56 lines
901 B
TeX
Executable File
56 lines
901 B
TeX
Executable File
\documentclass[12pt]{classPres}
|
|
\usepackage{tkz-fct}
|
|
|
|
\author{}
|
|
\title{}
|
|
\date{}
|
|
|
|
\begin{document}
|
|
\begin{frame}{Questions flashs}
|
|
\begin{center}
|
|
\vfill
|
|
Terminale Maths complémentaires
|
|
\vfill
|
|
30 secondes par calcul
|
|
\vfill
|
|
\tiny \jobname
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 1}
|
|
Démontrer que la dérivée de
|
|
\[
|
|
f(x) = x^2 + \frac{1}{x} + \ln(x)
|
|
\]
|
|
est
|
|
\[
|
|
f'(x) = \frac{2x^3 - 1 + x}{x^2}
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}{Calcul 2}
|
|
Calculer la quantité suivante
|
|
\[
|
|
\int_0^1 9t^2 - 2t + 2 \; dt =
|
|
\]
|
|
\end{frame}
|
|
|
|
\begin{frame}[fragile]{Calcul 3}
|
|
\vfill
|
|
Résoudre l'inéquation
|
|
\vfill
|
|
\[
|
|
2x^2 + x + 1 > 0
|
|
\]
|
|
\vfill
|
|
\end{frame}
|
|
|
|
\begin{frame}{Fin}
|
|
\begin{center}
|
|
On retourne son papier.
|
|
\end{center}
|
|
\end{frame}
|
|
|
|
|
|
\end{document}
|