Feat: QF pour les maths complémentaires
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
537cc23f5c
commit
fc295647c2
BIN
Complementaire/Questions_Flashs/P2/QF_20_12_07-1.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P2/QF_20_12_07-1.pdf
Normal file
Binary file not shown.
86
Complementaire/Questions_Flashs/P2/QF_20_12_07-1.tex
Executable file
86
Complementaire/Questions_Flashs/P2/QF_20_12_07-1.tex
Executable file
@ -0,0 +1,86 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
On note $X$ la variable aléatoire représentée par l'arbre suivant. Calculer $P(X = 1) = $
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=2, grow=right]
|
||||
\node {.}
|
||||
child {node {$0$}
|
||||
child {node {$0$}
|
||||
edge from parent
|
||||
node[below] {0.3}
|
||||
}
|
||||
child {node {$1$}
|
||||
edge from parent
|
||||
node[above] {0.7}
|
||||
}
|
||||
edge from parent
|
||||
node[below] {0.3}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$1$}
|
||||
child {node {$0$}
|
||||
edge from parent
|
||||
node[below] {0.3}
|
||||
}
|
||||
child {node {$1$}
|
||||
edge from parent
|
||||
node[above] {0.7}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.7}
|
||||
} ;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
\vfill
|
||||
Une quantité augmente de 15\% chaque année.
|
||||
\vfill
|
||||
Quel taux doit-on appliquer pour revenir à la quantité initiale?
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Résoudre l'inéquation
|
||||
\[
|
||||
-3x + 5 \leq 2
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
\vfill
|
||||
Construire le tableau de signe de la fonction
|
||||
\vfill
|
||||
\[
|
||||
f(x) = \frac{x + 1}{x - 8}
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
Complementaire/Questions_Flashs/P2/QF_20_12_07-2.pdf
Normal file
BIN
Complementaire/Questions_Flashs/P2/QF_20_12_07-2.pdf
Normal file
Binary file not shown.
86
Complementaire/Questions_Flashs/P2/QF_20_12_07-2.tex
Executable file
86
Complementaire/Questions_Flashs/P2/QF_20_12_07-2.tex
Executable file
@ -0,0 +1,86 @@
|
||||
\documentclass[12pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Terminale Maths complémentaires
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
On note $X$ la variable aléatoire représentée par l'arbre suivant. Calculer $P(X = 0) = $
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[xscale=2, grow=right]
|
||||
\node {.}
|
||||
child {node {$0$}
|
||||
child {node {$0$}
|
||||
edge from parent
|
||||
node[below] {0.9}
|
||||
}
|
||||
child {node {$1$}
|
||||
edge from parent
|
||||
node[above] {0.1}
|
||||
}
|
||||
edge from parent
|
||||
node[below] {0.9}
|
||||
}
|
||||
child[missing] {}
|
||||
child { node {$1$}
|
||||
child {node {$0$}
|
||||
edge from parent
|
||||
node[below] {0.9}
|
||||
}
|
||||
child {node {$1$}
|
||||
edge from parent
|
||||
node[above] {0.1}
|
||||
}
|
||||
edge from parent
|
||||
node[above] {0.1}
|
||||
} ;
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
\vfill
|
||||
Une quantité a diminué de 25\%.
|
||||
\vfill
|
||||
Quel taux doit-on appliquer pour revenir à la quantité initiale?
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
Résoudre l'inéquation
|
||||
\[
|
||||
-3x + 5 \leq 2 - 4x
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
\vfill
|
||||
Construire le tableau de signe de la fonction
|
||||
\vfill
|
||||
\[
|
||||
f(x) = \frac{x + 1}{(x - 8)^2}
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user