Feat: QF S50 pour les 2nd
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
9ce0c6c47d
commit
9e47a9ffaa
BIN
2nd/Questions_flashs/P2/QF_S50-1.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S50-1.pdf
Normal file
Binary file not shown.
76
2nd/Questions_flashs/P2/QF_S50-1.tex
Executable file
76
2nd/Questions_flashs/P2/QF_S50-1.tex
Executable file
@ -0,0 +1,76 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{listings}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flash}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
% Probabilités
|
||||
Compléter le programme pour avoir une probabilité égale à $\dfrac{2}{5}$ de gagner.
|
||||
|
||||
\vfill
|
||||
|
||||
\lstinputlisting[language=Python]{./code/50-1.py}
|
||||
\vfill
|
||||
|
||||
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Réduction
|
||||
\vfill
|
||||
Démontrer que pour n'importe quel nombre $x$ on a
|
||||
|
||||
\[
|
||||
(-x - 4)(-x + 5) = x^2 + x - 20
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% Inversion formule
|
||||
\vfill
|
||||
On rappelle la formule
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/gravitation}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
Quelle formule permet de calculer $G$
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Taux d'évolution
|
||||
|
||||
\vfill
|
||||
Une quantité est passée de 40 à 10.
|
||||
\vfill
|
||||
Calculer le taux d'évolution de cette transformation.
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
2nd/Questions_flashs/P2/QF_S50-2.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S50-2.pdf
Normal file
Binary file not shown.
74
2nd/Questions_flashs/P2/QF_S50-2.tex
Executable file
74
2nd/Questions_flashs/P2/QF_S50-2.tex
Executable file
@ -0,0 +1,74 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{listings}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flash}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
% Probabilités
|
||||
Compléter le programme pour avoir une probabilité égale à $\dfrac{10}{15}$ de gagner.
|
||||
|
||||
\vfill
|
||||
|
||||
\lstinputlisting[language=Python]{./code/50-1.py}
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Réduction
|
||||
\vfill
|
||||
Démontrer que pour n'importe quel nombre $x$ on a
|
||||
|
||||
\[
|
||||
3x - 3x(x+1) = -3x^2
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% Inversion formule
|
||||
\vfill
|
||||
On rappelle la formule
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.2]{./fig/gravitation}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
Quelle formule permet de calculer $m_a$
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Taux d'évolution
|
||||
|
||||
\vfill
|
||||
Une quantité était de 6. On la fait évoluer avec un taux d'évolution de +10\%.
|
||||
\vfill
|
||||
Quelle est sa nouvelle valeur?
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
2nd/Questions_flashs/P2/QF_S50-3.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S50-3.pdf
Normal file
Binary file not shown.
74
2nd/Questions_flashs/P2/QF_S50-3.tex
Executable file
74
2nd/Questions_flashs/P2/QF_S50-3.tex
Executable file
@ -0,0 +1,74 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{listings}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flash}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 1}
|
||||
% Probabilités
|
||||
Compléter le programme pour avoir une probabilité égale à $\dfrac{1}{3}$ de gagner le gros lot.
|
||||
|
||||
\vfill
|
||||
|
||||
\lstinputlisting[language=Python]{./code/50-3.py}
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Réduction
|
||||
\vfill
|
||||
Démontrer que pour n'importe quel nombre $x$ on a
|
||||
|
||||
\[
|
||||
(x+1)^2 = x^2 + 2x + 1
|
||||
\]
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 3}
|
||||
% Inversion formule
|
||||
\vfill
|
||||
On rappelle la formule
|
||||
\begin{center}
|
||||
\includegraphics[scale=0.8]{./fig/energie_cinetique}
|
||||
\end{center}
|
||||
|
||||
\vfill
|
||||
|
||||
Quelle formule permet de calculer $v$
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Taux d'évolution
|
||||
|
||||
\vfill
|
||||
Une quantité était de 30. On la fait évoluer avec un taux d'évolution de -20\%.
|
||||
\vfill
|
||||
Quelle est sa nouvelle valeur?
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
6
2nd/Questions_flashs/P2/code/50-1.py
Normal file
6
2nd/Questions_flashs/P2/code/50-1.py
Normal file
@ -0,0 +1,6 @@
|
||||
from random import randint
|
||||
de = randint( ____ , ____)
|
||||
if ____ :
|
||||
print(gagné!)
|
||||
else:
|
||||
print(perdu)
|
8
2nd/Questions_flashs/P2/code/50-3.py
Normal file
8
2nd/Questions_flashs/P2/code/50-3.py
Normal file
@ -0,0 +1,8 @@
|
||||
from random import randint
|
||||
de = randint( ____ , ____)
|
||||
if ____ :
|
||||
print("Gagné le gros lot!")
|
||||
elif ___ :
|
||||
print("gagné le petit lot!")
|
||||
else:
|
||||
print("perdu")
|
BIN
2nd/Questions_flashs/P2/fig/gravitation.png
Normal file
BIN
2nd/Questions_flashs/P2/fig/gravitation.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 251 KiB |
Loading…
Reference in New Issue
Block a user