2022-2023/2nd/02_Fonctions_et_graphiques/1B_graph_fonction.tex

70 lines
2.3 KiB
TeX
Raw Normal View History

\documentclass[a4paper,10pt]{article}
\usepackage{myXsim}
\usepackage{tikz}
\usepackage{pgfplots}
\author{Benjamin Bertrand}
\title{Fonctions et graphiques - Cours}
\date{Septembre 2022}
\pagestyle{empty}
\begin{document}
\maketitle
\section{Graphiques}
Afin de mieux comprendre un phénomène (physique, économique, biologique, etc.) on peut chercher à faire le lien entre les évolutions de deux \textfb{grandeurs} différentes. On peut \textbf{représenter} ce lien sous la forme dun \textbf{graphique}: chaque \textbf{grandeur} évolue sur lun des deux axes.
\begin{center}
\begin{tabular}{p{0.3\linewidth}|p{0.3\linewidth}|p{0.3\linewidth}}
Poids des gobelets & Longueur du ballon & Distance à la caméra \\
2022-09-15 07:56:09 +00:00
\includegraphics[scale=0.2]{./fig/weight_stack_sol} &
\includegraphics[scale=0.1]{./fig/balloon_lenght_sol} &
2022-09-15 07:56:09 +00:00
\includegraphics[scale=0.2]{./fig/distance_camera_sol}
\\
Grandeurs reliées: \vspace{2cm}&
Grandeurs reliées: \vspace{2cm}&
Grandeurs reliées: \vspace{2cm}
\end{tabular}
\end{center}
\afaire{Trouver les deux grandeurs reliées dans chacun de ces graphiques}
Une \textbf{fonction} modélise la transformation dune grandeur en une autre ; ceci suppose quà chaque valeur de la grandeur de départ ne correspond quune \textbf{unique} valeur dans ma grandeur darrivée
\paragraph{Exemple} On reprend l'exemple du lancé de la balle.
\begin{tikzpicture}[baseline=(current bounding box.south), xscale=1, yscale=1]
\begin{axis}[ticks=none,
domain = 0:5,
ymin=0,
ymax=5,
axis x line=bottom,
axis y line=left,
xlabel={Distance},
ylabel={Hauteur}]
\end{axis}
%\draw[blue] (0,0) plot[domain=1:4, very thick] (\x,{-1.33*\x*\x+6.66*\x-4.33});
\draw[thick] (1,1) parabola bend (3.5,4) (6,1);
\end{tikzpicture}
\begin{tikzpicture}[baseline=(current bounding box.south), xscale=1, yscale=1]
\begin{axis}[ticks=none,
domain = 0:5,
ymin=0,
ymax=5,
axis x line=bottom,
axis y line=left,
xlabel={Hauteur},
ylabel={Distance}]
\end{axis}
\draw[yshift=6.5cm, rotate=-90,thick] (1,1) parabola bend (3.5,4) (6,1);
\end{tikzpicture}
2022-09-15 07:56:09 +00:00
Le premier graphe représente une fonction. \hfill Le deuxième graphe ne représente pas une fonction.
\end{document}