2020-2021/TST/DM/2010_DM1/TST3/20_2010_DM1.tex

142 lines
5.2 KiB
TeX

\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill ZENAGUI Yanis}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
\item $A = \dfrac{- 5}{5} - \dfrac{3}{5}$
\item $B = \dfrac{- 10}{8} - \dfrac{7}{24}$
\item $C = \dfrac{10}{9} + \dfrac{10}{8}$
\item $D = \dfrac{1}{10} - 6$
\item $E = \dfrac{5}{9} \times \dfrac{- 5}{8}$
\item $F = \dfrac{- 3}{3} \times - 9$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\dfrac{- 5}{5} - \dfrac{3}{5}=\dfrac{- 5}{5} - \dfrac{3}{5}=\dfrac{- 5 - 3}{5}=\dfrac{- 5 - 3}{5}=\dfrac{- 8}{5}
\]
\item
\[
\dfrac{- 10}{8} - \dfrac{7}{24}=\dfrac{- 10}{8} - \dfrac{7}{24}=\dfrac{- 10 \times 3}{8 \times 3} - \dfrac{7}{24}=\dfrac{- 30}{24} - \dfrac{7}{24}=\dfrac{- 30 - 7}{24}=\dfrac{- 30 - 7}{24}=\dfrac{- 37}{24}
\]
\item
\[
\dfrac{10}{9} + \dfrac{10}{8}=\dfrac{10 \times 8}{9 \times 8} + \dfrac{10 \times 9}{8 \times 9}=\dfrac{80}{72} + \dfrac{90}{72}=\dfrac{80 + 90}{72}=\dfrac{170}{72}
\]
\item
\[
\dfrac{1}{10} - 6=\dfrac{1}{10} + \dfrac{- 6}{1}=\dfrac{1}{10} + \dfrac{- 6 \times 10}{1 \times 10}=\dfrac{1}{10} + \dfrac{- 60}{10}=\dfrac{1 - 60}{10}=\dfrac{- 59}{10}
\]
\item
\[
\dfrac{5}{9} \times \dfrac{- 5}{8}=\dfrac{5 \times - 5}{9 \times 8}=\dfrac{- 25}{72}
\]
\item
\[
\dfrac{- 3}{3} \times - 9=\dfrac{- 3 \times - 9}{3}=\dfrac{27}{3}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $A = (10x - 6)(1x - 6)$
\item $B = (- 10x + 8)(- 8x + 8)$
\item $C = (8x + 2)^{2}$
\item $D = 8 + x(- 5x + 5)$
\item $E = 4x^{2} + x(7x + 10)$
\item $F = 8(x - 7)(x + 8)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= (10x - 6)(1x - 6)\\&= 10x \times x + 10x \times - 6 - 6x - 6 \times - 6\\&= - 6 \times 10 \times x + 36 + 10x^{2} - 6x\\&= - 60x + 36 + 10x^{2} - 6x\\&= 10x^{2} - 60x - 6x + 36\\&= 10x^{2} + (- 60 - 6) \times x + 36\\&= 10x^{2} - 66x + 36
\end{align*}
\item
\begin{align*}
B &= (- 10x + 8)(- 8x + 8)\\&= - 10x \times - 8x - 10x \times 8 + 8 \times - 8x + 8 \times 8\\&= - 10 \times - 8 \times x^{1 + 1} + 8 \times - 10 \times x + 8 \times - 8 \times x + 64\\&= - 80x - 64x + 80x^{2} + 64\\&= (- 80 - 64) \times x + 80x^{2} + 64\\&= 80x^{2} - 144x + 64
\end{align*}
\item
\begin{align*}
C &= (8x + 2)^{2}\\&= (8x + 2)(8x + 2)\\&= 8x \times 8x + 8x \times 2 + 2 \times 8x + 2 \times 2\\&= 8 \times 8 \times x^{1 + 1} + 2 \times 8 \times x + 2 \times 8 \times x + 4\\&= 16x + 16x + 64x^{2} + 4\\&= (16 + 16) \times x + 64x^{2} + 4\\&= 64x^{2} + 32x + 4
\end{align*}
\item
\begin{align*}
D &= 8 + x(- 5x + 5)\\&= 8 + x \times - 5x + x \times 5\\&= - 5x^{2} + 5x + 8
\end{align*}
\item
\begin{align*}
E &= 4x^{2} + x(7x + 10)\\&= 4x^{2} + x \times 7x + x \times 10\\&= 4x^{2} + 7x^{2} + 10x\\&= 4x^{2} + 7x^{2} + 10x\\&= (4 + 7) \times x^{2} + 10x\\&= 11x^{2} + 10x
\end{align*}
\item
\begin{align*}
F &= 8(x - 7)(x + 8)\\&= (8x + 8 \times - 7)(x + 8)\\&= (8x - 56)(x + 8)\\&= 8x \times x + 8x \times 8 - 56x - 56 \times 8\\&= 8 \times 8 \times x - 448 + 8x^{2} - 56x\\&= 64x - 448 + 8x^{2} - 56x\\&= 8x^{2} + 64x - 56x - 448\\&= 8x^{2} + (64 - 56) \times x - 448\\&= 8x^{2} + 8x - 448
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
Soit $f(x) = - x^{2} + 100$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = - 1 \times 1^{2} + 100=- 1 \times 1 + 100=- 1 + 100=99
\]
\[
f(-1) = - 1 \times - 1^{2} + 100=- 1 \times 1 + 100=- 1 + 100=99
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: