From 45dd5b97cc23326512545143bc5394a506fdeac6 Mon Sep 17 00:00:00 2001 From: Bertrand Benjamin Date: Sun, 1 Jan 2023 16:47:40 +0100 Subject: [PATCH] =?UTF-8?q?Feat(2nd):=20pr=C3=A9pare=20les=20exercices=20e?= =?UTF-8?q?t=20les=20solutions=20pour=20chap=2008?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../exercises.tex | 335 ++++++++++++++++++ .../index.rst | 54 +++ .../plan_de_travail.pdf | Bin 0 -> 49363 bytes .../plan_de_travail.tex | 60 ++++ .../solutions.pdf | Bin 0 -> 37461 bytes .../solutions.tex | 30 ++ 6 files changed, 479 insertions(+) create mode 100644 2nd/08_Tableaux_representant_une_fonction/exercises.tex create mode 100644 2nd/08_Tableaux_representant_une_fonction/index.rst create mode 100644 2nd/08_Tableaux_representant_une_fonction/plan_de_travail.pdf create mode 100644 2nd/08_Tableaux_representant_une_fonction/plan_de_travail.tex create mode 100644 2nd/08_Tableaux_representant_une_fonction/solutions.pdf create mode 100644 2nd/08_Tableaux_representant_une_fonction/solutions.tex diff --git a/2nd/08_Tableaux_representant_une_fonction/exercises.tex b/2nd/08_Tableaux_representant_une_fonction/exercises.tex new file mode 100644 index 0000000..28ee9ac --- /dev/null +++ b/2nd/08_Tableaux_representant_une_fonction/exercises.tex @@ -0,0 +1,335 @@ +\begin{exercise}[subtitle={Qui est-ce des fonctions}, step={1}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\groupMode}] + À voir en classe +\end{exercise} + +\begin{exercise}[subtitle={Tableaux pour décrire les fonctions}, step={2}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\trainMode}] + \begin{minipage}{0.5\textwidth} + + Ci-contre, le graphique d'une fonction. + + \begin{enumerate} + \item Décrire ce graphique avec un tableau de signes. + \item Décrire ce graphique avec un tableau de variations. + \item (*) Décrire votre méthode pour construire un tableau de signes à partir du graphique. + \item (*) Décrire votre méthode pour construire un tableau de variations à partir du graphique. + \end{enumerate} + + \end{minipage} + \begin{minipage}{0.5\textwidth} + \begin{tikzpicture}[baseline=(a.north), xscale=0.8, yscale=0.45] + \tkzInit[xmin=-5,xmax=5,xstep=1, + ymin=-5,ymax=3,ystep=1] + \tkzGrid + \tkzAxeXY + \draw (-4, 1) node [above left] {$\mathcal{C}_f$}; + \draw [color=red, very thick] plot [smooth] coordinates {(-5,1) (-4,0) (-3, -3) (-2, -1) (-1, -3) (0, -4) (1, -2.5) (2, 0) (3, 1) (4, 0) (5, 2) }; + \end{tikzpicture} + \end{minipage} +\end{exercise} + +\begin{solution} + + \begin{enumerate} + \item Tableaux de signes + \begin{center} + \begin{tikzpicture} + \tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ f(x) $/1}{-5, -4, -2, 4, 5} + \tkzTabLine{,+, z, -, z, +, z, +, } + \end{tikzpicture} + \end{center} + \item