Compare commits

..

2 Commits

Author SHA1 Message Date
cec47c0073 Feat: ajout du lien vers l'inférence baysienne
All checks were successful
continuous-integration/drone/push Build is passing
2021-03-16 10:11:35 +01:00
bf3fb7bb9a Feat: notion de cardinal et calculs de probabilités 2021-03-16 10:06:37 +01:00
3 changed files with 16 additions and 4 deletions

View File

@ -41,22 +41,32 @@ Soit $E$ un ensemble et $A$ et $B$ deux sous ensemble de $E$.
\end{center}
\end{itemize}
\subsection*{Cardinal d'un ensemble}
\begin{definition}{Cardinal}
Soit $E$ un ensemble. On appelle \textbf{cardinal} (ou effectif) de $E$ le nombre d'éléments de $E$. On note
\[
\mbox{Card}(E) = \# E
\]
\end{definition}
\pagebreak
\subsection*{Les probabilités}
\begin{definition}{Probabilités conditionnelles}
Soit $A$ et $B$ deux ensembles d'un population totale $E$ avec $A$ un ensemble non vide.
\begin{itemize}
\item Probabilités de l'évènement $A$
\[
P(A) = \frac{\mbox{Effectif de $A$}}{\mbox{Effectif total}}
P(A) = \frac{\mbox{Effectif de $A$}}{\mbox{Effectif total}} = \frac{\# A}{\# E}
\]
\item Probabilités de l'évènement $B$ sachant $A$
\[
P_A(B) = \frac{\mbox{Effectif des éléments qui sont dans $A$ et $B$}}{\mbox{Effectifs des éléments qui sont dans $A$}}
P_A(B) = \frac{\mbox{Effectif des éléments qui sont dans $A$ et $B$}}{\mbox{Effectifs des éléments qui sont dans $A$}} = \frac{\#(A\cap B)}{\# A}
\]
\begin{center}
\includegraphics[ scale=0.6 ]{./fig/condi_A}

View File

@ -2,7 +2,7 @@ Maths complémentaires
#####################
:date: 2020-10-28
:modified: 2020-10-29
:modified: 2021-03-16
:authors: Bertrand Benjamin
:category: Complementaire
:tags: Progression
@ -34,6 +34,8 @@ Période 3 (Camille - 11/01 au 19/03)
Période 4 (Benjamin - 22/03 au 04/06)
=====================================
- `Inférence Bayésienne <./02_Inference_Baysienne>`_
Période 5 (???)
===============