Bertrand Benjamin
e3b0371ff6
All checks were successful
continuous-integration/drone/push Build is passing
72 lines
1.6 KiB
TeX
Executable File
72 lines
1.6 KiB
TeX
Executable File
\documentclass[14pt]{classPres}
|
|
\usepackage{tkz-fct}
|
|
|
|
\author{}
|
|
\title{}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
\begin{frame}{Questions flashs}
|
|
\begin{center}
|
|
\vfill
|
|
Terminale ST \\ Spé sti2d
|
|
\vfill
|
|
30 secondes par calcul
|
|
\vfill
|
|
\tiny \jobname
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 1}
|
|
On donne la formule suivante
|
|
\[
|
|
\cos(x)^2 + \sin(x)^2 = 1
|
|
\]
|
|
Exprimer $\cos(x)$ en fonction des autres grandeurs.
|
|
\[
|
|
\sin(x) =
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 2}
|
|
Soit
|
|
\[
|
|
z = 2\sqrt{3} - 2i
|
|
\]
|
|
Calculer le module et l'argument de $z$.
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 3}
|
|
\vfill
|
|
Soit $z$ le nombre complexe de module $r=2$ et d'argument $\theta = \dfrac{-\pi}{4}$
|
|
\vfill
|
|
Écrire $z$ sous forme $a + bi$.
|
|
\vfill
|
|
\pause
|
|
\begin{center}
|
|
\begin{tikzpicture}[baseline=(a.north), xscale=0.5, yscale=0.5]
|
|
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
|
ymin=-5,ymax=5,ystep=1]
|
|
\tkzGrid
|
|
\draw (1, 0) node [below right] {1};
|
|
\draw (0, 1) node [above left] {$i$};
|
|
\draw [->, very thick] (-5, 0) -- (5, 0);
|
|
\draw [->, very thick] (0, -5) -- (0, 5);
|
|
%\tkzAxeXY
|
|
\foreach \x in {0,1,...,5} {
|
|
% dots at each point
|
|
\draw[black] (0, 0) circle(\x);
|
|
}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fin}
|
|
\begin{center}
|
|
On retourne son papier.
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|