85 lines
2.4 KiB
TeX
85 lines
2.4 KiB
TeX
|
\documentclass[a4paper,12pt]{article}
|
||
|
\usepackage{myXsim}
|
||
|
|
||
|
\author{Benjamin Bertrand}
|
||
|
\title{Géométrie repérée - Cours}
|
||
|
\date{Janvier 2023}
|
||
|
|
||
|
\pagestyle{empty}
|
||
|
|
||
|
\begin{document}
|
||
|
|
||
|
\maketitle
|
||
|
|
||
|
\bigskip
|
||
|
|
||
|
\section{Géométrie repérée}
|
||
|
|
||
|
Depuis le début de votre scolarité, on peut différentier deux types de géométrie:
|
||
|
|
||
|
\medskip
|
||
|
\begin{multicols}{2}
|
||
|
\textbf{Géométrie dessinée}
|
||
|
|
||
|
Les figures géométriques sont dessinées avec le plus de précision possible. C'est la géométrie de l'architecte, du menuisier...
|
||
|
|
||
|
Ce que l'on \textbf{observe} est ce qui est vrai.
|
||
|
|
||
|
\columnbreak
|
||
|
|
||
|
\textbf{Géométrie abstraite}
|
||
|
|
||
|
Les figures géométriques sont des objets théoriques qui n'existent que dans notre tête. On peut les représenter sous forme de croquis à main levée.
|
||
|
|
||
|
Pour affirmer que quelque chose soit vrai, il faut le \textbf{démontrer}.
|
||
|
|
||
|
\end{multicols}
|
||
|
\medskip
|
||
|
|
||
|
Ces deux géométries peuvent se mélanger, c'est le cas de la géométrie que l'on va étudier: la \textbf{géométrie repérée}. Elle porte ce nom car on va construire un \textbf{repère} dans lequel on va placer nos figures et on repère les points à partir de leurs \textbf{coordonnées}
|
||
|
|
||
|
\paragraph{Exemples}:~
|
||
|
|
||
|
\begin{minipage}{0.45\linewidth}
|
||
|
Repère orthonormé et quelques points
|
||
|
|
||
|
\begin{tikzpicture}
|
||
|
\draw (-4, -4) grid (4, 4);
|
||
|
\draw[->, very thick] (-4, 0) -- (4, 0);
|
||
|
\draw[->, very thick] (0, -4) -- (0, 4);
|
||
|
\draw (0, 0) node [below left] {0};
|
||
|
\draw (1, 0) node [below left] {1};
|
||
|
\draw (0, 1) node [below left] {1};
|
||
|
|
||
|
\draw (4, 2) node {x} node [below left] {$A$};
|
||
|
\draw (-3, 2) node {x} node [below left] {$B$};
|
||
|
\draw (2.5, -3) node {x} node [below left] {$C$};
|
||
|
\end{tikzpicture}
|
||
|
\end{minipage}
|
||
|
\hfill
|
||
|
\begin{minipage}{0.5\linewidth}
|
||
|
Coordonnées
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item $A (...; ...)$
|
||
|
\item $B (...; ...)$
|
||
|
\item $C (...; ...)$
|
||
|
\end{itemize}
|
||
|
|
||
|
|
||
|
Points à placer
|
||
|
|
||
|
\begin{itemize}
|
||
|
\item $D (-2; 3)$
|
||
|
\item $E (-1; -1)$
|
||
|
\item $F (2; -3)$
|
||
|
\end{itemize}
|
||
|
\end{minipage}
|
||
|
|
||
|
\afaire{Trouver les coordonnées des points et placer les points}
|
||
|
|
||
|
Cette géométrie introduite par René Descarte au XVII$^e$ siècle, permet d'introduire le calcul dans la géométrie. Dans la suite nous allons voir comment \textbf{calculer} le milieu d'un segment, une distance entre deux points ou encore si un point est sur une droite.
|
||
|
|
||
|
|
||
|
\end{document}
|