diff --git a/1ST/Questions_flashs/P4/QF_S09-1.pdf b/1ST/Questions_flashs/P4/QF_S09-1.pdf new file mode 100644 index 0000000..e5e481d Binary files /dev/null and b/1ST/Questions_flashs/P4/QF_S09-1.pdf differ diff --git a/1ST/Questions_flashs/P4/QF_S09-1.tex b/1ST/Questions_flashs/P4/QF_S09-1.tex new file mode 100755 index 0000000..051e22a --- /dev/null +++ b/1ST/Questions_flashs/P4/QF_S09-1.tex @@ -0,0 +1,137 @@ +\documentclass[12pt]{classPres} +\usepackage{tkz-fct} +\usepackage{pgfplots} +\usetikzlibrary{decorations.markings} +\pgfplotsset{compat=1.18} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Première ST + \vfill + 30 secondes par calcul + \vfill + \textbf{Calculatrice autorisée} + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + % Développer + Développer l'expression suivante + \[ + (3x - 2)(x - 1) = + \] +\end{frame} + +\begin{frame}{Calcul 2} + % tableau signe et variations + On a fait le calcul suivant + \[ + f'(x) \geq 0 \qquad \cdots \qquad x \leq 1 + \] + \vfill + Tracer le tableur de signe de $f(x)$ correspondant. + \vfill + \begin{center} + \small + \begin{tikzpicture} + \tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}% + \tkzTabLine{,,}% + \tkzTabVar{,}% + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 3} + % probabilité + Calculer la probabilité $P(\mbox{avoir deux } C \mbox{ et un} \overline{C})$ + \begin{center} + \begin{tikzpicture}[grow=down, sloped, scale=1] + \tikzset{level 1/.style={sibling distance=6cm}} + \tikzset{level 2/.style={sibling distance=3cm}} + \tikzset{level 3/.style={sibling distance=1.5cm}} + + \node {.} + child {node {C} + child {node {C} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.8} + } + child { node {$\overline{C}$} + child {node {C} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.2} + }% + ; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 4} + % Taux évo invers + \vfill + Une quantité vaut 100 après une augmentation de 10\%. Quelle était la valeur avant cette augmentation ? + \vfill +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document} diff --git a/1ST/Questions_flashs/P4/QF_S09-2.pdf b/1ST/Questions_flashs/P4/QF_S09-2.pdf new file mode 100644 index 0000000..9591729 Binary files /dev/null and b/1ST/Questions_flashs/P4/QF_S09-2.pdf differ diff --git a/1ST/Questions_flashs/P4/QF_S09-2.tex b/1ST/Questions_flashs/P4/QF_S09-2.tex new file mode 100755 index 0000000..720e96d --- /dev/null +++ b/1ST/Questions_flashs/P4/QF_S09-2.tex @@ -0,0 +1,137 @@ +\documentclass[12pt]{classPres} +\usepackage{tkz-fct} +\usepackage{pgfplots} +\usetikzlibrary{decorations.markings} +\pgfplotsset{compat=1.18} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Première ST + \vfill + 30 secondes par calcul + \vfill + \textbf{Calculatrice autorisée} + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + % Développer + Développer l'expression suivante + \[ + (1 - 2x)(4x - 1) = + \] +\end{frame} + +\begin{frame}{Calcul 2} + % tableau signe et variations + On a fait le calcul suivant + \[ + f'(x) \geq 0 \qquad \cdots \qquad x \leq -10 + \] + \vfill + Tracer le tableur de signe de $f(x)$ correspondant. + \vfill + \begin{center} + \small + \begin{tikzpicture} + \tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}% + \tkzTabLine{,,}% + \tkzTabVar{,}% + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 3} + % probabilité + Calculer la probabilité $P(\mbox{2 ou plus } C)$ + \begin{center} + \begin{tikzpicture}[grow=down, sloped, scale=1] + \tikzset{level 1/.style={sibling distance=6cm}} + \tikzset{level 2/.style={sibling distance=3cm}} + \tikzset{level 3/.style={sibling distance=1.5cm}} + + \node {.} + child {node {C} + child {node {C} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.8} + } + child { node {$\overline{C}$} + child {node {C} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + child {node {C} + edge from parent + node[above] {0.8} + } + child {node {$\overline{C}$} + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.2} + } + edge from parent + node[above] {0.2} + }% + ; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 4} + % Taux évo invers + \vfill + Une quantité vaut 60 après une augmentation de 20\%. Quelle était la valeur avant cette augmentation ? + \vfill +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document}