\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}

% Title Page
\title{DM1 \hfill EYRAUD Cynthia}
\tribe{TST}
\date{Toussain 2020}

\begin{document}
\maketitle

\begin{exercise}[subtitle={Fractions}]
    Faire les calculs avec les fraction suivants
    \begin{multicols}{3}
        \begin{enumerate}
            \item $A = \dfrac{6}{8} - \dfrac{- 10}{8}$
            \item $B = \dfrac{- 1}{2} - \dfrac{- 2}{8}$

            \item $C = \dfrac{- 1}{5} + \dfrac{- 8}{4}$
            \item $D = \dfrac{- 3}{9} + 7$

            \item $E = \dfrac{- 10}{9} \times \dfrac{7}{8}$
            \item $F = \dfrac{3}{3} \times - 6$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \[ 
                \dfrac{6}{8} - \dfrac{- 10}{8}=\dfrac{6}{8} + \dfrac{10}{8}=\dfrac{6 + 10}{8}=\dfrac{16}{8}
            \]
        \item 
            \[ 
                \dfrac{- 1}{2} - \dfrac{- 2}{8}=\dfrac{- 1}{2} + \dfrac{2}{8}=\dfrac{- 1 \times 4}{2 \times 4} + \dfrac{2}{8}=\dfrac{- 4}{8} + \dfrac{2}{8}=\dfrac{- 4 + 2}{8}=\dfrac{- 2}{8}
            \]
        \item 
            \[ 
                \dfrac{- 1}{5} + \dfrac{- 8}{4}=\dfrac{- 1 \times 4}{5 \times 4} + \dfrac{- 8 \times 5}{4 \times 5}=\dfrac{- 4}{20} + \dfrac{- 40}{20}=\dfrac{- 4 - 40}{20}=\dfrac{- 44}{20}
            \]
        \item 
            \[ 
                \dfrac{- 3}{9} + 7=\dfrac{- 3}{9} + \dfrac{7}{1}=\dfrac{- 3}{9} + \dfrac{7 \times 9}{1 \times 9}=\dfrac{- 3}{9} + \dfrac{63}{9}=\dfrac{- 3 + 63}{9}=\dfrac{60}{9}
            \]
        \item 
            \[ 
                \dfrac{- 10}{9} \times \dfrac{7}{8}=\dfrac{- 10 \times 7}{9 \times 8}=\dfrac{- 70}{72}
            \]
        \item 
            \[ 
                \dfrac{3}{3} \times - 6=\dfrac{3 \times - 6}{3}=\dfrac{- 18}{3}
            \]
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Développer réduire}]
    Développer puis réduire les expressions suivantes
    \begin{multicols}{2}
        \begin{enumerate}
            \item $A = (7x - 6)(- 2x - 6)$
            \item $B = (6x + 8)(10x + 8)$

            \item $C = (5x + 5)^{2}$
            \item $D = - 1 + x(- 4x + 3)$

            \item $E = - 4x^{2} + x(2x - 3)$
            \item $F = - 7(x - 8)(x + 7)$
        \end{enumerate}
    \end{multicols}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item 
            \begin{align*}
                A &= (7x - 6)(- 2x - 6)\\&= 7x \times - 2x + 7x \times - 6 - 6 \times - 2x - 6 \times - 6\\&= 7 \times - 2 \times x^{1 + 1} - 6 \times 7 \times x - 6 \times - 2 \times x + 36\\&= - 42x + 12x - 14x^{2} + 36\\&= (- 42 + 12) \times x - 14x^{2} + 36\\&= - 14x^{2} - 30x + 36
            \end{align*}
        \item 
            \begin{align*}
                B &= (6x + 8)(10x + 8)\\&= 6x \times 10x + 6x \times 8 + 8 \times 10x + 8 \times 8\\&= 6 \times 10 \times x^{1 + 1} + 8 \times 6 \times x + 8 \times 10 \times x + 64\\&= 48x + 80x + 60x^{2} + 64\\&= (48 + 80) \times x + 60x^{2} + 64\\&= 60x^{2} + 128x + 64
            \end{align*}
        \item 
            \begin{align*}
                C &= (5x + 5)^{2}\\&= (5x + 5)(5x + 5)\\&= 5x \times 5x + 5x \times 5 + 5 \times 5x + 5 \times 5\\&= 5 \times 5 \times x^{1 + 1} + 5 \times 5 \times x + 5 \times 5 \times x + 25\\&= 25x + 25x + 25x^{2} + 25\\&= (25 + 25) \times x + 25x^{2} + 25\\&= 25x^{2} + 50x + 25
            \end{align*}
        \item 
            \begin{align*}
                D &= - 1 + x(- 4x + 3)\\&= - 1 + x \times - 4x + x \times 3\\&= - 4x^{2} + 3x - 1
            \end{align*}
        \item 
            \begin{align*}
                E &= - 4x^{2} + x(2x - 3)\\&= - 4x^{2} + x \times 2x + x \times - 3\\&= - 4x^{2} + 2x^{2} - 3x\\&= - 4x^{2} + 2x^{2} - 3x\\&= (- 4 + 2) \times x^{2} - 3x\\&= - 2x^{2} - 3x
            \end{align*}
        \item 
            \begin{align*}
                F &= - 7(x - 8)(x + 7)\\&= (- 7x - 7 \times - 8)(x + 7)\\&= (- 7x + 56)(x + 7)\\&= - 7x \times x - 7x \times 7 + 56x + 56 \times 7\\&= 7 \times - 7 \times x + 392 - 7x^{2} + 56x\\&= - 49x + 392 - 7x^{2} + 56x\\&= - 7x^{2} - 49x + 56x + 392\\&= - 7x^{2} + (- 49 + 56) \times x + 392\\&= - 7x^{2} + 7x + 392
            \end{align*}
    \end{enumerate}
\end{solution}

\begin{exercise}[subtitle={Étude de fonctions}]
    Soit $f(x) = 7x^{2} + 28x - 315$ une fonction définie sur $\R$.
    \begin{enumerate}
        \item Calculer les valeurs suivantes
            \[
                f(1) \qquad f(-2)
            \]
        \item Dériver la fonction $f$
        \item Étudier le signe de $f'$ puis en déduire les variations de $f$.
        \item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
    \end{enumerate}
\end{exercise}

\begin{solution}
    \begin{enumerate}
        \item On remplace $x$ par les valeurs demandées
            \[ 
                f(1) = 7 \times 1^{2} + 28 \times 1 - 315=7 \times 1 + 28 - 315=7 - 287=- 280
            \]
            \[ 
                f(-1) = 7 \times - 1^{2} + 28 \times - 1 - 315=7 \times 1 - 28 - 315=7 - 343=- 336
            \]
        \item Pas de solutions automatiques.
        \item Pas de solutions automatiques.
    \end{enumerate}
\end{solution}



%\printsolutionstype{exercise}



\end{document}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "master"
%%% End: