2020-2021/TST_sti2d/04_Integrale_et_Primitives/2B_formulaire.tex

75 lines
1.5 KiB
TeX

\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{qrcode}
\author{Benjamin Bertrand}
\title{Integrale et Primitives - Cours}
\date{novembre 2020}
\pagestyle{empty}
\begin{document}
\maketitle
\setcounter{section}{2}
\section{Formulaire des primitives}
\begin{center}
\begin{tabular}{|m{4cm}|m{4cm}|}
\hline
\rowcolor{highlightbg}
Fonction $f$ & Primitives $F$ \\
\hline
$a$ & $ax$ \\
\hline
$x$ & $\frac{1}{2}x^2$ \\
\hline
$x^2$ & $\frac{1}{3}x^3$ \\
\hline
$x^3$ & $\frac{1}{4}x^4$\\
\hline
$x^n$ & $\frac{1}{n+1}x^{n+1}$\\
\hline
$\frac{1}{x^2}$ & $\frac{-1}{x}$\\
\hline
$\cos(x)$ & $\sin(x)$\\
\hline
$\sin(x)$ & $-\cos(x)$\\
\hline
& \\
\hline
& \\
\hline
\end{tabular}
\end{center}
\paragraph{Exemples:}%
Calculs des primitives des fonctions suivantes
\[
f(x) = 3x^2 - x + 5 \qquad \qquad F(x) =
\]
\[
g(x) = \frac{3}{x^2} + \cos(x) \qquad \qquad G(x) =
\]
\[
z(t) = 4t^5 - \sin(x) \qquad \qquad Z(t) =
\]
\envideo{https://video.opytex.org/videos/watch/cc688f48-2e83-46a2-8c81-0e67f300a37b}{Les exemples traités}
\section{Calculer une primitive}
\paragraph{Exemples:}%
Calcul de la quantité suivante
\[
\int_0^{15} -0,2x^2 + 3x \; dx=
\]
\envideo{https://video.opytex.org/videos/watch/1ebc9f06-011f-48f2-b9c9-1297ef5a6634}{Reprendre le calcul de l'exemple et reproduire le graphique}
\end{document}