Feat: fin de l'étape 4 sur la dérivation
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
9bebc8408e
commit
f3cdde022b
BIN
TST_sti2d/01_Derivation/4E_trigo.pdf
Normal file
BIN
TST_sti2d/01_Derivation/4E_trigo.pdf
Normal file
Binary file not shown.
22
TST_sti2d/01_Derivation/4E_trigo.tex
Normal file
22
TST_sti2d/01_Derivation/4E_trigo.tex
Normal file
@ -0,0 +1,22 @@
|
||||
\documentclass[a4paper,10pt]{article}
|
||||
\usepackage{myXsim}
|
||||
|
||||
\author{Benjamin Bertrand}
|
||||
\title{Dérivation - Cours}
|
||||
\date{août 2020}
|
||||
|
||||
\DeclareExerciseCollection{banque}
|
||||
\xsimsetup{
|
||||
step=4,
|
||||
}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\input{exercises.tex}
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
\printcollection{banque}
|
||||
\vfill
|
||||
\printcollection{banque}
|
||||
|
||||
\end{document}
|
@ -185,5 +185,35 @@
|
||||
\end{enumerate}
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}[subtitle={Dérivation}, step={4}, origin={Création}, topics={Dérivation}, tags={Dérivation, technique}]
|
||||
Déterminer les dérivées des fonctions suivantes
|
||||
\begin{multicols}{3}
|
||||
\begin{enumerate}
|
||||
\item $f(x) = \cos(x) + \sin(x) + 1$
|
||||
\item $g(x) = 2\cos(x) + x$
|
||||
\item $h(x) = -3\sin(x) + x^2$
|
||||
|
||||
\item $x(t) = 4t^2 - 1 + \cos(t)$
|
||||
\item $y(t) = \sin(t) + 2t - 10$
|
||||
\item $z(t) = \cos(t)(4t + 1)$
|
||||
|
||||
\item $i(x) = \cos(x)\sin(x)$
|
||||
\item $j(x) = \dfrac{2\sin(x)}{3}$
|
||||
\item $k(x) = \sin(x)(x^2+2)$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{exercise}
|
||||
|
||||
\begin{exercise}[subtitle={Tableau de signes}, step={4}, origin={Création}, topics={Dérivation}, tags={Dérivation, technique}]
|
||||
Tracer le tableau de signe des fonctions suivantes
|
||||
\begin{multicols}{2}
|
||||
\begin{enumerate}
|
||||
\item $f(t) = \sin(t)$ sur $I = \intFF{-2\pi}{2\pi}$
|
||||
\item $g(t) = \sin(t)(2t + 1)$ sur $I = \intFF{-\pi}{\pi}$
|
||||
\item $h(t) = \sin(t)\cos(t)$ sur $I = \intFF{-\pi}{\pi}$
|
||||
\item $h(t) = \dfrac{(t-1)\sin(t)}{t^2}$ sur $I = \intFF{-\pi}{\pi}$
|
||||
\end{enumerate}
|
||||
\end{multicols}
|
||||
\end{exercise}
|
||||
|
||||
\collectexercisesstop{banque}
|
||||
|
@ -68,3 +68,10 @@ Définition des fonctions Cos et Sin et introduction de leur dérivée.
|
||||
:height: 200px
|
||||
:alt: Cours sur les fonctions trigonométriques
|
||||
|
||||
Exercices techniques d'étude de signe et de calculs de dérivées
|
||||
|
||||
|
||||
.. image:: ./4E_trigo.pdf
|
||||
:height: 200px
|
||||
:alt: Exercices avec les fonctions trigonométriques
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user