\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}

% Title Page
\title{DM1 \hfill HADJRAS Mohcine}
\tribe{TST}
\date{Toussain 2020}

\begin{document}
\maketitle

\begin{exercise}[subtitle={Fractions}]
    Faire les calculs avec les fraction suivants
    \begin{multicols}{3}
        \begin{enumerate}
            \item $A = \dfrac{5}{8} - \dfrac{9}{8}$
            \item $B = \dfrac{- 7}{4} - \dfrac{- 10}{20}$

            \item $C = \dfrac{- 8}{9} + \dfrac{- 8}{8}$
            \item $D = \dfrac{9}{4} - 9$

            \item $E = \dfrac{- 2}{6} \times \dfrac{7}{5}$
            \item $F = \dfrac{7}{4} \times - 7$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \[ 
                \dfrac{5}{8} - \dfrac{9}{8}=\dfrac{5}{8} - \dfrac{9}{8}=\dfrac{5 - 9}{8}=\dfrac{5 - 9}{8}=\dfrac{- 4}{8}
            \]
        \item 
            \[ 
                \dfrac{- 7}{4} - \dfrac{- 10}{20}=\dfrac{- 7}{4} + \dfrac{10}{20}=\dfrac{- 7 \times 5}{4 \times 5} + \dfrac{10}{20}=\dfrac{- 35}{20} + \dfrac{10}{20}=\dfrac{- 35 + 10}{20}=\dfrac{- 25}{20}
            \]
        \item 
            \[ 
                \dfrac{- 8}{9} + \dfrac{- 8}{8}=\dfrac{- 8 \times 8}{9 \times 8} + \dfrac{- 8 \times 9}{8 \times 9}=\dfrac{- 64}{72} + \dfrac{- 72}{72}=\dfrac{- 64 - 72}{72}=\dfrac{- 136}{72}
            \]
        \item 
            \[ 
                \dfrac{9}{4} - 9=\dfrac{9}{4} + \dfrac{- 9}{1}=\dfrac{9}{4} + \dfrac{- 9 \times 4}{1 \times 4}=\dfrac{9}{4} + \dfrac{- 36}{4}=\dfrac{9 - 36}{4}=\dfrac{- 27}{4}
            \]
        \item 
            \[ 
                \dfrac{- 2}{6} \times \dfrac{7}{5}=\dfrac{- 2 \times 7}{6 \times 5}=\dfrac{- 14}{30}
            \]
        \item 
            \[ 
                \dfrac{7}{4} \times - 7=\dfrac{7 \times - 7}{4}=\dfrac{- 49}{4}
            \]
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Développer réduire}]
    Développer puis réduire les expressions suivantes
    \begin{multicols}{2}
        \begin{enumerate}
            \item $A = (7x + 8)(- 10x + 8)$
            \item $B = (- 1x - 4)(6x - 4)$

            \item $C = (8x + 10)^{2}$
            \item $D = - 4 + x(5x - 6)$

            \item $E = 2x^{2} + x(- 3x - 1)$
            \item $F = - 9(x - 3)(x + 1)$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \begin{align*}
                A &= (7x + 8)(- 10x + 8)\\&= 7x \times - 10x + 7x \times 8 + 8 \times - 10x + 8 \times 8\\&= 7 \times - 10 \times x^{1 + 1} + 8 \times 7 \times x + 8 \times - 10 \times x + 64\\&= 56x - 80x - 70x^{2} + 64\\&= (56 - 80) \times x - 70x^{2} + 64\\&= - 70x^{2} - 24x + 64
            \end{align*}
        \item 
            \begin{align*}
                B &= (- 1x - 4)(6x - 4)\\&= - x \times 6x - x \times - 4 - 4 \times 6x - 4 \times - 4\\&= - 1 \times 6 \times x^{1 + 1} - 4 \times - 1 \times x - 4 \times 6 \times x + 16\\&= 4x - 24x - 6x^{2} + 16\\&= (4 - 24) \times x - 6x^{2} + 16\\&= - 6x^{2} - 20x + 16
            \end{align*}
        \item 
            \begin{align*}
                C &= (8x + 10)^{2}\\&= (8x + 10)(8x + 10)\\&= 8x \times 8x + 8x \times 10 + 10 \times 8x + 10 \times 10\\&= 8 \times 8 \times x^{1 + 1} + 10 \times 8 \times x + 10 \times 8 \times x + 100\\&= 80x + 80x + 64x^{2} + 100\\&= (80 + 80) \times x + 64x^{2} + 100\\&= 64x^{2} + 160x + 100
            \end{align*}
        \item 
            \begin{align*}
                D &= - 4 + x(5x - 6)\\&= - 4 + x \times 5x + x \times - 6\\&= 5x^{2} - 6x - 4
            \end{align*}
        \item 
            \begin{align*}
                E &= 2x^{2} + x(- 3x - 1)\\&= 2x^{2} + x \times - 3x + x \times - 1\\&= 2x^{2} - 3x^{2} - x\\&= 2x^{2} - 3x^{2} - x\\&= (2 - 3) \times x^{2} - x\\&= - x^{2} - x
            \end{align*}
        \item 
            \begin{align*}
                F &= - 9(x - 3)(x + 1)\\&= (- 9x - 9 \times - 3)(x + 1)\\&= (- 9x + 27)(x + 1)\\&= - 9x \times x - 9x \times 1 + 27x + 27 \times 1\\&= - 9x + 27 - 9x^{2} + 27x\\&= - 9x^{2} - 9x + 27x + 27\\&= - 9x^{2} + (- 9 + 27) \times x + 27\\&= - 9x^{2} + 18x + 27
            \end{align*}
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Étude de fonctions}]
    Soit $f(x) = - 3x^{2} - 36x - 81$ une fonction définie sur $\R$.
    \begin{enumerate}
        \item Calculer les valeurs suivantes
            \[
                f(1) \qquad f(-2)
            \]
        \item Dériver la fonction $f$
        \item Étudier le signe de $f'$ puis en déduire les variations de $f$.
        \item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
    \end{enumerate}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item On remplace $x$ par les valeurs demandées
            \[ 
                f(1) = - 3 \times 1^{2} - 36 \times 1 - 81=- 3 \times 1 - 36 - 81=- 3 - 117=- 120
            \]
            \[ 
                f(-1) = - 3 \times - 1^{2} - 36 \times - 1 - 81=- 3 \times 1 + 36 - 81=- 3 - 45=- 48
            \]
        \item Pas de solutions automatiques.
        \item Pas de solutions automatiques.
    \end{enumerate}
\end{solution}



%\printsolutionstype{exercise}



\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "master"
%%% End: