2020-2021/TST_sti2d/06_Exponentielle_complexe/exercises.tex
Bertrand Benjamin ad10f9a12d
All checks were successful
continuous-integration/drone/push Build is passing
Feat: Début du chapitre sur l'exponentielle complexe
2021-01-14 13:53:40 +01:00

67 lines
2.5 KiB
TeX

\collectexercises{banque}
\begin{exercise}[subtitle={Multiplication entre complexe}, step={1}, origin={Création}, topics={Exponentielle complexe}, tags={Complexe}]
Soit les 4 nombres complexes sous forme algébrique
\[
z_A = 1 + \sqrt{3}i \qquad
z_B = -i + \sqrt{3} \qquad
z_C = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i \qquad
z_D = 3\sqrt{2} + 3\sqrt{2}i
\]
\begin{enumerate}
\item Calculer le module et l'argument de ces 4 nombres complexes.
\item À partir de la forme algébrique, calculer tous les produits possibles et déterminer le module et l'argument des résultats. Vous reporterez vos résultats dans les tableaux suivants
\begin{tabular}{|c|*{6}{p{3cm}|}}
\hline
Algébrique & A & B & C & D \\
\hline
A & & & & \\
\hline
B & & & & \\
\hline
C & & & & \\
\hline
D & & & & \\
\hline
\end{tabular}
{\small
\hspace{-1cm}
\begin{tabular}{|c|*{6}{p{1.5cm}|}}
\hline
Module & A($r= \cdots$) & B($r= \cdots$) & C ($r= \cdots$)& D($r= \cdots$) \\
\hline
A ($r= \cdots$) & & & &\\
\hline
B ($r= \cdots$) & & & &\\
\hline
C ($r= \cdots$) & & & &\\
\hline
D ($r= \cdots$) & & & &\\
\hline
\end{tabular}
\hfill
\begin{tabular}{|c|*{6}{p{1.5cm}|}}
\hline
Argument & A($\theta= \cdots$) & B($\theta= \cdots$) & C($\theta= \cdots$) & D($\theta= \cdots$) \\
\hline
A ($\theta= \cdots$) & & & &\\
\hline
B ($\theta= \cdots$) & & & &\\
\hline
C ($\theta= \cdots$) & & & &\\
\hline
D ($\theta= \cdots$) & & & &\\
\hline
\end{tabular}
}
\item Compléter les phrases suivantes à partir de vos résultats
\begin{itemize}
\item Quand on multiplie 2 nombres complexes alors les modules sont \dotfill
\item Quand on multiplie 2 nombres complexes alors les arguments sont \dotfill
\end{itemize}
\end{enumerate}
\end{exercise}
\collectexercisesstop{banque}