Compare commits

...

2 Commits

Author SHA1 Message Date
6503d17bbd Feat: carte à compléter sur l'avenue du ...
All checks were successful
continuous-integration/drone/push Build is passing
2021-05-19 08:45:45 +02:00
833fbd2fd4 Feat: QF pour les sti2d 2021-05-19 08:36:42 +02:00
3 changed files with 57 additions and 0 deletions

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,57 @@
\documentclass[14pt]{classPres}
\usepackage{tkz-fct}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Terminale ST \\ Spé sti2d
\vfill
30 secondes par calcul
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 1}
Résoudre l'équation différentielle
\[
\begin{cases}
y' =& 2y + 4\\
f(0) =& 0
\end{cases}
\]
\end{frame}
\begin{frame}{Calcul 2}
\vfill
Calculer la quantité suivante
\[
\lim_{x\rightarrow +\infty} \frac{-3x^2 + 2x -1}{x - 100} =
\]
\vfill
\end{frame}
\begin{frame}{Calcul 3}
Démontrer que
\[ F(x) = (2x+1)\ln(x)
\]
est une primitive de
\[
f(x) = \frac{2x\ln(x) + 2x+1}{x}
\]
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}