Feat(1ST): QF pour S08

This commit is contained in:
Bertrand Benjamin 2023-02-18 07:21:01 +01:00
parent 882fc5fe69
commit 08d2d29482
6 changed files with 417 additions and 0 deletions

Binary file not shown.

View File

@ -0,0 +1,139 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\textbf{Calculatrice autorisée}
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Dérivation
Déterminer la fonction dérivée de
\[
f(x) = 10x^2 - 3x + 1
\]
\end{frame}
\begin{frame}{Calcul 2}
% tableau signe et variations
On a fait le calcul suivant
\[
f'(x) \geq 0 \qquad \cdots \qquad x \leq 5
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\begin{center}
\small
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}%
\tkzTabLine{,,}%
\tkzTabVar{,}%
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% probabilité
Calculer la probabilité $P(CC\overline{C})$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 4}
% Taux évolution
\vfill
Une entreprise décide de baisser ses emissions de 10\% par an. En 2010, elle émettait \np{10 000} tonnes.
\vfill
Quels seront ses emissions en 2012.
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,139 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\textbf{Calculatrice autorisée}
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Dérivation
Déterminer la fonction dérivée de
\[
f(x) = 0.1x - 12x^2 + 2
\]
\end{frame}
\begin{frame}{Calcul 2}
% tableau signe et variations
On a fait le calcul suivant
\[
f'(x) \geq 0 \qquad \cdots \qquad x \geq 10
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\begin{center}
\small
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}%
\tkzTabLine{,,}%
\tkzTabVar{,}%
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% probabilité
Calculer la probabilité $P(\mbox{avoir 2 } C \mbox{ et un} \overline{C})$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 4}
% Taux évolution
\vfill
Une entreprise décide d'augmenter production de 50\% par an. En 2020, elle produisait \np{10 000} tonnes.
\vfill
Quels seront ses emissions en 2023.
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}

Binary file not shown.

View File

@ -0,0 +1,139 @@
\documentclass[12pt]{classPres}
\usepackage{tkz-fct}
\usepackage{pgfplots}
\usetikzlibrary{decorations.markings}
\pgfplotsset{compat=1.18}
\author{}
\title{}
\date{}
\begin{document}
\begin{frame}{Questions flashs}
\begin{center}
\vfill
Première ST
\vfill
30 secondes par calcul
\vfill
\textbf{Calculatrice autorisée}
\vfill
\tiny \jobname
\end{center}
\end{frame}
\begin{frame}{Calcul 1}
% Dérivation
Déterminer la fonction dérivée de
\[
f(x) = -3 + 5x - 0.1x^2
\]
\end{frame}
\begin{frame}{Calcul 2}
% tableau signe et variations
On a fait le calcul suivant
\[
f'(x) \geq 0 \qquad \cdots \qquad x \geq -4
\]
\vfill
Tracer le tableur de signe de $f(x)$ correspondant.
\vfill
\begin{center}
\small
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=6]{$x$/1,Signe de $f'(x)$/2, Variations de $f(x)$/2}{\hspace{5cm}, \hspace{5cm}}%
\tkzTabLine{,,}%
\tkzTabVar{,}%
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 3}
% probabilité
Calculer la probabilité $P(\mbox{avoir un } C \mbox{ et deux} \overline{C})$
\begin{center}
\begin{tikzpicture}[grow=down, sloped, scale=1]
\tikzset{level 1/.style={sibling distance=6cm}}
\tikzset{level 2/.style={sibling distance=3cm}}
\tikzset{level 3/.style={sibling distance=1.5cm}}
\node {.}
child {node {C}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child { node {$\overline{C}$}
child {node {C}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
child {node {C}
edge from parent
node[above] {0.6}
}
child {node {$\overline{C}$}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}
edge from parent
node[above] {0.4}
}%
;
\end{tikzpicture}
\end{center}
\end{frame}
\begin{frame}[fragile]{Calcul 4}
% Taux évolution
\vfill
Une entreprise décide d'augmenter production de 100 tonnes par an. En 2020, elle produisait \np{10 000} tonnes.
\vfill
Quels seront ses emissions en 2030.
\vfill
\end{frame}
\begin{frame}{Fin}
\begin{center}
On retourne son papier.
\end{center}
\end{frame}
\end{document}