142 lines
5.2 KiB
TeX
142 lines
5.2 KiB
TeX
\documentclass[a5paper,10pt]{article}
|
|
\usepackage{myXsim}
|
|
\usepackage{tasks}
|
|
|
|
% Title Page
|
|
\title{DM1 \hfill CLAIN Avinash}
|
|
\tribe{TST}
|
|
\date{Toussain 2020}
|
|
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
\begin{exercise}[subtitle={Fractions}]
|
|
Faire les calculs avec les fraction suivants
|
|
\begin{multicols}{3}
|
|
\begin{enumerate}
|
|
\item $A = \dfrac{4}{4} - \dfrac{- 9}{4}$
|
|
\item $B = \dfrac{2}{6} - \dfrac{1}{60}$
|
|
|
|
\item $C = \dfrac{4}{6} + \dfrac{- 3}{5}$
|
|
\item $D = \dfrac{- 8}{7} - 8$
|
|
|
|
\item $E = \dfrac{- 1}{3} \times \dfrac{- 4}{2}$
|
|
\item $F = \dfrac{2}{6} \times 8$
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
\end{exercise}
|
|
|
|
\begin{solution}
|
|
\begin{enumerate}
|
|
\item
|
|
\[
|
|
\dfrac{4}{4} - \dfrac{- 9}{4}=\dfrac{4}{4} + \dfrac{9}{4}=\dfrac{4 + 9}{4}=\dfrac{13}{4}
|
|
\]
|
|
\item
|
|
\[
|
|
\dfrac{2}{6} - \dfrac{1}{60}=\dfrac{2}{6} - \dfrac{1}{60}=\dfrac{2 \times 10}{6 \times 10} - \dfrac{1}{60}=\dfrac{20}{60} - \dfrac{1}{60}=\dfrac{20 - 1}{60}=\dfrac{20 - 1}{60}=\dfrac{19}{60}
|
|
\]
|
|
\item
|
|
\[
|
|
\dfrac{4}{6} + \dfrac{- 3}{5}=\dfrac{4 \times 5}{6 \times 5} + \dfrac{- 3 \times 6}{5 \times 6}=\dfrac{20}{30} + \dfrac{- 18}{30}=\dfrac{20 - 18}{30}=\dfrac{2}{30}
|
|
\]
|
|
\item
|
|
\[
|
|
\dfrac{- 8}{7} - 8=\dfrac{- 8}{7} + \dfrac{- 8}{1}=\dfrac{- 8}{7} + \dfrac{- 8 \times 7}{1 \times 7}=\dfrac{- 8}{7} + \dfrac{- 56}{7}=\dfrac{- 8 - 56}{7}=\dfrac{- 64}{7}
|
|
\]
|
|
\item
|
|
\[
|
|
\dfrac{- 1}{3} \times \dfrac{- 4}{2}=\dfrac{- 1 \times - 4}{3 \times 2}=\dfrac{4}{6}
|
|
\]
|
|
\item
|
|
\[
|
|
\dfrac{2}{6} \times 8=\dfrac{2 \times 8}{6}=\dfrac{16}{6}
|
|
\]
|
|
\end{enumerate}
|
|
\end{solution}
|
|
|
|
\begin{exercise}[subtitle={Développer réduire}]
|
|
Développer puis réduire les expressions suivantes
|
|
\begin{multicols}{2}
|
|
\begin{enumerate}
|
|
\item $A = (9x - 7)(3x - 7)$
|
|
\item $B = (- 10x - 7)(9x - 7)$
|
|
|
|
\item $C = (3x - 7)^{2}$
|
|
\item $D = 9 + x(- 1x - 4)$
|
|
|
|
\item $E = - 2x^{2} + x(10x + 6)$
|
|
\item $F = 2(x - 9)(x + 7)$
|
|
\end{enumerate}
|
|
\end{multicols}
|
|
\end{exercise}
|
|
|
|
\begin{solution}
|
|
\begin{enumerate}
|
|
\item
|
|
\begin{align*}
|
|
A &= (9x - 7)(3x - 7)\\&= 9x \times 3x + 9x \times - 7 - 7 \times 3x - 7 \times - 7\\&= 9 \times 3 \times x^{1 + 1} - 7 \times 9 \times x - 7 \times 3 \times x + 49\\&= - 63x - 21x + 27x^{2} + 49\\&= (- 63 - 21) \times x + 27x^{2} + 49\\&= 27x^{2} - 84x + 49
