Feat: E6 technique développement et réduction
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
Bertrand Benjamin 2021-10-19 15:51:50 +02:00
parent a3daf18a48
commit 5d104fb35c
3 changed files with 274 additions and 0 deletions

View File

@ -0,0 +1,144 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{amsmath}
\author{Benjamin Bertrand}
\title{Information chiffrée 1 - Exercices}
\date{Octobre 2021}
\pagestyle{empty}
\xsimsetup{
solution/print = false
}
\begin{document}
\begin{exercise}[subtitle={Réductions}]
\begin{multicols}{3}
\begin{enumerate}[label={\Alph*=}]
\item $- 3x - 10 + 4x + 7$
\item $3x + 2 - 9x - 7$
\item $- 9x^{2} - 7 - 7x^{2} + 6 + 6x - 7$
\item $- 7x - 1 - 7x + 8 + 4x + 3x$
\item $3x + 15 + 9x + 18x + 17$
\item $- 4x - 5 + 4x + 1$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{multicols}{2}
\begin{flalign*}
A =& - 3x - 10 + 4x + 7\\ =& - 3x - 10 + 4x + 7\\ =& - 3x + 4x - 10 + 7\\ =& (- 3 + 4) \times x - 3\\ =& x - 3
\end{flalign*}
\begin{flalign*}
B =& 3x + 2 - 9x - 7\\ =& 3x + 2 - 9x - 7\\ =& 3x - 9x + 2 - 7\\ =& (3 - 9) \times x - 5\\ =& - 6x - 5
\end{flalign*}
\begin{flalign*}
C =& - 9x^{2} - 7 - 7x^{2} + 6 + 6x - 7\\ =& - 9x^{2} - 7x^{2} - 7 - 1 + 6x\\ =& (- 9 - 7) \times x^{2} + 6x - 7 - 1\\ =& - 16x^{2} + 6x - 8
\end{flalign*}
\begin{flalign*}
D =& - 7x - 1 - 7x + 8 + 4x + 3x\\ =& - 7x - 1 + 8 - 7x + (4 + 3) \times x\\ =& (- 7 - 7) \times x + 7 + 7x\\ =& - 14x + 7 + 7x\\ =& - 14x + 7x + 7\\ =& (- 14 + 7) \times x + 7\\ =& - 7x + 7
\end{flalign*}
\begin{flalign*}
E =& 3x + 15 + 9x + 18x + 17\\ =& 3x + 15 + (9 + 18) \times x + 17\\ =& 3x + 15 + 17 + 27x\\ =& (3 + 27) \times x + 32\\ =& 30x + 32
\end{flalign*}
\begin{flalign*}
F =& - 4x - 5 + 4x + 1\\ =& - 4x - 5 + 4x + 1\\ =& - 4x + 4x - 5 + 1\\ =& (- 4 + 4) \times x - 4\\ =& 0x - 4\\ =& - 4
\end{flalign*}
\end{multicols}
\end{solution}
\begin{exercise}[subtitle={Simple développement}]
\begin{multicols}{3}
\begin{enumerate}[label={\Alph*=}]
\item $10(x + 3)$
\item $8(- 10x + 2)$
\item $3(- 9x + 3)$
\item $- 10x(- 6x + 3)$
\item $2x(10x - 2) - 4$
\item $- 3x - 7x(- 10x + 9)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{multicols}{2}
\begin{flalign*}
A =& 10(x + 3)\\ =& 10x + 10 \times 3\\ =& 10x + 30
\end{flalign*}
\begin{flalign*}
B =& 8(- 10x + 2)\\ =& 8 \times - 10x + 8 \times 2\\ =& 8(- 10) \times x + 16\\ =& - 80x + 16
\end{flalign*}
\begin{flalign*}
C =& 3(- 9x + 3)\\ =& 3 \times - 9x + 3 \times 3\\ =& 3(- 9) \times x + 9\\ =& - 27x + 9
\end{flalign*}
\begin{flalign*}
D =& - 10x(- 6x + 3)\\ =& - 10x \times - 6x - 10x \times 3\\ =& - 10(- 6) \times x^{1 + 1} + 3(- 10) \times x\\ =& 60x^{2} - 30x
\end{flalign*}
\begin{flalign*}
E =& 2x(10x - 2) - 4\\ =& 2x \times 10x + 2x(- 2) - 4\\ =& 2 \times 10 \times x^{1 + 1} - 2 \times 2 \times x - 4\\ =& 20x^{2} - 4x - 4
\end{flalign*}
\begin{flalign*}
F =& - 3x - 7x(- 10x + 9)\\ =& - 3x - 7x \times - 10x - 7x \times 9\\ =& - 3x - 7(- 10) \times x^{1 + 1} + 9(- 7) \times x\\ =& - 3x - 63x + 70x^{2}\\ =& (- 3 - 63) \times x + 70x^{2}\\ =& 70x^{2} - 66x
\end{flalign*}
\end{multicols}
\end{solution}
\begin{exercise}[subtitle={Double développement}]
\begin{multicols}{3}
\begin{enumerate}[label={\Alph*=}]
\item $(x + 10)(x + 6)$
\item $(8x - 6)(- 5x - 10)$
\item $(- 6x + 9)(7x - 3)$
\item $(5x + 2)(- 6x + 2)$
\item $(- 8x + 8)^{2}$
\item $(2x - 6)^{2}$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{multicols}{2}
\begin{flalign*}
A =& 10(x + 3)\\ =& 10x + 10 \times 3\\ =& 10x + 30
\end{flalign*}
\begin{flalign*}
B =& 8(- 10x + 2)\\ =& 8 \times - 10x + 8 \times 2\\ =& 8(- 10) \times x + 16\\ =& - 80x + 16
\end{flalign*}
\begin{flalign*}
C =& 3(- 9x + 3)\\ =& 3 \times - 9x + 3 \times 3\\ =& 3(- 9) \times x + 9\\ =& - 27x + 9
\end{flalign*}
\begin{flalign*}
D =& - 10x(- 6x + 3)\\ =& - 10x \times - 6x - 10x \times 3\\ =& - 10(- 6) \times x^{1 + 1} + 3(- 10) \times x\\ =& 60x^{2} - 30x
\end{flalign*}
\begin{flalign*}
E =& 2x(10x - 2) - 4\\ =& 2x \times 10x + 2x(- 2) - 4\\ =& 2 \times 10 \times x^{1 + 1} - 2 \times 2 \times x - 4\\ =& 20x^{2} - 4x - 4
\end{flalign*}
\begin{flalign*}
F =& - 3x - 7x(- 10x + 9)\\ =& - 3x - 7x \times - 10x - 7x \times 9\\ =& - 3x - 7(- 10) \times x^{1 + 1} + 9(- 7) \times x\\ =& - 3x - 63x + 70x^{2}\\ =& (- 3 - 63) \times x + 70x^{2}\\ =& 70x^{2} - 66x
\end{flalign*}
\end{multicols}
\end{solution}
\vfill
\printexercise{exercise}{1}
\printexercise{exercise}{2}
\printexercise{exercise}{3}
\vfill
\printexercise{exercise}{1}
\printexercise{exercise}{2}
\printexercise{exercise}{3}
\newpage
\printsolutionstype{exercise}
\end{document}

View File

@ -0,0 +1,130 @@
\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{amsmath}
\author{Benjamin Bertrand}
\title{Information chiffrée 1 - Exercices}
\date{Octobre 2021}
\xsimsetup{
solution/print = false
}
\begin{document}
\begin{exercise}[subtitle={Réductions}]
Développer puis réduire les expressions suivantes
\begin{multicols}{3}
\begin{enumerate}[label={\Alph*=}]
%- set a = Expression.random("{a}x + {b} + {c}x + {d}")
\item $\Var{a}$
%- set b = Expression.random("{a}x + {b} + {c}x + {d}")
\item $\Var{b}$
%- set c = Expression.random("{a}x^2 + {b} + {c}x^2 + {d} + {d}x + {e}")
\item $\Var{c}$
%- set d = Expression.random("{a}x + {b} + {c}x + {d} + {e}x + {f}x")
\item $\Var{d}$
%- set e = Expression.random("{a}*x + {b} + {c}x + {d}x + {e}", min_max=(2, 20))
\item $\Var{e}$
%- set f = Expression.random("{a}x + {b} + {c}x + {d}", conditions=["a+c==0"])
\item $\Var{f}$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{multicols}{2}
\begin{flalign*}
A =& \Var{a.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
B =& \Var{b.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
C =& \Var{c.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
D =& \Var{d.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
E =& \Var{e.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
F =& \Var{f.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\end{multicols}
\end{solution}
\begin{exercise}[subtitle={Simple développement}]
Développer puis réduire les expressions suivantes
\begin{multicols}{3}
\begin{enumerate}[label={\Alph*=}]
%- set a = Expression.random("{a}*(x + {b})", rejected=[-1,0,1])
\item $\Var{a}$
%- set b = Expression.random("{a}*({c}x + {d})", rejected=[-1,0,1])
\item $\Var{b}$
%- set c = Expression.random("{a}*({c}x + {d})", rejected=[-1,0,1])
\item $\Var{c}$
%- set d = Expression.random("{c}*x*({a}x + {b})", rejected=[-1,0,1])
\item $\Var{d}$
%- set e = Expression.random("{a}*x*({b}x + {c}) + {d}", rejected=[-1,0,1])
\item $\Var{e}$
%- set f = Expression.random("{c}*x + {d}*x*({a}x + {b})", rejected=[-1,0,1])
\item $\Var{f}$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{solution}
\begin{multicols}{2}
\begin{flalign*}
A =& \Var{a.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
B =& \Var{b.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
C =& \Var{c.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
D =& \Var{d.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
E =& \Var{e.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\begin{flalign*}
F =& \Var{f.simplify().explain() | join('\\\ =& ')}
\end{flalign*}
\end{multicols}
\end{solution}
\begin{exercise}[subtitle={Double développement}]
Développer puis réduire les expressions suivantes
\begin{multicols}{3}
\begin{enumerate}[label={\Alph*=}]
%- set a = Expression.random("(x + {a})*(x + {b})", rejected=[-1,0,1])
\item $\Var{a}$
%- set b = Expression.random("({a}x + {b})*({c}x + {d})", rejected=[-1,0,1])
\item $\Var{b}$
%- set c = Expression.random("({a}x + {b})*({c}x + {d})", rejected=[-1,0,1])
\item $\Var{c}$
%- set d = Expression.random("({c}*x + {d})*({a}x + {b})", rejected=[-1,0,1])
\item $\Var{d}$
%- set e = Expression.random("({b}x + {c})^2", rejected=[-1,0,1])
\item $\Var{e}$
%- set f = Expression.random("({a}x + {b})^2", rejected=[-1,0,1])
\item $\Var{f}$
\end{enumerate}
\end{multicols}
\end{exercise}
\newpage
\printsolutionstype{exercise}
\end{document}