diff --git a/TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.pdf b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.pdf new file mode 100644 index 0000000..7bd9f67 Binary files /dev/null and b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.pdf differ diff --git a/TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.tex b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.tex new file mode 100755 index 0000000..d55d234 --- /dev/null +++ b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-1.tex @@ -0,0 +1,58 @@ +\documentclass[14pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Terminale ST \\ Spé sti2d + \vfill + 30 secondes par calcul + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 1} + Soit $f(x) = K e^{0.5x} - 5$. + + On suppose que $f(0) = 2$. + + Retrouver la valeur de $K$. + + \vfill +\end{frame} + +\begin{frame}{Calcul 2} + Vérifier que + \[ + F(x) = (x+1)e^{-x^2} + \frac{2}{3} + \] + est une primitive de + \[ + f(x) = (-2x^2 -2x + 1)e^{-x^2} + \] +\end{frame} + +\begin{frame}{Calcul 3} + Soit + \[ + z = -2\sqrt{2} + 2\sqrt{2}i + \] + On donne $r = |z| = 4$. + + Déterminer l'argument de $z$. +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document} diff --git a/TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.pdf b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.pdf new file mode 100644 index 0000000..0e45da9 Binary files /dev/null and b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.pdf differ diff --git a/TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.tex b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.tex new file mode 100755 index 0000000..76757fe --- /dev/null +++ b/TST_sti2d/Questions_Flash/P4/QF_21_03_08-2.tex @@ -0,0 +1,58 @@ +\documentclass[14pt]{classPres} +\usepackage{tkz-fct} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Terminale ST \\ Spé sti2d + \vfill + 30 secondes par calcul + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 1} + Soit $f(x) = K e^{0.5x} - 5$. + + On suppose que $f(2) = 2$. + + Retrouver la valeur de $K$. + + \vfill +\end{frame} + +\begin{frame}{Calcul 2} + Vérifier que + \[ + f(t) = 10 e^{-0.2t} - 25 + \] + est une solution de + \[ + y' = -0.2y + 5 + \] +\end{frame} + +\begin{frame}{Calcul 3} + Soit + \[ + z = -2 + 2\sqrt{3}i + \] + On donne $r = |z| = 4$. + + Déterminer l'argument de $z$. +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document}