Feat: QF pour les sti2d

This commit is contained in:
Bertrand Benjamin 2021-05-30 20:42:14 +02:00
parent 8cbe7d0204
commit ef4b9cc7a9
4 changed files with 108 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,54 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Résoudre l'équation différentielle
\[
y' + 0.2y = 5
\]
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Calculer la quantité suivante
\[
\lim_{x\rightarrow +\infty} \frac{-3x^2 + 2x -1}{2x^3 - 100} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
Démontrer que
\[
F(x) = 2x + 1 - \ln(x)
\]
est une primitive de
\[
f(x) = \frac{2x - 1}{x}
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,54 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Résoudre l'équation différentielle
\[
2y' + 0.2y = 10
\]
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Calculer la quantité suivante
\[
\lim_{x\rightarrow +\infty} \frac{-3x^2 + x - 10}{2x^2 - 100} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
Démontrer que
\[
F(x) = 2x + \frac{1}{x} + \ln(x)
\]
est une primitive de
\[
f(x) = \frac{2x^2 - 1 + x}{x^2}
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}