\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}

% Title Page
\title{DM1 \hfill VECCHIO Léa}
\tribe{TST}
\date{Toussain 2020}

\begin{document}
\maketitle

\begin{exercise}[subtitle={Fractions}]
    Faire les calculs avec les fraction suivants
    \begin{multicols}{3}
        \begin{enumerate}
            \item $A = \dfrac{5}{9} - \dfrac{9}{9}$
            \item $B = \dfrac{7}{4} - \dfrac{8}{36}$

            \item $C = \dfrac{- 10}{10} + \dfrac{2}{9}$
            \item $D = \dfrac{5}{4} + 6$

            \item $E = \dfrac{- 7}{7} \times \dfrac{1}{6}$
            \item $F = \dfrac{7}{10} \times - 8$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \[ 
                \dfrac{5}{9} - \dfrac{9}{9}=\dfrac{5}{9} - \dfrac{9}{9}=\dfrac{5 - 9}{9}=\dfrac{5 - 9}{9}=\dfrac{- 4}{9}
            \]
        \item 
            \[ 
                \dfrac{7}{4} - \dfrac{8}{36}=\dfrac{7}{4} - \dfrac{8}{36}=\dfrac{7 \times 9}{4 \times 9} - \dfrac{8}{36}=\dfrac{63}{36} - \dfrac{8}{36}=\dfrac{63 - 8}{36}=\dfrac{63 - 8}{36}=\dfrac{55}{36}
            \]
        \item 
            \[ 
                \dfrac{- 10}{10} + \dfrac{2}{9}=\dfrac{- 10 \times 9}{10 \times 9} + \dfrac{2 \times 10}{9 \times 10}=\dfrac{- 90}{90} + \dfrac{20}{90}=\dfrac{- 90 + 20}{90}=\dfrac{- 70}{90}
            \]
        \item 
            \[ 
                \dfrac{5}{4} + 6=\dfrac{5}{4} + \dfrac{6}{1}=\dfrac{5}{4} + \dfrac{6 \times 4}{1 \times 4}=\dfrac{5}{4} + \dfrac{24}{4}=\dfrac{5 + 24}{4}=\dfrac{29}{4}
            \]
        \item 
            \[ 
                \dfrac{- 7}{7} \times \dfrac{1}{6}=\dfrac{- 7 \times 1}{7 \times 6}=\dfrac{- 7}{42}
            \]
        \item 
            \[ 
                \dfrac{7}{10} \times - 8=\dfrac{7 \times - 8}{10}=\dfrac{- 56}{10}
            \]
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Développer réduire}]
    Développer puis réduire les expressions suivantes
    \begin{multicols}{2}
        \begin{enumerate}
            \item $A = (- 5x + 5)(- 8x + 5)$
            \item $B = (1x + 7)(- 10x + 7)$

            \item $C = (2x + 4)^{2}$
            \item $D = 1 + x(- 7x + 1)$

            \item $E = - 3x^{2} + x(- 2x + 6)$
            \item $F = 5(x - 6)(x + 8)$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \begin{align*}
                A &= (- 5x + 5)(- 8x + 5)\\&= - 5x \times - 8x - 5x \times 5 + 5 \times - 8x + 5 \times 5\\&= - 5 \times - 8 \times x^{1 + 1} + 5 \times - 5 \times x + 5 \times - 8 \times x + 25\\&= - 25x - 40x + 40x^{2} + 25\\&= (- 25 - 40) \times x + 40x^{2} + 25\\&= 40x^{2} - 65x + 25
            \end{align*}
        \item 
            \begin{align*}
                B &= (1x + 7)(- 10x + 7)\\&= x \times - 10x + x \times 7 + 7 \times - 10x + 7 \times 7\\&= 7 \times - 10 \times x + 49 - 10x^{2} + 7x\\&= - 70x + 49 - 10x^{2} + 7x\\&= - 10x^{2} - 70x + 7x + 49\\&= - 10x^{2} + (- 70 + 7) \times x + 49\\&= - 10x^{2} - 63x + 49
            \end{align*}
        \item 
            \begin{align*}
                C &= (2x + 4)^{2}\\&= (2x + 4)(2x + 4)\\&= 2x \times 2x + 2x \times 4 + 4 \times 2x + 4 \times 4\\&= 2 \times 2 \times x^{1 + 1} + 4 \times 2 \times x + 4 \times 2 \times x + 16\\&= 8x + 8x + 4x^{2} + 16\\&= (8 + 8) \times x + 4x^{2} + 16\\&= 4x^{2} + 16x + 16
            \end{align*}
        \item 
            \begin{align*}
                D &= 1 + x(- 7x + 1)\\&= 1 + x \times - 7x + x \times 1\\&= - 7x^{2} + x + 1
            \end{align*}
        \item 
            \begin{align*}
                E &= - 3x^{2} + x(- 2x + 6)\\&= - 3x^{2} + x \times - 2x + x \times 6\\&= - 3x^{2} - 2x^{2} + 6x\\&= - 3x^{2} - 2x^{2} + 6x\\&= (- 3 - 2) \times x^{2} + 6x\\&= - 5x^{2} + 6x
            \end{align*}
        \item 
            \begin{align*}
                F &= 5(x - 6)(x + 8)\\&= (5x + 5 \times - 6)(x + 8)\\&= (5x - 30)(x + 8)\\&= 5x \times x + 5x \times 8 - 30x - 30 \times 8\\&= 8 \times 5 \times x - 240 + 5x^{2} - 30x\\&= 40x - 240 + 5x^{2} - 30x\\&= 5x^{2} + 40x - 30x - 240\\&= 5x^{2} + (40 - 30) \times x - 240\\&= 5x^{2} + 10x - 240
            \end{align*}
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Étude de fonctions}]
    Soit $f(x) = - 6x^{2} - 108x - 480$ une fonction définie sur $\R$.
    \begin{enumerate}
        \item Calculer les valeurs suivantes
            \[
                f(1) \qquad f(-2)
            \]
        \item Dériver la fonction $f$
        \item Étudier le signe de $f'$ puis en déduire les variations de $f$.
        \item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
    \end{enumerate}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item On remplace $x$ par les valeurs demandées
            \[ 
                f(1) = - 6 \times 1^{2} - 108 \times 1 - 480=- 6 \times 1 - 108 - 480=- 6 - 588=- 594
            \]
            \[ 
                f(-1) = - 6 \times - 1^{2} - 108 \times - 1 - 480=- 6 \times 1 + 108 - 480=- 6 - 372=- 378
            \]
        \item Pas de solutions automatiques.
        \item Pas de solutions automatiques.
    \end{enumerate}
\end{solution}



%\printsolutionstype{exercise}



\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "master"
%%% End: