\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}

% Title Page
\title{DM1 \hfill BAHBAH Zakaria}
\tribe{TST}
\date{Toussain 2020}

\begin{document}
\maketitle

\begin{exercise}[subtitle={Fractions}]
    Faire les calculs avec les fraction suivants
    \begin{multicols}{3}
        \begin{enumerate}
            \item $A = \dfrac{- 9}{7} - \dfrac{- 10}{7}$
            \item $B = \dfrac{6}{6} - \dfrac{- 5}{24}$

            \item $C = \dfrac{- 10}{5} + \dfrac{7}{4}$
            \item $D = \dfrac{- 5}{9} - 10$

            \item $E = \dfrac{6}{10} \times \dfrac{- 7}{9}$
            \item $F = \dfrac{- 6}{4} \times 8$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \[ 
                \dfrac{- 9}{7} - \dfrac{- 10}{7}=\dfrac{- 9}{7} + \dfrac{10}{7}=\dfrac{- 9 + 10}{7}=\dfrac{1}{7}
            \]
        \item 
            \[ 
                \dfrac{6}{6} - \dfrac{- 5}{24}=\dfrac{6}{6} + \dfrac{5}{24}=\dfrac{6 \times 4}{6 \times 4} + \dfrac{5}{24}=\dfrac{24}{24} + \dfrac{5}{24}=\dfrac{24 + 5}{24}=\dfrac{29}{24}
            \]
        \item 
            \[ 
                \dfrac{- 10}{5} + \dfrac{7}{4}=\dfrac{- 10 \times 4}{5 \times 4} + \dfrac{7 \times 5}{4 \times 5}=\dfrac{- 40}{20} + \dfrac{35}{20}=\dfrac{- 40 + 35}{20}=\dfrac{- 5}{20}
            \]
        \item 
            \[ 
                \dfrac{- 5}{9} - 10=\dfrac{- 5}{9} + \dfrac{- 10}{1}=\dfrac{- 5}{9} + \dfrac{- 10 \times 9}{1 \times 9}=\dfrac{- 5}{9} + \dfrac{- 90}{9}=\dfrac{- 5 - 90}{9}=\dfrac{- 95}{9}
            \]
        \item 
            \[ 
                \dfrac{6}{10} \times \dfrac{- 7}{9}=\dfrac{6 \times - 7}{10 \times 9}=\dfrac{- 42}{90}
            \]
        \item 
            \[ 
                \dfrac{- 6}{4} \times 8=\dfrac{- 6 \times 8}{4}=\dfrac{- 48}{4}
            \]
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Développer réduire}]
    Développer puis réduire les expressions suivantes
    \begin{multicols}{2}
        \begin{enumerate}
            \item $A = (10x - 9)(- 4x - 9)$
            \item $B = (1x - 9)(1x - 9)$

            \item $C = (9x - 10)^{2}$
            \item $D = - 1 + x(- 6x - 10)$

            \item $E = - 10x^{2} + x(- 7x - 3)$
            \item $F = 7(x - 7)(x + 2)$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \begin{align*}
                A &= (10x - 9)(- 4x - 9)\\&= 10x \times - 4x + 10x \times - 9 - 9 \times - 4x - 9 \times - 9\\&= 10 \times - 4 \times x^{1 + 1} - 9 \times 10 \times x - 9 \times - 4 \times x + 81\\&= - 90x + 36x - 40x^{2} + 81\\&= (- 90 + 36) \times x - 40x^{2} + 81\\&= - 40x^{2} - 54x + 81
            \end{align*}
        \item 
            \begin{align*}
                B &= (1x - 9)(1x - 9)\\&= x \times x + x \times - 9 - 9x - 9 \times - 9\\&= x^{2} + 81 + (- 9 - 9) \times x\\&= x^{2} - 18x + 81
            \end{align*}
        \item 
            \begin{align*}
                C &= (9x - 10)^{2}\\&= (9x - 10)(9x - 10)\\&= 9x \times 9x + 9x \times - 10 - 10 \times 9x - 10 \times - 10\\&= 9 \times 9 \times x^{1 + 1} - 10 \times 9 \times x - 10 \times 9 \times x + 100\\&= - 90x - 90x + 81x^{2} + 100\\&= (- 90 - 90) \times x + 81x^{2} + 100\\&= 81x^{2} - 180x + 100
            \end{align*}
        \item 
            \begin{align*}
                D &= - 1 + x(- 6x - 10)\\&= - 1 + x \times - 6x + x \times - 10\\&= - 6x^{2} - 10x - 1
            \end{align*}
        \item 
            \begin{align*}
                E &= - 10x^{2} + x(- 7x - 3)\\&= - 10x^{2} + x \times - 7x + x \times - 3\\&= - 10x^{2} - 7x^{2} - 3x\\&= - 10x^{2} - 7x^{2} - 3x\\&= (- 10 - 7) \times x^{2} - 3x\\&= - 17x^{2} - 3x
            \end{align*}
        \item 
            \begin{align*}
                F &= 7(x - 7)(x + 2)\\&= (7x + 7 \times - 7)(x + 2)\\&= (7x - 49)(x + 2)\\&= 7x \times x + 7x \times 2 - 49x - 49 \times 2\\&= 2 \times 7 \times x - 98 + 7x^{2} - 49x\\&= 14x - 98 + 7x^{2} - 49x\\&= 7x^{2} + 14x - 49x - 98\\&= 7x^{2} + (14 - 49) \times x - 98\\&= 7x^{2} - 35x - 98
            \end{align*}
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Étude de fonctions}]
    Soit $f(x) = - 7x^{2} - 98x - 280$ une fonction définie sur $\R$.
    \begin{enumerate}
        \item Calculer les valeurs suivantes
            \[
                f(1) \qquad f(-2)
            \]
        \item Dériver la fonction $f$
        \item Étudier le signe de $f'$ puis en déduire les variations de $f$.
        \item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
    \end{enumerate}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item On remplace $x$ par les valeurs demandées
            \[ 
                f(1) = - 7 \times 1^{2} - 98 \times 1 - 280=- 7 \times 1 - 98 - 280=- 7 - 378=- 385
            \]
            \[ 
                f(-1) = - 7 \times - 1^{2} - 98 \times - 1 - 280=- 7 \times 1 + 98 - 280=- 7 - 182=- 189
            \]
        \item Pas de solutions automatiques.
        \item Pas de solutions automatiques.
    \end{enumerate}
\end{solution}



%\printsolutionstype{exercise}



\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "master"
%%% End: