2020-2021/TST/DM/2010_DM1/TST1/08_2010_DM1.tex
Bertrand Benjamin a8c0291023
All checks were successful
continuous-integration/drone/push Build is passing
Feat: DM pour les TST
2020-10-15 22:15:28 +02:00

142 lines
5.3 KiB
TeX

\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill COULLON Anis}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
\item $A = \dfrac{- 10}{10} - \dfrac{- 1}{10}$
\item $B = \dfrac{8}{8} - \dfrac{5}{16}$
\item $C = \dfrac{- 2}{9} + \dfrac{8}{8}$
\item $D = \dfrac{10}{6} - 8$
\item $E = \dfrac{- 5}{8} \times \dfrac{- 4}{7}$
\item $F = \dfrac{5}{7} \times 6$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\dfrac{- 10}{10} - \dfrac{- 1}{10}=\dfrac{- 10}{10} + \dfrac{1}{10}=\dfrac{- 10 + 1}{10}=\dfrac{- 9}{10}
\]
\item
\[
\dfrac{8}{8} - \dfrac{5}{16}=\dfrac{8}{8} - \dfrac{5}{16}=\dfrac{8 \times 2}{8 \times 2} - \dfrac{5}{16}=\dfrac{16}{16} - \dfrac{5}{16}=\dfrac{16 - 5}{16}=\dfrac{16 - 5}{16}=\dfrac{11}{16}
\]
\item
\[
\dfrac{- 2}{9} + \dfrac{8}{8}=\dfrac{- 2 \times 8}{9 \times 8} + \dfrac{8 \times 9}{8 \times 9}=\dfrac{- 16}{72} + \dfrac{72}{72}=\dfrac{- 16 + 72}{72}=\dfrac{56}{72}
\]
\item
\[
\dfrac{10}{6} - 8=\dfrac{10}{6} + \dfrac{- 8}{1}=\dfrac{10}{6} + \dfrac{- 8 \times 6}{1 \times 6}=\dfrac{10}{6} + \dfrac{- 48}{6}=\dfrac{10 - 48}{6}=\dfrac{- 38}{6}
\]
\item
\[
\dfrac{- 5}{8} \times \dfrac{- 4}{7}=\dfrac{- 5 \times - 4}{8 \times 7}=\dfrac{20}{56}
\]
\item
\[
\dfrac{5}{7} \times 6=\dfrac{5 \times 6}{7}=\dfrac{30}{7}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $A = (5x - 3)(4x - 3)$
\item $B = (3x + 5)(- 9x + 5)$
\item $C = (8x - 5)^{2}$
\item $D = - 3 + x(5x + 7)$
\item $E = 10x^{2} + x(- 1x - 7)$
\item $F = - 6(x + 2)(x + 9)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= (5x - 3)(4x - 3)\\&= 5x \times 4x + 5x \times - 3 - 3 \times 4x - 3 \times - 3\\&= 5 \times 4 \times x^{1 + 1} - 3 \times 5 \times x - 3 \times 4 \times x + 9\\&= - 15x - 12x + 20x^{2} + 9\\&= (- 15 - 12) \times x + 20x^{2} + 9\\&= 20x^{2} - 27x + 9
\end{align*}
\item
\begin{align*}
B &= (3x + 5)(- 9x + 5)\\&= 3x \times - 9x + 3x \times 5 + 5 \times - 9x + 5 \times 5\\&= 3 \times - 9 \times x^{1 + 1} + 5 \times 3 \times x + 5 \times - 9 \times x + 25\\&= 15x - 45x - 27x^{2} + 25\\&= (15 - 45) \times x - 27x^{2} + 25\\&= - 27x^{2} - 30x + 25
\end{align*}
\item
\begin{align*}
C &= (8x - 5)^{2}\\&= (8x - 5)(8x - 5)\\&= 8x \times 8x + 8x \times - 5 - 5 \times 8x - 5 \times - 5\\&= 8 \times 8 \times x^{1 + 1} - 5 \times 8 \times x - 5 \times 8 \times x + 25\\&= - 40x - 40x + 64x^{2} + 25\\&= (- 40 - 40) \times x + 64x^{2} + 25\\&= 64x^{2} - 80x + 25
\end{align*}
\item
\begin{align*}
D &= - 3 + x(5x + 7)\\&= - 3 + x \times 5x + x \times 7\\&= 5x^{2} + 7x - 3
\end{align*}
\item
\begin{align*}
E &= 10x^{2} + x(- 1x - 7)\\&= 10x^{2} + x \times - x + x \times - 7\\&= 10x^{2} - x^{2} - 7x\\&= 10x^{2} - x^{2} - 7x\\&= (10 - 1) \times x^{2} - 7x\\&= 9x^{2} - 7x
\end{align*}
\item
\begin{align*}
F &= - 6(x + 2)(x + 9)\\&= (- 6x - 6 \times 2)(x + 9)\\&= (- 6x - 12)(x + 9)\\&= - 6x \times x - 6x \times 9 - 12x - 12 \times 9\\&= 9 \times - 6 \times x - 108 - 6x^{2} - 12x\\&= - 54x - 108 - 6x^{2} - 12x\\&= - 6x^{2} - 54x - 12x - 108\\&= - 6x^{2} + (- 54 - 12) \times x - 108\\&= - 6x^{2} - 66x - 108
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
Soit $f(x) = - 7x^{2} - 70x - 175$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = - 7 \times 1^{2} - 70 \times 1 - 175=- 7 \times 1 - 70 - 175=- 7 - 245=- 252
\]
\[
f(-1) = - 7 \times - 1^{2} - 70 \times - 1 - 175=- 7 \times 1 + 70 - 175=- 7 - 105=- 112
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: