par les nombres complexes suivants
\vspace{-0.5cm}
\begin{multicols}{3}
\begin{circuitikz}
\draw (0,0) to[R, l=$Z_1$, a=$1+j$](2,0);
\end{circuitikz}
\begin{circuitikz}
\draw (0,0) to[R, l=$Z_2$, a=$j$](2,0);
\end{circuitikz}
\begin{circuitikz}
\draw (0,0) to[R, l=$Z_3$, a=$2-3j$](2,0);
\end{circuitikz}
\end{multicols}
\vspace{-0.5cm}
En fonction de la façon de brancher ces dipôles, l'impédance total change. Calculer l'impédance de ces assemblages.
\begin{multicols}{2}
\begin{enumerate}
\item
\begin{circuitikz}[baseline=(a.south)]
\draw (0,0) to[R, l=$Z_3$, a=$2-3j$](2,0) to [R, l=$Z_2$, a=$j$](4,0) to[R, l=$Z_3$, a=$2-3j$](6,0);
\end{circuitikz}
$Z_1 + Z_2 + Z_3 = $
\item
\begin{circuitikz}[baseline=(a.south)]
\draw (0,0) -- (1,0) -- (1, 0.75) to [R, l=$Z_1$, a=$1+j$] (3,0.75) -- (3, 0) -- (4,0);
\draw (0,0) -- (1,0) -- (1, -0.75) to [R, l=$Z_2$, a=$j$] (3,-0.75) -- (3, 0) -- (4,0);
\end{circuitikz}
$\dfrac{1}{Z_1} + \dfrac{1}{Z_2} = $
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Algébrique vers trigonométrique}, step={2}, origin={Création}, topics={Complexes}, tags={Complexes, Trigonométrie}]
Placer les points suivant sur le plan complexe puis déterminer leur module et argument.
\begin{minipage}{0.5\textwidth}
\begin{itemize}
\item $z_A = 2i + 4$
\item $z_B = -2i + 1$
\item $z_C = i$
\item $z_D = -3i - 3$
\item $z_E = 2i + 2\sqrt{3}$
\item $z_F = -3i + 3$
\item $z_G = $
\item $z_H = $
\end{itemize}
\end{minipage}
\begin{minipage}{0.5\textwidth}
\begin{tikzpicture}[yscale=.5, xscale=.5]
\repere{-5}{5}{-5}{5}
\draw (-4,-1) node {$\times$} node[below left] {$G$};
\draw (-4,4) node {$\times$} node[below left] {$H$};
\end{tikzpicture}
\end{minipage}
\end{exercise}
\begin{exercise}[subtitle={Trigonométrique vers algébrique}, step={2}, origin={Création}, topics={Complexes}, tags={Complexes, Trigonométrie}]
Tracer un grand plan complexe puis placer les points et déterminer leur forme algébrique
\begin{multicols}{3}
\begin{itemize}
\item $z_A$ avec $\theta = \pi$ et $r = 2$.
\item $z_B$ avec $\theta = -\frac{\pi}{2}$ et $r = 3$.
\item $z_C$ avec $\theta = \frac{3\pi}{2}$ et $r = 0.5$.
\item $z_D$ avec $\theta = \frac{\pi}{3}$ et $r = 1$.
\item $z_E$ avec $\theta = \frac{\pi}{6}$ et $r = 3$.
\item $z_F$ avec $\theta = \frac{\pi}{3}$ et $r = 4$.
\item $z_G$ avec $\theta = \frac{5\pi}{6}$ et $r = 2$.
\item $z_H$ avec $\theta = \frac{5\pi}{3}$ et $r = 3$.
\item $z_I$ avec $\theta = -\frac{\pi}{4}$ et $r = 2$.
\end{itemize}
\end{multicols}
\end{exercise}
\collectexercisesstop{banque} \collectexercisesstop{banque}

View File

@ -2,7 +2,7 @@ Complexes
######### #########
:date: 2020-09-29 :date: 2020-09-29
:modified: 2020-10-01 :modified: 2020-10-08
:authors: Benjamin Bertrand :authors: Benjamin Bertrand
:tags: Complexes, Trigonométrie :tags: Complexes, Trigonométrie
:category: TST_sti2d :category: TST_sti2d
@ -30,6 +30,10 @@ On pourra ajouter une exercice en lien avec la physique.
Cours: Définition de la notation trigonométrique. Passage de la forme algébrique à la forme trigonométrique. Cours: Définition de la notation trigonométrique. Passage de la forme algébrique à la forme trigonométrique.
.. image:: ./2B_module_argument.pdf
:height: 200px
:alt: Forme trigonométrique d'un nombre complexe.
Exercices techniques pour le passage d'une forme à l'autre avec toujours le lien avec le plan complexe. Exercices techniques pour le passage d'une forme à l'autre avec toujours le lien avec le plan complexe.
Étape 3: Transformation géométriques Étape 3: Transformation géométriques

View File

@ -14,14 +14,23 @@
Le barème est donné à titre indicatif, il pourra être modifié. Le barème est donné à titre indicatif, il pourra être modifié.
Une part importante de la note sera dédiée à la rédaction, aux explications et à l'utilisation des notations mathématiques.
\begin{exercise}[subtitle={Automatismes}, points=6] \begin{exercise}[subtitle={Automatismes}, points=6]
Dans cet exerice les questions sont indépendantes. Dans cet exerice les questions sont indépendantes.
\begin{enumerate} \begin{enumerate}
\begin{multicols}{2} \begin{multicols}{2}
\item Calculer la valeur de l'intégrale suivante. \item Calculer la valeur de l'intégrale suivante.
\item Donner un encadrement de l'intégrale suivante. \[
\int_2^8 0.1x + 3 \; dx
\]
\columnbreak
\item Donner un encadrement de l'intégrale entre 1 et 4.
\begin{tikzpicture}[scale=1, yscale=0.4]
\tkzInit[xmin=-0.1,xmax=5,ymax=5]
\tkzGrid
\tkzAxeXY
\tkzFct[color=red, very thick]{4*sin(0.5*\x)}
\end{tikzpicture}
\end{multicols} \end{multicols}
\begin{multicols}{2} \begin{multicols}{2}
\item Soit $f(x) = 5x^6 + \dfrac{1}{2}x^2 - \dfrac{x^3}{2} + 10$, calculer \item Soit $f(x) = 5x^6 + \dfrac{1}{2}x^2 - \dfrac{x^3}{2} + 10$, calculer
@ -32,7 +41,7 @@ Une part importante de la note sera dédiée à la rédaction, aux explications
\begin{multicols}{2} \begin{multicols}{2}
\item Calculer la valeur de $\cos(\vec{OI};\vec{OA})$? \item Calculer la valeur de $\cos(\vec{OI};\vec{OA})$?
\begin{tikzpicture}[scale=3] \begin{tikzpicture}[scale=1.5]
\cercleTrigo \cercleTrigo
\foreach \x in {0,30,...,360} { \foreach \x in {0,30,...,360} {
% dots at each point % dots at each point
@ -44,7 +53,7 @@ Une part importante de la note sera dédiée à la rédaction, aux explications
\end{tikzpicture} \end{tikzpicture}
\item Calculer la valeur de $\sin(\vec{OI};\vec{OA})$? \item Calculer la valeur de $\sin(\vec{OI};\vec{OA})$?
\begin{tikzpicture}[scale=3] \begin{tikzpicture}[scale=1.5]
\cercleTrigo \cercleTrigo
\foreach \x in {0,30,...,360} { \foreach \x in {0,30,...,360} {
% dots at each point % dots at each point
@ -58,14 +67,15 @@ Une part importante de la note sera dédiée à la rédaction, aux explications
\end{enumerate} \end{enumerate}
\end{exercise} \end{exercise}
\begin{exercise}[subtitle={Vitesse}, points=4] \begin{exercise}[subtitle={Vitesse}, points=3]
On lance une fusée hydrolique en l'air verticalement à $t = 0$. La hauteur de la fusée est modélisée par le fonction $z(t) = ...$$t$ est en seconde et $z(t)$ en m. Cette fonction est représentée dans le graphique. On lance une fusée hydrolique en l'air verticalement à $t = 0$. La hauteur de la fusée est modélisée par le fonction $z(t) = -0,49x^2 + 6x$$t$ est en seconde et $z(t)$ en m. Cette fonction est représentée dans le graphique.
\noindent
\begin{tikzpicture}[baseline=(current bounding box.south), xscale=0.5, yscale=0.4] \begin{minipage}{0.4\textwidth}
\begin{tikzpicture}[baseline=(current bounding box.south), xscale=0.5, yscale=0.35]
\tkzInit[xmin=0,xmax=14,xstep=1, \tkzInit[xmin=0,xmax=14,xstep=1,
ymin=0,ymax=200,ystep=20] ymin=0,ymax=20,ystep=2]
\tkzGrid \tkzGrid
\tkzDrawX[label={$t (s)$},above=0pt] \tkzDrawX[label={$t (s)$},above=0pt]
\tkzDrawY[label={$Hauteur (m)$}, right=2pt ] \tkzDrawY[label={$Hauteur (m)$}, right=2pt ]
@ -73,19 +83,28 @@ Une part importante de la note sera dédiée à la rédaction, aux explications
\tkzLabelY \tkzLabelY
\tkzFct[color=red,very thick,% \tkzFct[color=red,very thick,%
domain=0:12.3 domain=0:12.3
]{-4.9*\x**2+60*\x}; ]{-0.49*\x**2+6*\x};
\tkzFct[color=red,very thick,% \tkzFct[color=red,very thick,%
domain=12.3:14 domain=12.3:14
]{0}; ]{0};
\end{tikzpicture} \end{tikzpicture}
\end{minipage}
\begin{minipage}{0.6\textwidth}
\begin{enumerate} \begin{enumerate}
\item Calculer la vitesse moyenne de la fusée entre 5s et 10s. Expliquer à quoi cette valeur correspond sur le graphique. \item Calculer la vitesse moyenne de la fusée entre 5s et 10s. Expliquer à quoi cette valeur correspond sur le graphique.
\item Quelle est la vitesse instantanée de la fusée après 15s de vol? \item Quelle est la vitesse instantanée de la fusée après 15s de vol?
\item Déterminer la valeur de $t$ telle que la vitesse de la fusée est nulle. À quel moment cela correspond-il dans la trajectoire de la fusée? \item Déterminer la valeur de $t$ telle que la vitesse de la fusée est nulle. À quel moment cela correspond-il dans la trajectoire de la fusée?
\end{enumerate} \end{enumerate}
\end{minipage}
\end{exercise}
\begin{exercise}[subtitle={Démonstration}, points=1]
Soit $g(x) = 5x$. On veut connaître la dérivée de $g(x)$ au point $x$.
\begin{enumerate}
\item Calculer $\dfrac{\Delta g}{\Delta x}$ en $x_1 = x$ et $x_2 = x +h$
\item En rendant $h$ très petit (proche de 0) déterminer $\dfrac{dg}{dx}$.
\end{enumerate}
\end{exercise} \end{exercise}