|
|
\end{align*}
|
|
\item
|
|
\begin{align*}
|
|
B &= (- 10x - 7)(9x - 7)\\&= - 10x \times 9x - 10x \times - 7 - 7 \times 9x - 7 \times - 7\\&= - 10 \times 9 \times x^{1 + 1} - 7 \times - 10 \times x - 7 \times 9 \times x + 49\\&= 70x - 63x - 90x^{2} + 49\\&= (70 - 63) \times x - 90x^{2} + 49\\&= - 90x^{2} + 7x + 49
|
|
\end{align*}
|
|
\item
|
|
\begin{align*}
|
|
C &= (3x - 7)^{2}\\&= (3x - 7)(3x - 7)\\&= 3x \times 3x + 3x \times - 7 - 7 \times 3x - 7 \times - 7\\&= 3 \times 3 \times x^{1 + 1} - 7 \times 3 \times x - 7 \times 3 \times x + 49\\&= - 21x - 21x + 9x^{2} + 49\\&= (- 21 - 21) \times x + 9x^{2} + 49\\&= 9x^{2} - 42x + 49
|
|
\end{align*}
|
|
\item
|
|
\begin{align*}
|
|
D &= 9 + x(- 1x - 4)\\&= 9 + x \times - x + x \times - 4\\&= - x^{2} - 4x + 9
|
|
\end{align*}
|
|
\item
|
|
\begin{align*}
|
|
E &= - 2x^{2} + x(10x + 6)\\&= - 2x^{2} + x \times 10x + x \times 6\\&= - 2x^{2} + 10x^{2} + 6x\\&= - 2x^{2} + 10x^{2} + 6x\\&= (- 2 + 10) \times x^{2} + 6x\\&= 8x^{2} + 6x
|
|
\end{align*}
|
|
\item
|
|
\begin{align*}
|
|
F &= 2(x - 9)(x + 7)\\&= (2x + 2 \times - 9)(x + 7)\\&= (2x - 18)(x + 7)\\&= 2x \times x + 2x \times 7 - 18x - 18 \times 7\\&= 7 \times 2 \times x - 126 + 2x^{2} - 18x\\&= 14x - 126 + 2x^{2} - 18x\\&= 2x^{2} + 14x - 18x - 126\\&= 2x^{2} + (14 - 18) \times x - 126\\&= 2x^{2} - 4x - 126
|
|
\end{align*}
|
|
\end{enumerate}
|
|
\end{solution}
|
|
|
|
\begin{exercise}[subtitle={Étude de fonctions}]
|
|
Soit $f(x) = 6x^{2} + 18x - 168$ une fonction définie sur $\R$.
|
|
\begin{enumerate}
|
|
\item Calculer les valeurs suivantes
|
|
\[
|
|
f(1) \qquad f(-2)
|
|
\]
|
|
\item Dériver la fonction $f$
|
|
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
|
|
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
|
|
\end{enumerate}
|
|
\end{exercise}
|
|
|
|
\begin{solution}
|
|
\begin{enumerate}
|
|
\item On remplace $x$ par les valeurs demandées
|
|
\[
|
|
f(1) = 6 \times 1^{2} + 18 \times 1 - 168=6 \times 1 + 18 - 168=6 - 150=- 144
|
|
\]
|
|
\[
|
|
f(-1) = 6 \times - 1^{2} + 18 \times - 1 - 168=6 \times 1 - 18 - 168=6 - 186=- 180
|
|
\]
|
|
\item Pas de solutions automatiques.
|
|
\item Pas de solutions automatiques.
|
|
\end{enumerate}
|
|
\end{solution}
|
|
|
|
|
|
|
|
%\printsolutionstype{exercise}
|
|
|
|
|
|
|
|
\end{document}
|
|
|
|
%%% Local Variables:
|
|
%%% mode: latex
|
|
%%% TeX-master: "master"
|
|
%%% End:
|