Compare commits
No commits in common. "31fefe831adc8e4d08dc25711400d1d87e42e9ba" and "289ba3d9af8fc4b78a1c2eebc7a40e8f390fe53b" have entirely different histories.
31fefe831a
...
289ba3d9af
Binary file not shown.
@ -1,37 +0,0 @@
|
|||||||
\documentclass[a4paper,10pt]{article}
|
|
||||||
\usepackage{myXsim}
|
|
||||||
\usepackage{wasysym}
|
|
||||||
|
|
||||||
\author{Benjamin Bertrand}
|
|
||||||
\title{Intervalle de confiance}
|
|
||||||
\date{Décembre 2020}
|
|
||||||
\tribe{Enseignements Scientifiques}
|
|
||||||
|
|
||||||
\newcommand\cours{%
|
|
||||||
\begin{bclogo}[barre=none, arrondi=0.1, logo=]{Cours: Intervalle de confiance}
|
|
||||||
\begin{minipage}{0.6\linewidth}
|
|
||||||
On cherche à estimer $p$ la proportion d'un caractère d'une population. Pour cela, on fait un échantillon de $n$ individus de cette population et l'on calcule $f$ la fréquence (proportion) du caractère dans cet échantillon.
|
|
||||||
|
|
||||||
On peut définir \textbf{l'intervalle de confiance à 95\%}
|
|
||||||
\[
|
|
||||||
IC_{95\%} = \intFF{f - \frac{1}{\sqrt{n}}}{f+\frac{1}{\sqrt{n}}}
|
|
||||||
\]
|
|
||||||
Alors $p$ est dans cet intervalle avec une probabilité de 95\%.
|
|
||||||
\end{minipage}
|
|
||||||
\hfill
|
|
||||||
\begin{minipage}{0.3\linewidth}
|
|
||||||
\includegraphics[scale=0.6]{./fig/confiance}
|
|
||||||
\end{minipage}
|
|
||||||
\end{bclogo}
|
|
||||||
}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
|
|
||||||
\cours
|
|
||||||
\cours
|
|
||||||
\cours
|
|
||||||
\cours
|
|
||||||
\cours
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
|
Binary file not shown.
@ -1,63 +0,0 @@
|
|||||||
\documentclass[a5paper,10pt]{article}
|
|
||||||
\usepackage{myXsim}
|
|
||||||
\usepackage{wasysym}
|
|
||||||
|
|
||||||
\author{Benjamin Bertrand}
|
|
||||||
\title{Intervalle de confiance}
|
|
||||||
\date{Décembre 2020}
|
|
||||||
\tribe{Enseignements Scientifiques}
|
|
||||||
|
|
||||||
\setlength{\columnseprule}{0pt}
|
|
||||||
\setlength\columnsep{5pt}
|
|
||||||
|
|
||||||
\geometry{left=10mm,right=10mm, top=5mm, bottom=5mm}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
|
|
||||||
\maketitle
|
|
||||||
|
|
||||||
\begin{doc}{Deux phénotypes de l’épervier strié}
|
|
||||||
% Issu du livre scolaire
|
|
||||||
L’épervier strié est un poisson qui vit dans les récifs coralliens. Il existe sous deux phénotypes : sombre et clair. Un recensement des formes claires et sombres a été effectué le long de cinquante-quatre transects, de la surface jusqu’au fond du lagon.
|
|
||||||
|
|
||||||
\begin{tabular}{|p{2cm}|p{2cm}|p{2cm}|}
|
|
||||||
\hline
|
|
||||||
Nombre de Poissons & Profondeur < 5m & Profondeur > 5m \\
|
|
||||||
\hline
|
|
||||||
Sombre & 538 & 20 \\
|
|
||||||
\hline
|
|
||||||
Clairs & 310 & 238 \\
|
|
||||||
\hline
|
|
||||||
\end{tabular}
|
|
||||||
|
|
||||||
\medskip
|
|
||||||
Peut-on affirmer que les poissons sombres préfèrent vivre proche de la surface?
|
|
||||||
\end{doc}
|
|
||||||
|
|
||||||
\begin{doc}{Sondage d'élection}
|
|
||||||
Deux candidats se présentent à une élection. Un sondage est commandé pour chercher à prédire les résultats. Il est fait sur 1302 électeurs. 629 déclarent qu'ils projettent de voter pour le candidat A et le reste pour le candidat B.
|
|
||||||
\medskip
|
|
||||||
|
|
||||||
Peut-on affirmer que le candidat $A$ a aucune chance d'être élu?
|
|
||||||
\end{doc}
|
|
||||||
|
|
||||||
\begin{doc}{Compétition entre établissements}
|
|
||||||
Trois établissements scolaires revendiquent être les meilleurs pour préparer leurs élèves au bac. Voici leurs résultats pour l'année dernière.
|
|
||||||
|
|
||||||
\begin{tabular}{|c|c|c|}
|
|
||||||
\hline
|
|
||||||
Nombre d'élèves & Reçut & Refusé \\
|
|
||||||
\hline
|
|
||||||
Lycée A & 40 & 13 \\
|
|
||||||
\hline
|
|
||||||
Lycée B & 87 & 36 \\
|
|
||||||
\hline
|
|
||||||
Lycée C & 140 & 16 \\
|
|
||||||
\hline
|
|
||||||
\end{tabular}
|
|
||||||
|
|
||||||
\medskip
|
|
||||||
Peut-on affirmer qu'un établissement est meilleur qu'un autre?
|
|
||||||
\end{doc}
|
|
||||||
|
|
||||||
\end{document}
|
|
Binary file not shown.
@ -1,484 +0,0 @@
|
|||||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
|
||||||
<svg
|
|
||||||
xmlns:osb="http://www.openswatchbook.org/uri/2009/osb"
|
|
||||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
|
||||||
xmlns:cc="http://creativecommons.org/ns#"
|
|
||||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
|
||||||
xmlns:svg="http://www.w3.org/2000/svg"
|
|
||||||
xmlns="http://www.w3.org/2000/svg"
|
|
||||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
|
||||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
|
||||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
|
||||||
width="87.951675mm"
|
|
||||||
height="64.093521mm"
|
|
||||||
viewBox="0 0 87.951675 64.093521"
|
|
||||||
version="1.1"
|
|
||||||
id="svg8"
|
|
||||||
inkscape:version="1.0.1 (3bc2e813f5, 2020-09-07)"
|
|
||||||
sodipodi:docname="confiance.svg">
|
|
||||||
<defs
|
|
||||||
id="defs2">
|
|
||||||
<pattern
|
|
||||||
inkscape:collect="always"
|
|
||||||
xlink:href="#Polkadots-med"
|
|
||||||
id="pattern3360"
|
|
||||||
patternTransform="scale(10)" />
|
|
||||||
<pattern
|
|
||||||
inkscape:collect="always"
|
|
||||||
patternUnits="userSpaceOnUse"
|
|
||||||
width="10"
|
|
||||||
height="10"
|
|
||||||
patternTransform="translate(0,0) scale(10,10)"
|
|
||||||
id="Polkadots-med"
|
|
||||||
inkscape:stockid="Polka dots, medium">
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="2.567"
|
|
||||||
cy="0.810"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2083" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="3.048"
|
|
||||||
cy="2.33"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2085" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="4.418"
|
|
||||||
cy="2.415"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2087" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.844"
|
|
||||||
cy="3.029"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2089" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="6.08"
|
|
||||||
cy="1.363"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2091" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="5.819"
|
|
||||||
cy="4.413"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2093" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="4.305"
|
|
||||||
cy="4.048"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2095" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="5.541"
|
|
||||||
cy="3.045"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2097" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="4.785"
|
|
||||||
cy="5.527"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2099" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="2.667"
|
|
||||||
cy="5.184"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2101" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="7.965"
|
|
||||||
cy="1.448"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2103" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="7.047"
|
|
||||||
cy="5.049"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2105" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="4.340"
|
|
||||||
cy="0.895"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2107" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="7.125"
|
|
||||||
cy="0.340"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2109" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="9.553"
|
|
||||||
cy="1.049"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2111" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="7.006"
|
|
||||||
cy="2.689"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2113" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="8.909"
|
|
||||||
cy="2.689"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2115" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="9.315"
|
|
||||||
cy="4.407"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2117" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="7.820"
|
|
||||||
cy="3.870"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2119" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="8.270"
|
|
||||||
cy="5.948"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2121" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="7.973"
|
|
||||||
cy="7.428"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2123" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="9.342"
|
|
||||||
cy="8.072"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2125" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="8.206"
|
|
||||||
cy="9.315"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2127" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="9.682"
|
|
||||||
cy="9.475"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2129" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="9.688"
|
|
||||||
cy="6.186"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2131" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="3.379"
|
|
||||||
cy="6.296"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2133" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="2.871"
|
|
||||||
cy="8.204"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2135" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="4.59"
|
|
||||||
cy="8.719"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2137" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="3.181"
|
|
||||||
cy="9.671"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2139" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="5.734"
|
|
||||||
cy="7.315"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2141" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="6.707"
|
|
||||||
cy="6.513"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2143" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="5.730"
|
|
||||||
cy="9.670"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2145" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="6.535"
|
|
||||||
cy="8.373"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2147" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="4.37"
|
|
||||||
cy="7.154"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2149" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="0.622"
|
|
||||||
cy="7.25"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2151" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="0.831"
|
|
||||||
cy="5.679"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2153" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.257"
|
|
||||||
cy="8.519"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2155" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.989"
|
|
||||||
cy="6.877"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2157" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="0.374"
|
|
||||||
cy="3.181"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2159" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.166"
|
|
||||||
cy="1.664"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2161" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.151"
|
|
||||||
cy="0.093"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2163" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.151"
|
|
||||||
cy="10.093"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2165" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="1.302"
|
|
||||||
cy="4.451"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2167" />
|
|
||||||
<circle
|
|
||||||
style="fill:black;stroke:none"
|
|
||||||
cx="3.047"
|
|
||||||
cy="3.763"
|
|
||||||
r="0.15"
|
|
||||||
id="circle2169" />
|
|
||||||
</pattern>
|
|
||||||
<linearGradient
|
|
||||||
id="linearGradient2865"
|
|
||||||
osb:paint="solid">
|
|
||||||
<stop
|
|
||||||
style="stop-color:#000000;stop-opacity:1;"
|
|
||||||
offset="0"
|
|
||||||
id="stop2863" />
|
|
||||||
</linearGradient>
|
|
||||||
</defs>
|
|
||||||
<sodipodi:namedview
|
|
||||||
id="base"
|
|
||||||
pagecolor="#ffffff"
|
|
||||||
bordercolor="#666666"
|
|
||||||
borderopacity="1.0"
|
|
||||||
inkscape:pageopacity="0.0"
|
|
||||||
inkscape:pageshadow="2"
|
|
||||||
inkscape:zoom="1.4"
|
|
||||||
inkscape:cx="39.428844"
|
|
||||||
inkscape:cy="177.58076"
|
|
||||||
inkscape:document-units="mm"
|
|
||||||
inkscape:current-layer="layer1"
|
|
||||||
inkscape:document-rotation="0"
|
|
||||||
showgrid="false"
|
|
||||||
fit-margin-top="0"
|
|
||||||
fit-margin-left="0"
|
|
||||||
fit-margin-right="0"
|
|
||||||
fit-margin-bottom="0"
|
|
||||||
inkscape:window-width="1920"
|
|
||||||
inkscape:window-height="1080"
|
|
||||||
inkscape:window-x="0"
|
|
||||||
inkscape:window-y="0"
|
|
||||||
inkscape:window-maximized="1" />
|
|
||||||
<metadata
|
|
||||||
id="metadata5">
|
|
||||||
<rdf:RDF>
|
|
||||||
<cc:Work
|
|
||||||
rdf:about="">
|
|
||||||
<dc:format>image/svg+xml</dc:format>
|
|
||||||
<dc:type
|
|
||||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
|
||||||
<dc:title></dc:title>
|
|
||||||
</cc:Work>
|
|
||||||
</rdf:RDF>
|
|
||||||
</metadata>
|
|
||||||
<g
|
|
||||||
inkscape:label="Calque 1"
|
|
||||||
inkscape:groupmode="layer"
|
|
||||||
id="layer1"
|
|
||||||
transform="translate(-12.00425,-7.932491)">
|
|
||||||
<ellipse
|
|
||||||
style="fill:url(#pattern3360);fill-opacity:1;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
id="path10"
|
|
||||||
cx="54.770939"
|
|
||||||
cy="40.518997"
|
|
||||||
rx="42.266689"
|
|
||||||
ry="22.073227" />
|
|
||||||
<text
|
|
||||||
xml:space="preserve"
|
|
||||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:center;letter-spacing:0px;text-anchor:middle;stroke-width:0.264583"
|
|
||||||
x="55.827282"
|
|
||||||
y="11.148829"
|
|
||||||
id="text837"><tspan
|
|
||||||
sodipodi:role="line"
|
|
||||||
id="tspan835"
|
|
||||||
x="55.827282"
|
|
||||||
y="11.148829"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-family:sans-serif;-inkscape-font-specification:'sans-serif Bold';text-align:center;text-anchor:middle;stroke-width:0.264583">Population totale</tspan><tspan
|
|
||||||
sodipodi:role="line"
|
|
||||||
x="55.827282"
|
|
||||||
y="16.440491"
|
|
||||||
style="text-align:center;text-anchor:middle;stroke-width:0.264583"
|
|
||||||
id="tspan839">p inconnu, taille inconnu</tspan></text>
|
|
||||||
<ellipse
|
|
||||||
style="fill:#000000;fill-opacity:0.255413;stroke:#000000;stroke-width:1.05688;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
|
||||||
id="path841"
|
|
||||||
cx="48.71767"
|
|
||||||
cy="47.246586"
|
|
||||||
rx="13.580449"
|
|
||||||
ry="10.478199" />
|
|
||||||
<path
|
|
||||||
style="fill:none;stroke:#000000;stroke-width:0.325753;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:0.325753, 0.651506;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
d="m 49.364748,48.43954 4.330766,18.737999"
|
|
||||||
id="path843"
|
|
||||||
sodipodi:nodetypes="cc" />
|
|
||||||
<text
|
|
||||||
xml:space="preserve"
|
|
||||||
style="font-size:4.23333px;line-height:1.25;font-family:sans-serif;text-align:start;letter-spacing:0px;text-anchor:start;stroke-width:0.264583"
|
|
||||||
x="55.218639"
|
|
||||||
y="66.674408"
|
|
||||||
id="text847"><tspan
|
|
||||||
sodipodi:role="line"
|
|
||||||
id="tspan845"
|
|
||||||
x="55.218639"
|
|
||||||
y="66.674408"
|
|
||||||
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-family:sans-serif;-inkscape-font-specification:'sans-serif Bold';text-align:start;text-anchor:start;stroke-width:0.264583">Échantillon</tspan><tspan
|
|
||||||
sodipodi:role="line"
|
|
||||||
x="55.218639"
|
|
||||||
y="71.966072"
|
|
||||||
style="text-align:start;text-anchor:start;stroke-width:0.264583"
|
|
||||||
id="tspan849">f connue et n connue</tspan></text>
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237"
|
|
||||||
cx="31.956978"
|
|
||||||
cy="30.754267"
|
|
||||||
rx="2.6413746"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-8"
|
|
||||||
cx="51.182114"
|
|
||||||
cy="25.657875"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-4"
|
|
||||||
cx="63.610149"
|
|
||||||
cy="32.205978"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-5"
|
|
||||||
cx="72.29641"
|
|
||||||
cy="42.228584"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-0"
|
|
||||||
cx="65.481033"
|
|
||||||
cy="54.122078"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-3"
|
|
||||||
cx="43.297665"
|
|
||||||
cy="46.371262"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-6"
|
|
||||||
cx="82.853554"
|
|
||||||
cy="48.643055"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-1"
|
|
||||||
cx="83.92263"
|
|
||||||
cy="34.611404"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-06"
|
|
||||||
cx="24.722431"
|
|
||||||
cy="43.030396"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-32"
|
|
||||||
cx="54.65662"
|
|
||||||
cy="50.113037"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-061"
|
|
||||||
cx="31.270535"
|
|
||||||
cy="54.65662"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
<ellipse
|
|
||||||
style="fill:#c21010;fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:2.12949;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
|
||||||
id="path3237-55"
|
|
||||||
cx="64.946495"
|
|
||||||
cy="23.519718"
|
|
||||||
rx="2.6413748"
|
|
||||||
ry="1.063858" />
|
|
||||||
</g>
|
|
||||||
</svg>
|
|
Before Width: | Height: | Size: 14 KiB |
@ -33,17 +33,10 @@ Simulation de la variation de la taille de la population trouvée avec cette mé
|
|||||||
|
|
||||||
Estimation d'une proportion d'une population avec l'échantillonnage.
|
Estimation d'une proportion d'une population avec l'échantillonnage.
|
||||||
|
|
||||||
.. image:: ./4B_confiance.pdf
|
|
||||||
:height: 200px
|
|
||||||
:alt: Cours sur l'intervalle de confiance
|
|
||||||
|
|
||||||
.. image:: ./4E_confiance.pdf
|
|
||||||
:height: 200px
|
|
||||||
:alt: Documents pour travailler l'intervalle de confiance
|
|
||||||
|
|
||||||
Étape 4: Hardy-Weinberg
|
Étape 4: Hardy-Weinberg
|
||||||
=======================
|
=======================
|
||||||
|
|
||||||
|
|
||||||
.. image:: ./3E_Hardy_Weinberg.pdf
|
.. image:: ./3E_Hardy_Weinberg.pdf
|
||||||
:height: 200px
|
:height: 200px
|
||||||
:alt: Étude du modèle d'équilibre de HW
|
:alt: Étude du modèle d'équilibre de HW
|
||||||
|
Binary file not shown.
@ -1,110 +0,0 @@
|
|||||||
\documentclass[a4paper,10pt]{article}
|
|
||||||
\usepackage{myXsim}
|
|
||||||
|
|
||||||
% Title Page
|
|
||||||
\title{DS 4}
|
|
||||||
\tribe{Terminale STI2D}
|
|
||||||
\date{14 décembre 2020}
|
|
||||||
\duree{30min}
|
|
||||||
|
|
||||||
\pagestyle{empty}
|
|
||||||
\newcommand{\reponse}[1]{%
|
|
||||||
\begin{bclogo}[barre=none, logo=]{Réponse}
|
|
||||||
\vspace{#1}
|
|
||||||
\end{bclogo}
|
|
||||||
}
|
|
||||||
|
|
||||||
\begin{document}
|
|
||||||
\maketitle
|
|
||||||
|
|
||||||
Le barème est donné à titre indicatif, il pourra être modifié. Les questions plus difficiles sont marqués du symbole (*).
|
|
||||||
|
|
||||||
\begin{exercise}[subtitle={Complexes}, points=4]
|
|
||||||
\noindent
|
|
||||||
\begin{minipage}{0.6\textwidth}
|
|
||||||
\begin{enumerate}
|
|
||||||
\item Soit $z_1 = 4 - 4\sqrt{3}i$. Calculer son module et son argument.
|
|
||||||
\reponse{5cm}
|
|
||||||
\end{enumerate}
|
|
||||||
\end{minipage}
|
|
||||||
\hfill
|
|
||||||
\begin{minipage}{0.35\textwidth}
|
|
||||||
\begin{tikzpicture}[baseline=(a.north), xscale=0.6, yscale=0.6]
|
|
||||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
|
||||||
ymin=-5,ymax=5,ystep=1]
|
|
||||||
\tkzGrid
|
|
||||||
\draw (1, 0) node [below right] {1};
|
|
||||||
\draw (0, 1) node [above left] {$i$};
|
|
||||||
\draw [->, very thick] (-5, 0) -- (5, 0);
|
|
||||||
\draw [->, very thick] (0, -5) -- (0, 5);
|
|
||||||
%\tkzAxeXY
|
|
||||||
\foreach \x in {0,1,...,5} {
|
|
||||||
% dots at each point
|
|
||||||
\draw[black] (0, 0) circle(\x);
|
|
||||||
}
|
|
||||||
\end{tikzpicture}
|
|
||||||
\end{minipage}
|
|
||||||
|
|
||||||
\begin{enumerate}
|
|
||||||
\setcounter{enumi}{1}
|
|
||||||
\item Soit $z_2$ le complexe de module $r = 2$ et d'argument $\theta = \dfrac{5\pi}{6}$
|
|
||||||
\reponse{2cm}
|
|
||||||
\item Placer ces deux points dans le plan complexe.
|
|
||||||
\item (*) Placer dans le plan complexe le point $\ds z = \frac{2i+3}{1 - i}$
|
|
||||||
\reponse{3cm}
|
|
||||||
\end{enumerate}
|
|
||||||
\end{exercise}
|
|
||||||
|
|
||||||
\begin{exercise}[subtitle={Intégration}, points=4]
|
|
||||||
\begin{enumerate}
|
|
||||||
\item Calculer la primitive des deux fonctions suivantes
|
|
||||||
\begin{enumerate}
|
|
||||||
\item $f(x) = 4x^3 - 6x^2 + 12$
|
|
||||||
\reponse{2cm}
|
|
||||||
\pagebreak
|
|
||||||
\item $g(x) = 3x(x - x^2 + 1)$
|
|
||||||
\reponse{2cm}
|
|
||||||
|
|
||||||
\end{enumerate}
|
|
||||||
\item On note $f(x) = 0.4x^2 + \cos(x)$ et $F(x) = 0.1x^3 + \sin(x)$ une primitive de $f(x)$.
|
|
||||||
\begin{enumerate}
|
|
||||||
\item Calculer la quantité $\ds \int_1^3 0.4x^2 + \cos(x) \; dx$
|
|
||||||
\reponse{3cm}
|
|
||||||
|
|
||||||
\item Représenter sur le graphique à quoi correspond cette quantité.
|
|
||||||
|
|
||||||
\begin{tikzpicture}[baseline=(a.north), xscale=1.5, yscale=0.5]
|
|
||||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
|
||||||
ymin=0,ymax=5,ystep=1]
|
|
||||||
\tkzGrid
|
|
||||||
\tkzAxeXY
|
|
||||||
\tkzFct[domain=-4:4,color=red,very thick]%
|
|
||||||
{ 0.4*\x**2 + cos(\x) };
|
|
||||||
\end{tikzpicture}
|
|
||||||
\end{enumerate}
|
|
||||||
\end{enumerate}
|
|
||||||
\end{exercise}
|
|
||||||
|
|
||||||
\begin{exercise}[subtitle={Vrai/faux}, points=2]
|
|
||||||
Pour chacune des quatre affirmations suivantes, indiquer si elle est vraie ou fausse, en justifiant la réponse.
|
|
||||||
Il est attribué un point par réponse exacte correctement justifiée.
|
|
||||||
Une réponse non justifiée n’est pas prise en compte.
|
|
||||||
Une absence de réponse n’est pas pénalisée.
|
|
||||||
\begin{enumerate}
|
|
||||||
\item L'accélération gravitationnelle se calcule avec la formule $g=\dfrac{G\times m}{r^2}$ où $m$ est la masse, $r$ le rayon et $G$ la constante de gravitation.
|
|
||||||
|
|
||||||
\textbf{Affirmation 1:} Pour calculer la masse, on peut utiliser la formule $m = \dfrac{g\times G}{r^2}$
|
|
||||||
\reponse{2cm}
|
|
||||||
|
|
||||||
\item (*) \textbf{Affirmation 2:} $F(x) = \dfrac{1}{x}\sin(x)$ est une primitive de $f(x) = \dfrac{-1}{x^2}\sin(x) + \dfrac{\cos(x)}{x}$
|
|
||||||
\reponse{2cm}
|
|
||||||
\end{enumerate}
|
|
||||||
\end{exercise}
|
|
||||||
|
|
||||||
\end{document}
|
|
||||||
|
|
||||||
%%% Local Variables:
|
|
||||||
%%% mode: latex
|
|
||||||
%%% TeX-master: "master"
|
|
||||||
%%% End:
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user