Binary file not shown.

View File

@ -0,0 +1,76 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
\vfill
Soit $f(x) = x^2$,
\vfill
Calculer la taux de variation entre x = -1 et x = 3.
\vfill
\[
\frac{\Delta f}{\Delta x} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Soit
\vfill
\[
f(x) = \cos(x)(5x+2)
\]
\vfill
Calculer
\vfill
\[
\frac{df}{dx} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
\vfill
Quelle est la valeur de $\sin(\vec{OI};\vec{OA})$?
\vfill
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
\draw (-30:1) node [above right] {A};
\draw (0,0) -- (-30:1);
\draw[->, very thick, red] (0.5,0) arc (0:-30:0.5) ;
\end{tikzpicture}
\end{center}
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,81 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
\begin{tikzpicture}[xscale=0.8, yscale=0.5]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=5,ystep=1]
\tkzGrid
\tkzAxeXY
\tkzFct[domain=-5:5,color=red,very thick]%
{\x**2 - 4};
\end{tikzpicture}
\vfill
Calculer la taux de variation entre x = -2 et x = 3.
\vfill
\[
\frac{\Delta f}{\Delta x} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Soit
\vfill
\[
f(x) = \sin(x)(1+\cos(x))
\]
\vfill
Calculer
\vfill
\[
\frac{df}{dx} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
\vfill
Quelle est la valeur de $\sin(\vec{OI};\vec{OA})$?
\vfill
\begin{center}
\begin{tikzpicture}[scale=3]
\cercleTrigo
\foreach \x in {0,30,...,360} {
% dots at each point
\filldraw[black] (\x:1cm) circle(0.6pt);
}
\draw (-120:1) node [above right] {A};
\draw (0,0) -- (-120:1);
\draw[->, very thick, red] (0.5,0) arc (0:-120:0.5) ;
\end{tikzpicture}
\end{center}
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}