Exercice 4

Résolution d'équations

Résoudre les équations suivantes

1.
$$10^x = 200$$

3.
$$10^x = -10$$

5.
$$10^{-3x} = 10$$

7.
$$2 \times 10^x = 6$$

2.
$$10^x = 2$$

4.
$$10^{2x} = 3$$

6.
$$10^{5x+1} = 10$$

8.
$$-3 \times 10^x = -9$$

Exercice 5

Résolution d'inéquations

Résoudre les inéquations suivantes

1.
$$10^x \le 300$$

3.
$$10^x < 100$$

5.
$$10^{-0.1x} < 10$$

7.
$$3 \times 10^x > 6$$

2.
$$10^x > 45$$

4.
$$10^{3x} \ge 3$$

6.
$$10^{2x+1} \ge 5$$

8.
$$-2 \times 10^x < -8$$

Exercice 6

Relation fonctionnelle

1. Calculer les quantités suivantes arrondis au millième.

(a)
$$A = \ln(6)$$

(e)
$$E = \ln(2) + \ln(3)$$

(i)
$$I = \ln(108) - \ln(4)$$

(b)
$$B = \ln(32)$$

(f)
$$F = \ln(3) + \ln(7)$$

(j)
$$J = 5 \ln(2)$$

(c)
$$C = \ln(21)$$

(d) $D = \ln(27)$

(g)
$$G = \ln(2) + \ln(16)$$

(h) $H = \ln(63) - \ln(3)$

(k)
$$K = 3 \ln(3)$$

(l) $L = -\ln(\frac{1}{6})$

2. Conjecture des formules ci-dessous

$$\log(a) + \log(b) = \log(...)$$

$$\log(a) - \log(b) = \log(...)$$

$$n\log(a) = \log(...)$$

- 3. (*) Soient x et y strictement positif. Après avoir calculer séparément $e^{\ln(x)+\ln(y)}$ et $e^{\ln(x\times y)}$, démontrer que $\ln(x \times y) = \ln(x) + \ln(y).$
- 4. (*) Démontrer que pour tout $n \in \mathbb{N}$, $\ln(a^n) = n \ln(a)$.
- 5. (*) Démontrer que $\ln(\frac{a}{b}) = \ln(a) \ln(b)$.
- 6. (*) En déduire une formule pour $\ln(\frac{1}{a})$

Exercice 4

Résolution d'équations

Résoudre les équations suivantes

1.
$$10^x = 200$$

3.
$$10^x = -10$$

5.
$$10^{-3x} = 10$$

7.
$$2 \times 10^x = 6$$

2.
$$10^x = 2$$

4.
$$10^{2x} = 3$$

6.
$$10^{5x+1} = 10$$

8.
$$-3 \times 10^x = -9$$

Exercice 5

Résolution d'inéquations

Résoudre les inéquations suivantes

1.
$$10^x \le 300$$

3.
$$10^x < 100$$

5.
$$10^{-0.1x} \le 10$$

7.
$$3 \times 10^x > 6$$

2.
$$10^x > 45$$

4.
$$10^{3x} \ge 3$$

6.
$$10^{2x+1} > 5$$

8.
$$-2 \times 10^x < -8$$

Exercice 6

Relation fonctionnelle

1. Calculer les quantités suivantes arrondis au millième.

(a)
$$A = \ln(6)$$

(e)
$$E = \ln(2) + \ln(3)$$

(i)
$$I = \ln(108) - \ln(4)$$

(b)
$$B = \ln(32)$$

(f)
$$F = \ln(3) + \ln(7)$$

(j)
$$J = 5 \ln(2)$$

(c)
$$C = \ln(21)$$

(g)
$$G = \ln(2) + \ln(16)$$

(k)
$$K = 3\ln(3)$$

(d)
$$D = \ln(27)$$

(h)
$$H = \ln(63) - \ln(3)$$

(1)
$$L = -\ln(\frac{1}{6})$$

2. Conjecture des formules ci-dessous

$$\log(a) + \log(b) = \log(\dots)$$

$$\log(a) - \log(b) = \log(...)$$

$$n\log(a) = \log(...)$$

- 3. (*) Soient x et y strictement positif. Après avoir calculer séparément $e^{\ln(x)+\ln(y)}$ et $e^{\ln(x\times y)}$, démontrer que $\ln(x \times y) = \ln(x) + \ln(y).$
- 4. (*) Démontrer que pour tout $n \in \mathbb{N}$, $\ln(a^n) = n \ln(a)$.
- 5. (*) Démontrer que $\ln(\frac{a}{b}) = \ln(a) \ln(b)$.
- 6. (*) En déduire une formule pour $\ln(\frac{1}{a})$