2020-2021/TST/DM/2010_DM1/TST3/13_2010_DM1.tex

142 lines
5.2 KiB
TeX

\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill INFANTES Antoine}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
\item $A = \dfrac{10}{4} - \dfrac{- 6}{4}$
\item $B = \dfrac{3}{6} - \dfrac{3}{54}$
\item $C = \dfrac{- 10}{10} + \dfrac{2}{9}$
\item $D = \dfrac{- 8}{8} + 1$
\item $E = \dfrac{- 3}{4} \times \dfrac{10}{3}$
\item $F = \dfrac{- 5}{7} \times - 6$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\dfrac{10}{4} - \dfrac{- 6}{4}=\dfrac{10}{4} + \dfrac{6}{4}=\dfrac{10 + 6}{4}=\dfrac{16}{4}
\]
\item
\[
\dfrac{3}{6} - \dfrac{3}{54}=\dfrac{3}{6} - \dfrac{3}{54}=\dfrac{3 \times 9}{6 \times 9} - \dfrac{3}{54}=\dfrac{27}{54} - \dfrac{3}{54}=\dfrac{27 - 3}{54}=\dfrac{27 - 3}{54}=\dfrac{24}{54}
\]
\item
\[
\dfrac{- 10}{10} + \dfrac{2}{9}=\dfrac{- 10 \times 9}{10 \times 9} + \dfrac{2 \times 10}{9 \times 10}=\dfrac{- 90}{90} + \dfrac{20}{90}=\dfrac{- 90 + 20}{90}=\dfrac{- 70}{90}
\]
\item
\[
\dfrac{- 8}{8} + 1=\dfrac{- 8}{8} + \dfrac{1}{1}=\dfrac{- 8}{8} + \dfrac{1 \times 8}{1 \times 8}=\dfrac{- 8}{8} + \dfrac{8}{8}=\dfrac{- 8 + 8}{8}=\dfrac{0}{8}
\]
\item
\[
\dfrac{- 3}{4} \times \dfrac{10}{3}=\dfrac{- 3 \times 10}{4 \times 3}=\dfrac{- 30}{12}
\]
\item
\[
\dfrac{- 5}{7} \times - 6=\dfrac{- 5 \times - 6}{7}=\dfrac{30}{7}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $A = (- 4x + 6)(- 5x + 6)$
\item $B = (8x + 1)(- 5x + 1)$
\item $C = (6x - 8)^{2}$
\item $D = - 8 + x(- 9x + 8)$
\item $E = - 3x^{2} + x(- 2x - 10)$
\item $F = 2(x + 6)(x + 9)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= (- 4x + 6)(- 5x + 6)\\&= - 4x \times - 5x - 4x \times 6 + 6 \times - 5x + 6 \times 6\\&= - 4 \times - 5 \times x^{1 + 1} + 6 \times - 4 \times x + 6 \times - 5 \times x + 36\\&= - 24x - 30x + 20x^{2} + 36\\&= (- 24 - 30) \times x + 20x^{2} + 36\\&= 20x^{2} - 54x + 36
\end{align*}
\item
\begin{align*}
B &= (8x + 1)(- 5x + 1)\\&= 8x \times - 5x + 8x \times 1 + 1 \times - 5x + 1 \times 1\\&= 8 \times - 5 \times x^{1 + 1} + 8x - 5x + 1\\&= - 40x^{2} + 8x - 5x + 1\\&= - 40x^{2} + (8 - 5) \times x + 1\\&= - 40x^{2} + 3x + 1
\end{align*}
\item
\begin{align*}
C &= (6x - 8)^{2}\\&= (6x - 8)(6x - 8)\\&= 6x \times 6x + 6x \times - 8 - 8 \times 6x - 8 \times - 8\\&= 6 \times 6 \times x^{1 + 1} - 8 \times 6 \times x - 8 \times 6 \times x + 64\\&= - 48x - 48x + 36x^{2} + 64\\&= (- 48 - 48) \times x + 36x^{2} + 64\\&= 36x^{2} - 96x + 64
\end{align*}
\item
\begin{align*}
D &= - 8 + x(- 9x + 8)\\&= - 8 + x \times - 9x + x \times 8\\&= - 9x^{2} + 8x - 8
\end{align*}
\item
\begin{align*}
E &= - 3x^{2} + x(- 2x - 10)\\&= - 3x^{2} + x \times - 2x + x \times - 10\\&= - 3x^{2} - 2x^{2} - 10x\\&= - 3x^{2} - 2x^{2} - 10x\\&= (- 3 - 2) \times x^{2} - 10x\\&= - 5x^{2} - 10x
\end{align*}
\item
\begin{align*}
F &= 2(x + 6)(x + 9)\\&= (2x + 2 \times 6)(x + 9)\\&= (2x + 12)(x + 9)\\&= 2x \times x + 2x \times 9 + 12x + 12 \times 9\\&= 9 \times 2 \times x + 108 + 2x^{2} + 12x\\&= 18x + 108 + 2x^{2} + 12x\\&= 2x^{2} + 18x + 12x + 108\\&= 2x^{2} + (18 + 12) \times x + 108\\&= 2x^{2} + 30x + 108
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
Soit $f(x) = 3x^{2} - 24x + 48$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = 3 \times 1^{2} - 24 \times 1 + 48=3 \times 1 - 24 + 48=3 + 24=27
\]
\[
f(-1) = 3 \times - 1^{2} - 24 \times - 1 + 48=3 \times 1 + 24 + 48=3 + 72=75
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: