2021-2022/2nd/09_Fonctions_tableaux/exercises.tex
Bertrand Benjamin d4b83798fa
All checks were successful
continuous-integration/drone/push Build is passing
Feat: correction de Camille
2022-01-04 13:43:43 +01:00

154 lines
6.9 KiB
TeX

\begin{exercise}[subtitle={Tableaux pour décrire les fonctions}, step={2}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
\begin{minipage}{0.5\textwidth}
Ci-contre, le graphique d'une fonction.
\begin{enumerate}
\item Décrire ce graphique avec un tableau de signes.
\item Décrire ce graphique avec un tableau de variations.
\item (*) Décrire votre méthode pour construire un tableau de signes à partir du graphique.
\item (*) Décrire votre méthode pour construire un tableau de variations à partir du graphique.
\end{enumerate}
\end{minipage}
\begin{minipage}{0.5\textwidth}
\begin{tikzpicture}[baseline=(a.north), xscale=0.8, yscale=0.45]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=3,ystep=1]
\tkzGrid
\tkzAxeXY
\draw (-4, 1) node [above left] {$\mathcal{C}_f$};
\draw [color=red, very thick] plot [smooth] coordinates {(-5,1) (-4,0) (-3, -3) (-2, -1) (-1, -3) (0, -4) (1, -2.5) (2, 0) (3, 1) (4, 0) (5, 2) };
\end{tikzpicture}
\end{minipage}
\end{exercise}
\begin{exercise}[subtitle={Faire des tableaux}, step={2}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
Pour toutes les fonctions ci-dessous, tracer le tableau de signes puis le tableau de variations.
\begin{multicols}{2}
\begin{enumerate}
\item
\begin{tikzpicture}[baseline=(a.north), xscale=0.7, yscale=0.5]
\tkzInit[xmin=-5,xmax=5,xstep=1,
ymin=-5,ymax=3,ystep=1]
\tkzGrid
\tkzAxeXY
\draw [color=red, very thick] plot [smooth] coordinates {(-5,2) (-4,-2) (-3, -3) (-2, -2) (-1, 0) (0, 0) (1, -2.5) (2, 0) (3, 2) (4, 1) (5, 2) };
\draw (-4, 1) node [above left] {$\mathcal{C}_f$};
\end{tikzpicture}
\item $h(x) = x^3 - 2x + 1$
\columnbreak
\item
\begin{tikzpicture}
% x sin(2x)
\begin{axis}[
axis lines = center,
%grid = both,
xlabel = {$x$},
xtick distance=1,
ylabel = {$y$},
ytick distance=1,
legend pos = north west,
]
\addplot[domain=-6:6,samples=80, color=red, very thick]{x*cos(deg(x)*pi/2)};
\end{axis}
\end{tikzpicture}
\item $i(x) = -2(x-2)(x+1)(x+2)$
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Tracer un graphique à partir de tableaux}, step={3}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
Tracer des graphiques qui correspondent aux tableaux suivants
\begin{multicols}{2}
\begin{enumerate}
\item
\begin{tikzpicture}[baseline=(a.north)]
\tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ f(x) $/2}{-3, 1, 0, 5 }
\tkzTabVar{ +/4, -/3, +/0, -/-1}
\end{tikzpicture}
\item
\begin{tikzpicture}[baseline=(a.north)]
\tkzTabInit[lgt=2,espcl=1]{$ t $/1,$ z(t) $/1}{-5, -1, 3, 4, 5}
\tkzTabLine{, +, z, -, z, +, z, - , }
\end{tikzpicture}
\end{enumerate}
\end{multicols}
\end{exercise}
\begin{exercise}[subtitle={Vrai/Faux}, step={3}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
Ci-dessous, le tableau de signes de la fonction $f$ et le tableau de variations de $g$.
\begin{minipage}{0.4\linewidth}
\begin{tikzpicture}[baseline=(a.north)]
\tkzTabInit[lgt=2,espcl=1]{$ t $/1,$ f(t) $/1}{-5, -3, 1, 2, 5}
\tkzTabLine{, -, z, +, z, -, z, + , }
\end{tikzpicture}
\end{minipage}
\begin{minipage}{0.5\linewidth}
\begin{tikzpicture}[baseline=(a.north)]
\tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ g(x) $/2}{-5, -1, 0, 3, 5 }
\tkzTabVar{ +/1, -/0, +/4, -/-1, +/2}
\end{tikzpicture}
\end{minipage}
Pour chacune des propositions suivantes dire si elle est vraie, fausse ou si les informations à disposition sont suffisantes pour répondre à la question.
\begin{tasks}(2)
\task Entre -3 et 1, la fonction $f$ est positive.
\task Entre 0 et 5, la fonction $g$ est décroissante.
\task Sur l'intervalle $\intFF{-1}{0}$, $g$ est croissante.
\task Sur l'intervalle $\intFF{1}{2}$, $f$ est positive.
\task Sur l'intervalle $\intFF{1}{2}$, $g$ est croissante.
\task Sur l'intervalle $\intFF{-3}{-1}$, $f$ est croissante.
\task $g(1)$ est plus grand que $g(2)$.
\task $g(1)$ est plus grand que $g(4)$.
\task Le maximum de la fonction $g$ est 4.
\task Le minimum de la fonction $g$ est 0.
\task Les solutions de l'équation $f(x) = 0$ sont $x \in \left\{ -3; 1 \right\}$
\task Les solutions de l'équation $f(x) \leq 0$ sont $x \in \intFF{-5}{-3}\cup \intFF{1}{2}$
\end{tasks}
\end{exercise}
\begin{exercise}[subtitle={Création}, step={3}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
Cet exercice est un exercice création. Vous devez créer un vrai/faux à la manière de l'exercice précédent.
Vous devez inventer le tableau de signes d'une fonction $f$ et le tableau de variations d'une fonction $g$. Puis vous inventerez 6 propositions vraies ou fausses. Enfin vous proposerez un correction de votre exercice.
\end{exercise}
\begin{exercise}[subtitle={Tableaux de signes}, step={4}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
Tracer le tableau de signes des fonctions suivantes sans tracer le graphique. Une fois le tableau de signes terminé, vous vérifierez votre tableau avec la calculatrice.
\begin{tasks}(3)
\task $f(x) = 2x$
\task $g(x) = 5x$
\task $h(x) = x + 2$
\task $i(x) = x - 5$
\task $j(x) = x - 1$
\task $k(x) = 2x + 4$
\task $l(x) = 6x - 12$
\task $m(x) = -2x + 6$
\task $n(x) = -5x - 10$
\end{tasks}
\end{exercise}
\begin{exercise}[subtitle={Tableaux de signes et produit}, step={4}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}]
Tracer le tableau de signes des fonctions suivantes sans tracer le graphique. Une fois le tableau de signes terminé, vous vérifierez votre tableau avec la calculatrice.
\begin{tasks}(3)
\task $f(x) = (x + 1)(x - 1)$
\task $g(x) = (x - 2)(x - 5)$
\task $h(x) = 2x (x - 1)$
\task $i(x) = (2x + 6)(3x - 12)$
\task $j(x) = (x - 1)(-5x + 10)$
\task $j(x) = (x + 1)(-x + 2)$
\end{tasks}
\end{exercise}