2020-2021/TST/DM/2010_DM1/TST3/15_2010_DM1.tex
Bertrand Benjamin a8c0291023
All checks were successful
continuous-integration/drone/push Build is passing
Feat: DM pour les TST
2020-10-15 22:15:28 +02:00

142 lines
5.2 KiB
TeX

\documentclass[a5paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tasks}
% Title Page
\title{DM1 \hfill MORFIN Chloé}
\tribe{TST}
\date{Toussain 2020}
\begin{document}
\maketitle
\begin{exercise}[subtitle={Fractions}]
Faire les calculs avec les fraction suivants
\begin{multicols}{3}
\begin{enumerate}
\item $A = \dfrac{- 4}{10} - \dfrac{- 6}{10}$
\item $B = \dfrac{- 3}{4} - \dfrac{- 2}{12}$
\item $C = \dfrac{10}{3} + \dfrac{6}{2}$
\item $D = \dfrac{- 6}{6} + 2$
\item $E = \dfrac{- 8}{10} \times \dfrac{7}{9}$
\item $F = \dfrac{- 2}{3} \times - 6$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\[
\dfrac{- 4}{10} - \dfrac{- 6}{10}=\dfrac{- 4}{10} + \dfrac{6}{10}=\dfrac{- 4 + 6}{10}=\dfrac{2}{10}
\]
\item
\[
\dfrac{- 3}{4} - \dfrac{- 2}{12}=\dfrac{- 3}{4} + \dfrac{2}{12}=\dfrac{- 3 \times 3}{4 \times 3} + \dfrac{2}{12}=\dfrac{- 9}{12} + \dfrac{2}{12}=\dfrac{- 9 + 2}{12}=\dfrac{- 7}{12}
\]
\item
\[
\dfrac{10}{3} + \dfrac{6}{2}=\dfrac{10 \times 2}{3 \times 2} + \dfrac{6 \times 3}{2 \times 3}=\dfrac{20}{6} + \dfrac{18}{6}=\dfrac{20 + 18}{6}=\dfrac{38}{6}
\]
\item
\[
\dfrac{- 6}{6} + 2=\dfrac{- 6}{6} + \dfrac{2}{1}=\dfrac{- 6}{6} + \dfrac{2 \times 6}{1 \times 6}=\dfrac{- 6}{6} + \dfrac{12}{6}=\dfrac{- 6 + 12}{6}=\dfrac{6}{6}
\]
\item
\[
\dfrac{- 8}{10} \times \dfrac{7}{9}=\dfrac{- 8 \times 7}{10 \times 9}=\dfrac{- 56}{90}
\]
\item
\[
\dfrac{- 2}{3} \times - 6=\dfrac{- 2 \times - 6}{3}=\dfrac{12}{3}
\]
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Développer réduire}]
Développer puis réduire les expressions suivantes
\begin{multicols}{2}
\begin{enumerate}
\item $A = (8x - 1)(8x - 1)$
\item $B = (- 2x + 3)(- 1x + 3)$
\item $C = (2x + 3)^{2}$
\item $D = - 9 + x(- 8x - 6)$
\item $E = - 6x^{2} + x(5x - 1)$
\item $F = 9(x - 3)(x + 5)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item
\begin{align*}
A &= (8x - 1)(8x - 1)\\&= 8x \times 8x + 8x \times - 1 - 1 \times 8x - 1 \times - 1\\&= 8 \times 8 \times x^{1 + 1} - 1 \times 8 \times x - 1 \times 8 \times x + 1\\&= - 8x - 8x + 64x^{2} + 1\\&= (- 8 - 8) \times x + 64x^{2} + 1\\&= 64x^{2} - 16x + 1
\end{align*}
\item
\begin{align*}
B &= (- 2x + 3)(- 1x + 3)\\&= - 2x \times - x - 2x \times 3 + 3 \times - x + 3 \times 3\\&= - 2 \times - 1 \times x^{1 + 1} + 3 \times - 2 \times x + 3 \times - 1 \times x + 9\\&= - 6x - 3x + 2x^{2} + 9\\&= (- 6 - 3) \times x + 2x^{2} + 9\\&= 2x^{2} - 9x + 9
\end{align*}
\item
\begin{align*}
C &= (2x + 3)^{2}\\&= (2x + 3)(2x + 3)\\&= 2x \times 2x + 2x \times 3 + 3 \times 2x + 3 \times 3\\&= 2 \times 2 \times x^{1 + 1} + 3 \times 2 \times x + 3 \times 2 \times x + 9\\&= 6x + 6x + 4x^{2} + 9\\&= (6 + 6) \times x + 4x^{2} + 9\\&= 4x^{2} + 12x + 9
\end{align*}
\item
\begin{align*}
D &= - 9 + x(- 8x - 6)\\&= - 9 + x \times - 8x + x \times - 6\\&= - 8x^{2} - 6x - 9
\end{align*}
\item
\begin{align*}
E &= - 6x^{2} + x(5x - 1)\\&= - 6x^{2} + x \times 5x + x \times - 1\\&= - 6x^{2} + 5x^{2} - x\\&= - 6x^{2} + 5x^{2} - x\\&= (- 6 + 5) \times x^{2} - x\\&= - x^{2} - x
\end{align*}
\item
\begin{align*}
F &= 9(x - 3)(x + 5)\\&= (9x + 9 \times - 3)(x + 5)\\&= (9x - 27)(x + 5)\\&= 9x \times x + 9x \times 5 - 27x - 27 \times 5\\&= 5 \times 9 \times x - 135 + 9x^{2} - 27x\\&= 45x - 135 + 9x^{2} - 27x\\&= 9x^{2} + 45x - 27x - 135\\&= 9x^{2} + (45 - 27) \times x - 135\\&= 9x^{2} + 18x - 135
\end{align*}
\end{enumerate}
\end{solution}
\begin{exercise}[subtitle={Étude de fonctions}]
Soit $f(x) = 4x^{2} - 36x + 56$ une fonction définie sur $\R$.
\begin{enumerate}
\item Calculer les valeurs suivantes
\[
f(1) \qquad f(-2)
\]
\item Dériver la fonction $f$
\item Étudier le signe de $f'$ puis en déduire les variations de $f$.
\item Est-ce que $f$ admet un maximum? un minimum? Calculer sa valeur.
\end{enumerate}
\end{exercise}
\begin{solution}
\begin{enumerate}
\item On remplace $x$ par les valeurs demandées
\[
f(1) = 4 \times 1^{2} - 36 \times 1 + 56=4 \times 1 - 36 + 56=4 + 20=24
\]
\[
f(-1) = 4 \times - 1^{2} - 36 \times - 1 + 56=4 \times 1 + 36 + 56=4 + 92=96
\]
\item Pas de solutions automatiques.
\item Pas de solutions automatiques.
\end{enumerate}
\end{solution}
%\printsolutionstype{exercise}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "master"
%%% End: