2020-2021/TST/DM/2010_DM1/TST3/tpl_2010_DM1.tex
Bertrand Benjamin a8c0291023
All checks were successful
continuous-integration/drone/push Build is passing
Feat: DM pour les TST
2020-10-15 22:15:28 +02:00

156 lines
4.4 KiB
TeX

\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill \Var{Nom}}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
%- set a = Expression.random("{a} / {b} - {c} / {b}", ["b > 1"])
\item $A = \Var{a}$
%- set b = Expression.random("{a} / {b} - {c} / {k*b}", ["b > 1", "k>1"])
\item $B = \Var{b}$
%- set c = Expression.random("{a} / {b} + {c} / {b-1}", ["b > 1"])
\item $C = \Var{c}$
%- set d = Expression.random("{a} / {b} + {c}", ["b > 1"])
\item $D = \Var{d}$
%- set e = Expression.random("{a} / {b} * {c} / {b-1}", ["b > 1"])
\item $E = \Var{e}$
%- set f = Expression.random("{a} / {b} * {c}", ["b > 1"])
\item $F = \Var{f}$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\Var{a.simplify().explain() | join('=')}
\]
\item
\[
\Var{b.simplify().explain() | join('=')}
\]
\item
\[
\Var{c.simplify().explain() | join('=')}
\]
\item
\[
\Var{d.simplify().explain() | join('=')}
\]
\item
\[
\Var{e.simplify().explain() | join('=')}
\]
\item
\[
\Var{f.simplify().explain() | join('=')}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
%- set a = Expression.random("({a}x + {b})*({c}x + {b})")
\item $A = \Var{a}$
%- set b = Expression.random("({a}x + {b})*({c}x + {b})")
\item $B = \Var{b}$
%- set c = Expression.random("({a}x + {b})^2")
\item $C = \Var{c}$
%- set d = Expression.random("{c} + x*({a}x + {b})")
\item $D = \Var{d}$
%- set e = Expression.random("{c}*x^2 + x*({a}x + {b})")
\item $E = \Var{e}$
%- set f = Expression.random("{a}(x+{b})(x+{c})")
\item $F = \Var{f}$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= \Var{a.simplify().explain() | join('\\\\&= ')}
\end{align*}
\item
\begin{align*}
B &= \Var{b.simplify().explain() | join('\\\\&= ')}
\end{align*}
\item
\begin{align*}
C &= \Var{c.simplify().explain() | join('\\\\&= ')}
\end{align*}
\item
\begin{align*}
D &= \Var{d.simplify().explain() | join('\\\\&= ')}
\end{align*}
\item
\begin{align*}
E &= \Var{e.simplify().explain() | join('\\\\&= ')}
\end{align*}
\item
\begin{align*}
F &= \Var{f.simplify().explain() | join('\\\\&= ')}
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
%- set f = Expression.random("{a}(x-{b})(x-{c})")
Soit $f(x) = \Var{f.simplify()}$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = \Var{f.simplify()(1).explain() | join('=')}
\]
\[
f(-1) = \Var{f.simplify()(-1).explain() | join('=')}
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: