59 lines
905 B
TeX
Executable File
59 lines
905 B
TeX
Executable File
\documentclass[14pt]{classPres}
|
|
\usepackage{tkz-fct}
|
|
|
|
\author{}
|
|
\title{}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
\begin{frame}{Questions flashs}
|
|
\begin{center}
|
|
\vfill
|
|
Terminale ST \\ Spé sti2d
|
|
\vfill
|
|
30 secondes par calcul
|
|
\vfill
|
|
\tiny \jobname
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 1}
|
|
Soit $f(x) = K e^{0.5x} - 5$.
|
|
|
|
On suppose que $f(2) = 2$.
|
|
|
|
Retrouver la valeur de $K$.
|
|
|
|
\vfill
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 2}
|
|
Vérifier que
|
|
\[
|
|
f(t) = 10 e^{-0.2t} - 25
|
|
\]
|
|
est une solution de
|
|
\[
|
|
y' = -0.2y + 5
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 3}
|
|
Soit
|
|
\[
|
|
z = -2 + 2\sqrt{3}i
|
|
\]
|
|
On donne $r = |z| = 4$.
|
|
|
|
Déterminer l'argument de $z$.
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fin}
|
|
\begin{center}
|
|
On retourne son papier.
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|