Tableaux de variations + \begin{center} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ f(x) $/2}{-5, -3, -2, 0, 3, 4, 5} + \tkzTabVar{ +/1, -/-3, +/-1, -/-4, +/1, -/0, +/2} + \end{tikzpicture} + \end{center} + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Faire des tableaux}, step={2}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\trainMode}] + Pour toutes les fonctions ci-dessous, tracer le tableau de signes puis le tableau de variations. + + \begin{multicols}{2} + \begin{enumerate} + \item + \begin{tikzpicture}[baseline=(a.north), xscale=0.7, yscale=0.5] + \tkzInit[xmin=-5,xmax=5,xstep=1, + ymin=-5,ymax=3,ystep=1] + \tkzGrid + \tkzAxeXY + \draw [color=red, very thick] plot [smooth] coordinates {(-5,2) (-4,-2) (-3, -3) (-2, -2) (-1, 0) (0, 0) (1, -2.5) (2, 0) (3, 2) (4, 1) (5, 2) }; + \draw (-4, 1) node [above left] {$\mathcal{C}_f$}; + \end{tikzpicture} + \item $h(x) = x^3 - 2x + 1$ + \columnbreak + \item + \begin{tikzpicture} + % x sin(2x) + \begin{axis}[ + axis lines = center, + %grid = both, + xlabel = {$x$}, + xtick distance=1, + ylabel = {$g(x)$}, + ytick distance=1, + legend pos = north west, + ] + \addplot[domain=-6:6,samples=80, color=red, very thick]{x*cos(deg(x)*pi/2)}; + \end{axis} + \end{tikzpicture} + \item $i(x) = -2(x-2)(x+1)(x+2)$ + \end{enumerate} + \end{multicols} +\end{exercise} + +\begin{solution} + \begin{enumerate} + \item Tableau de signes + \begin{center} + \begin{tikzpicture} + \tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ f(x) $/1}{-5, -4.5, -1, 0, 2, 5} + \tkzTabLine{, +, z, -, z, +, z, -, z, +,} + \end{tikzpicture} + \end{center} + + Tableau de variations + \begin{center} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ f(x) $/2}{-5, -3, 0.5, 1, 3, 4, 5} + \tkzTabVar{ +/2, -/-3, +/0.25, -/-2.5, +/2, -/1, +/2} + \end{tikzpicture} + \end{center} + + \item Pour réaliser ces tableaux, il faut au préalable tracer le graphique de la fonction à la calculatrice. + + \begin{minipage}{0.5\linewidth} + \begin{tikzpicture} + \begin{axis}[ + axis lines = center, + grid = both, + xlabel = {$x$}, + ylabel = {$h(x)$}, + legend pos = north west, + ] + \addplot[domain=-2:2,samples=80, color=red, very thick]{x^3 - 2*x + 1}; + \end{axis} + \end{tikzpicture} + + \end{minipage} + \begin{minipage}{0.5\linewidth} + Tableau de signes + \begin{center} + \begin{tikzpicture} + \tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ f(x) $/1}{-5, -4.5, -1, 0, 2, 5} + \tkzTabLine{, +, z, -, z, +, z, -, z, +,} + \end{tikzpicture} + \end{center} + + Tableau de variations + \begin{center} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=1]{$ x $/1, $ f(x) $/2}{-5, -3, 0.5, 1, 3, 4, 5} + \tkzTabVar{ +/2, -/-3, +/0.25, -/-2.5, +/2, -/1, +/2} + \end{tikzpicture} + \end{center} + + \end{minipage} + + \item Tableau de signes + \begin{center} + \begin{tikzpicture} + \tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ g(x) $/1}{-6, -5, -3, -1, 0, 1, 3, 5, 6} + \tkzTabLine{, +, z, -, z, +, z, -, z, +, z, -, z, +, z, -,} + \end{tikzpicture} + \end{center} + + Tableau de variations + \begin{center} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ g(x) $/2}{-6, -4, -2, -0.5, 0.5, 2, 4, 6} + \tkzTabVar{+/6, -/-4, +/2, -/-0.5, +/0.5, -/-2, +/4, -/-6} + \end{tikzpicture} + \end{center} + + \item Pour réaliser ces tableaux, il faut au préalable tracer le graphique de la fonction à la calculatrice. + + \begin{minipage}{0.5\linewidth} + \begin{tikzpicture} + \begin{axis}[ + axis lines = center, + grid = both, + xlabel = {$x$}, + ylabel = {$i(x)$}, + ytick distance=5, + legend pos = north west, + ] + \addplot[domain=-3:3,samples=80, color=red, very thick]{-2*(x-2)*(x+1)*(x+2)}; + \end{axis} + \end{tikzpicture} + + \end{minipage} + \begin{minipage}{0.5\linewidth} + Tableau de signes + \begin{center} + \begin{tikzpicture} + \tkzTabInit[lgt=2,espcl=1]{$ x $/1,$ f(x) $/1}{-3, -2, -1, 2, 3} + \tkzTabLine{, +, z, -, z, +, z, -,} + \end{tikzpicture} + \end{center} + + Tableau de variations + \begin{center} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ f(x) $/2}{-3, -1.5, 0.8, 3} + \tkzTabVar{ +/20, -/-2, +/13, -/-40} + \end{tikzpicture} + \end{center} + \end{minipage} + \end{enumerate} +\end{solution} + +\begin{exercise}[subtitle={Vrai-Faux}, step={2}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\trainMode}] +\end{exercise} + +\begin{solution} + +\end{solution} + +\begin{exercise}[subtitle={Tracer un graphique à partir de tableaux}, step={3}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\trainMode}] + Tracer des graphiques qui correspondent aux tableaux suivants + + \begin{multicols}{2} + \begin{enumerate} + \item + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ f(x) $/2}{-3, 0, 1, 5 } + \tkzTabVar{ +/4, -/2, +/3, -/-1} + \end{tikzpicture} + \item + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=2,espcl=1]{$ t $/1,$ z(t) $/1}{-5, -1, 3, 4, 5} + \tkzTabLine{, +, z, -, z, +, z, - , } + \end{tikzpicture} + \end{enumerate} + \end{multicols} +\end{exercise} + +\begin{solution} + \begin{multicols}{2} + \begin{enumerate} + \item + \begin{tikzpicture}[baseline=(a.north), xscale=0.8, yscale=0.45] + \tkzInit[xmin=-3,xmax=5,xstep=1, + ymin=-2,ymax=5,ystep=1] + \tkzGrid + \tkzAxeXY + \draw [color=red, very thick] plot coordinates {(-3, 4) (0, 2) (1, 3) (5, -1)}; + \end{tikzpicture} + \item + \begin{tikzpicture}[baseline=(a.north), xscale=0.8, yscale=0.45] + \tkzInit[xmin=-5,xmax=5,xstep=1, + ymin=-2,ymax=2,ystep=1] + \tkzGrid + \tkzAxeXY + \draw [color=red, very thick] plot [smooth] coordinates {(-5, 1) (-1, 0) (0, -1) (3, 0) (3.5, 1) (4, 0) (5, -1)}; + \end{tikzpicture} + \end{enumerate} + \end{multicols} +\end{solution} + +\begin{exercise}[subtitle={Vrai/Faux}, step={3}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\trainMode}] + Ci-dessous, le tableau de signes de la fonction $f$ et le tableau de variations de $g$. + + \begin{minipage}{0.4\linewidth} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=2,espcl=1]{$ t $/1,$ f(t) $/1}{-5, -3, 1, 2, 5} + \tkzTabLine{, -, z, +, z, -, z, + , } + \end{tikzpicture} + \end{minipage} + \begin{minipage}{0.5\linewidth} + \begin{tikzpicture}[baseline=(a.north)] + \tkzTabInit[lgt=1,espcl=2]{$ x $/1, $ g(x) $/2}{-5, -1, 0, 3, 5 } + \tkzTabVar{ +/1, -/0, +/4, -/-1, +/2} + \end{tikzpicture} + \end{minipage} + + Pour chacune des propositions suivantes dire si elle est vraie, fausse ou si les informations à disposition sont suffisantes pour répondre à la question. + \begin{tasks}(2) + \task Entre -3 et 1, la fonction $f$ est positive. + \task Entre 0 et 5, la fonction $g$ est décroissante. + \task Sur l'intervalle $\intFF{-1}{0}$, $g$ est croissante. + \task Sur l'intervalle $\intFF{1}{2}$, $f$ est positive. + + \task Sur l'intervalle $\intFF{1}{2}$, $g$ est croissante. + \task Sur l'intervalle $\intFF{-3}{-1}$, $f$ est croissante. + \task $g(1)$ est plus grand que $g(2)$. + \task $g(1)$ est plus grand que $g(4)$. + + \task Le maximum de la fonction $g$ est 4. + \task Le minimum de la fonction $g$ est 0. + \task Les solutions de l'équation $f(x) = 0$ sont $x \in \left\{ -3; 1 \right\}$ + \task Les solutions de l'équation $f(x) \leq 0$ sont $x \in \intFF{-5}{-3}\cup \intFF{1}{2}$ + \end{tasks} +\end{exercise} + +\begin{solution} + \begin{tasks}(2) + \task Vrai + \task Faux, elle est décroissante entre 0 et 3 puis croissante. + + \task Vrai + \task Faux, elle est négative + + \task Faux, elle est décroissante sur $\intFF{0}{3}$ donc sur $\intFF{1}{2}$ + \task On ne peut pas savoir + + \task Faux, la fonction est décroissante entre 0 et 3 donc $g(1) > g(2)$ + \task On ne peut pas savoir + + \task Vrai + \task Faux, c'est -1 + + \task Faux, il manque 2 + \task Vrai + \end{tasks} +\end{solution} + +\begin{exercise}[subtitle={Création}, step={3}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={}] + Cet exercice est un exercice création. Vous devez créer un vrai/faux à la manière de l'exercice précédent. + + Vous devez inventer le tableau de signes d'une fonction $f$ et le tableau de variations d'une fonction $g$. Puis vous inventerez 6 propositions vraies ou fausses. Enfin vous proposerez un correction de votre exercice. +\end{exercise} + +\begin{exercise}[subtitle={Tableaux de signes}, step={4}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}, mode={\trainMode}] + Tracer le tableau de signes des fonctions suivantes sans tracer le graphique. Une fois le tableau de signes terminé, vous vérifierez votre tableau avec la calculatrice. + + \begin{tasks}(3) + \task $f(x) = 2x$ + \task $g(x) = 5x$ + \task $h(x) = x + 2$ + + \task $i(x) = x - 5$ + \task $j(x) = x - 1$ + \task $k(x) = 2x + 4$ + + \task $l(x) = 6x - 12$ + \task $m(x) = -2x + 6$ + \task $n(x) = -5x - 10$ + \end{tasks} +\end{exercise} + + +\begin{exercise}[subtitle={Tableaux de signes et produit}, step={4}, origin={Création}, topics={Fonctions}, tags={Tableaux de signes, Tableaux de variations}. mode={\trainMode}] + Tracer le tableau de signes des fonctions suivantes sans tracer le graphique. Une fois le tableau de signes terminé, vous vérifierez votre tableau avec la calculatrice. + + \begin{tasks}(3) + \task $f(x) = (x + 1)(x - 1)$ + \task $g(x) = (x - 2)(x - 5)$ + \task $h(x) = 2x (x - 1)$ + + \task $i(x) = (2x + 6)(3x - 12)$ + \task $j(x) = (x - 1)(-5x + 10)$ + \task $j(x) = (x + 1)(-x + 2)$ + \end{tasks} +\end{exercise} diff --git a/2nd/08_Tableaux_representant_une_fonction/index.rst b/2nd/08_Tableaux_representant_une_fonction/index.rst new file mode 100644 index 0000000..df55ce2 --- /dev/null +++ b/2nd/08_Tableaux_representant_une_fonction/index.rst @@ -0,0 +1,54 @@ +Tableaux representant une fonction +################################## + +:date: 2023-01-01 +:modified: 2023-01-01 +:authors: Benjamin Bertrand +:tags: Fonction, Tableau +:category: 2nd +:summary: Représenter et construire les tableaux de signes et de variations representant des fonctions. + + +Éléments du programme +===================== + +Contenus +-------- + +- Croissance, décroissance, monotonie d’une fonction définie sur un intervalle. Tableau de variations. +- Maximum, minimum d’une fonction sur un intervalle. + +Capacités attendues +------------------- + +- Relier représentation graphique et tableau de variations. +- Déterminer graphiquement les extremums d’une fonction sur un intervalle. +- Exploiter un logiciel de géométrie dynamique ou de calcul formel, la calculatrice ou Python pour décrire les variations d'une fonction donnée par une formule. +- Résoudre une équation, une inéquation produit ou quotient, à l’aide d’un tableau de signes. + +Progression +=========== + +Étape 1: Qui est-ce des fonctions +--------------------------------- + +Les élèves sont groupes. Ils se répartissent les rôles: descripteur, devineur et observateur. + +Le descripteur a une pile de graphique dans laquelle il va tirer une carte après l'autre. Il va devoir décrire la fonction au devineur. Quand le devineur pense avoir identifié la fonction, il donne le nom de la fonction et le desripteur le note sur le graphique. + +Pendant ce temps, l'observateur note les éléments de descriptions qui lui ont semblé pertinents pour identifier la fonction. + +.. image:: ./1E_qui_est_ce_fonctions.pdf + :height: 200px + :alt: Fonctions pour le qui est-ce + +On espère que sorte la notion de signe d'une fonction et de variations. Ce qui nous permettra d'introduire la notion de tableau de signes et de variations. + +Étape 2: Tracer les tableaux +---------------------------- + +Étape 3: Lire et interpréter les tableaux +----------------------------------------- + +Étape 4: Tableau de signe à partir d'une inéquation +--------------------------------------------------- diff --git a/2nd/08_Tableaux_representant_une_fonction/plan_de_travail.pdf b/2nd/08_Tableaux_representant_une_fonction/plan_de_travail.pdf new file mode 100644 index 0000000000000000000000000000000000000000..298fa95b80a7d85533acf0d2a6d1f8e072957c84 GIT binary patch literal 49363 zcmce;V~{RQvo1WgZQHhOn`>;_Yi!%r8r!yQduEO8nQxwVfBWnmaZa2#f8N~@cXvis zRcGd%*>zQRWHqURh!`y+9V-;+`1A(2PB@_=20lkWcy$J!mhPkxTSwgdUHqLsT%8_`rn3~44GAHovEbFc--~(K04#xzdKBlOr6+r- zUX=bZQc`?^Q+~aE@E>OLthezWw{Qv$umObu@6M?z?Zb}Int$VGC|l5G0-eos?{ry; zc^kz=_hKg97$#zhD@VtbITi$UlUWy!e67O`J9_v&?HRSKf&pm?VW*TaiunHKajk7G zVq`?aPTnN4o?_?%LrpqIz0mI%0%zsG<qW!?A_Z9j10u8 z)+lL{*eX$*2rp!0EtIbuX(z8GBjre}kv0?}qqzVI2@Ypn76K2C^B*>Z9iImB#*k&A z%a3uICZ>+(6BgegVu9@NV6~JXVdbv@S1ng&WbhzrcZi^480C_23fiZy>7}+Cvs0+g z$&Rbq&oWSq+v;YyU>&CaHLoe3P6nqI#K6;4`^2rn=HSfV6Vfumit4HXi}sK^V`hEz zWk~89RwxH-X!Bp-dGC)mqh3aKoODmwUMyP=&$_Nm8;u^`-JyL%aA9+x(GgOfrBJVP zg`(;n#4RJc9l+@_MhQUK?d-wYu^dVuQV9;mpc;0bW-N=LUrQSH$Zx7XnBe)#LZoIA zX@!a1-@bFEWj6no1ipVSAcwi2>>9|TEXUkzQ)OwYyUw>&m%O9f@W}#9ey&DoU}@1@ zoj{-IhFnqa$QziFv%&;3abtlZP6gFnnawc&SR@lMr zo6xoPNAEwDekTp0`FUHWRzWU(vREQymLc=|?4D1BrkKz%SB(WeRL($e_!r08pyR; z7Ck2;W(eg`lh@l^s%i{7#?UrSP&i2y%Ci&y%3%HRR(~YV8wA?Lt$pr_-&E} z*tI4T?ILVT2^}pvpWqTe1xqfaHT9OoZU!o@$%*GBt3@e8&BdjStK!?lt(!t|_$Q0` zWVjKgp;Lr-FxUj+c6_ruT$&>1xl+j-11iHP(YYWJ-$DyO)v0^FI-Q?>Iw5*Z$4Q_C z*z;+~p4_rJnmbYLI0d|A{_Y`eu6_S`86t%vRch_9EPwjj9TR4u-&yOeyyfTu+sL~! z(0siXLow%V&F`JY{qW4%%t5V! z>saGAUR1@S6AjQdOQ8ZzVvT5^4KZv0eTJ=yZiW-6?5>gzv`q_xdu*RA|S<}t*9Rs#JL%+L)b)d{y zQ3!$tY`G6KVa;@_%a#xXkEx9W`xPqBg0vU%Ko;(^kp_Dl1B`{V^p>Fp6g5oWJ=4M) zm@u6aMO`04rGl8&1`I|Ze4+Jct+SF*Sl@7Gkqxz$?RF-bFiC#rGi->?vA}^1jBv}i zA7F?JFr+XP9ndk%V0oiZJV(S0OR<*lervfQNg9}t6hNLOZhQc`c1TgUZgC=(D3sb$ zN=AlQWG_gq%>wkU#%!K>0DfXewBg@pXoX7bw1RzoGZ#n8whG6I#!$a(9-_JdiLB=v z^1Cud#_x=sEwbP$m&*z&pPCfq+8zY}kw{3^NRb#?&Za}qA z`|(e^8vn%W$yQ*MM>j&zTO>ELR<++!jeuEtmi9SwEl6q;*hC0}l3&TKb6K1hRV6n6 zLwLE&vz?@&7Qyn^mpO7vYEyTmG&U(=OJdVr1g{aFzP~2_A;8E7YR^W1J-mD6;pB-@$M@S;dI`oVI2QNpH3)^)2yH?Jfz({+6HU&i0z8{;9*8Fl*|7dq#C(ZZucMJYAL5(t<7XeSv^`$g1u`OZCjH%S4s1`VJemHs{SLo zX-U5?T;92br(y{wYxdGdxi(p^<7`#R=CJN7(wDX4c!O)t)-U0$=Qzt?`24Fx|0FBh z$#r^-)9fUxrpH3#D2+8U1PSAHYa=B3L9CzE7rDRbMt3ij?{L-c?$#%s>Wq`tS#F6_ z^+Y9G+2w~=LU;V*_yGt;clN;Uba{0fsCndH)|Cc-ctMN|=G$T0TXvvvgj zTH~wD;V9j^R+f6|EEHL3Vr1v+>|+ey*ZuiY{@V9>ECXCUQ$>u&_icjPQ||i!esA`{ zUdA>ieMG*8@9PEDsGp(a(~I!TEqI6YQ{~|r*teTK|MgRuLafK(_Di1sGiSTE)NXgN zqzOa+_V#@?GOS6AvtU_*PWBb^C7qurgzxL&%I*;~gTpLKFOQAr@%Fyv`s;<<^Umz; z+3PQ9m)8ez@7Ei`ysebi+h^)X>@}aCg#}d!yRF-PQotz_f_{o70u`jn`7@SZLo9M1 zRW_h>q|XeXFnrn@%81B02VGlqo<8~o_1$R3Ylr;soVlHzl`VI9nykimZH%4N9~zVq zCiQi)zkR{hqD6ekJ$XJm3;gjQr2$1mrFNyShFls%no!T{&T-NU`F_D450~hfa6uYQ zsCs$9yxDM@r&8 zT$rUV5xq|;+0bOVlS{pcx86oBo~PDoIw@|}+^I!%hKX9}lH=5paJbbZl%3b4=~!xu z6hd+&n7PK1B|UN^l$yFI_xgbN561^8&Fi)~uS6Szn21I_>9SwajM6=jnkg>TbVHkN zzew<(Xg>q-5gtw@ZkQ(4#!USu7drg@@QLC03+|}m4wgTEYRIhC4X({?K0laLgMIs8}WApds<7aA3b}0grxxk7c;H4gfA53lw6`vF73_#NS#V zKXFW)#=3XMYSTQ=CXPL?^;!OqhOe$ulHeCOSq9YLa>S@S0d}^)>kTF=jrZdGoq7zI z6**;j`3Rtw;bngZ>?OeRK;RSv{&GBsH;cuQVhKQ3)k6cTO3pUJCXFq}DUf;$x60ud zFcikw;+iLABx_1+ZE^KGIFHiYf_M%%^%xCf|EhO(7HBeF)?q3riX*tpZ0<| zIr}P}$r~(oVjlcSw?%`U&G!O9yb^PKRN8@$0&5$T}&(|IZ=9JjQtW-x$wNn zs!MHmv-mbKw`16arE2D8v!$BYa%<_N+XYwgoP__mY9cHF_|E!U?}~?X|B^)}_|7$5 z2Hb*63dryHo_Y-A+*Hi;NbfE)%`hjy~hP!;x=%%*ki$& zR)VBUrZ0TyLFu5zw7keoN)%5TD7GO9TR&ze12e;(y^J3|21`*t{M(y=5R6d+PHbto zjm&6SLIT3>(m$wkrxqsRmj#1<68xHVwGB#~{jrijqdS8Z8?!q#K{v93(DtsatVUip zk{g+(kcE1AL4<5x#iYIv*(u@YN*;Nv;?i0i^S9)<*O;lhnzM1pGzC6`c_Aany_$7K zh(|rctl(41CW-() zzuC&u&aloS3$Eg#A(?K%dUsikuy#zo%EWLAxF zkg97^g(JIVqMrV>U5U+e6rP$jJKc3?R`M|~i{^-o=KF^jcEQ>MUGN=#uNM_E^$eXB zuCidTNT_?QxC;@6gpcUv433DH&K-M>q@Q{VJz&oC0BK@r|CkV3>^z#NgeJUpVm^GfR6CR?E5L(3Q|c|) znq$6B$dIV@Lx1X9+hLHv0+oCb;gI$ZTq~B1ac|NU+b^C4N?%D4aWs^fL->4s`Jy?b> zkUH`@=qO^W_~Nxl-C*)CRr7nxP@b~%+9nPYI<-b8&$mnA;V_nX=gkShI9JMe3TYdmADZWlj3)$AcH)xhNXEK4X9<#q1f+nj8UBHI(^LJ zM5MAgr-qS3(`hRxY1kp=2;j_Gg>LEdhFon=BigFo%E&G_X++7o`_m#S?xj1$PdN^X zc2R)@K3`51<`Ev|h%NGGJl{@n!c)Jwt5YIdI%O%Qjsvva=_$q@zi@}ONDu>~#G|G( zm}}1^5mH2(q?Psbah`L;nUpd2l6+guKREG06nuZXyc`>hhFhqd!a4CUUUe)@T}a}+T;Oz- zMT2gLUNe1ft~*OblffPwH_vGPU0esODiLSEYixTCP&nm``|Ib5Sl7f<;&p+oJ)872 z`?bcGLzuCj9>-P)W9>j|46VNI+lJsnjeIW2YaccblroH_-w0C4NOb;@H#0ZYFb$eI&8Xu#a3 zj;IRU5JmAv9G!b6%-ugET|qBy%sNgFqcDBGGmjY=m2YX6FE*{!>{t%ZLC`)) zoTpOhPyyOCTQsZBcR_QoQDRspNt-P(@%h*!%&BauVgf=ZWM(&2bI>T%2aOSkDmXEi z#_$Xkh`B0}sgaf>xdg6C`2And+8K0G?SLzL;K1h=eQvG=|J-J$E2eTEdcHG}T`JO< z9g;4wO%uO%Gbv^^8Rdd)Lxdyvu=ytLv=uz@>aM;IqYGW4@w>r8$p6;yCntX(-6Q4F}Fj5y<+w*x6VvF0{ zTq8f6wfPBc{jx1WmaIv_9|hASLNiMgbm~O&ecaqxr9J+D4D!}Tju9V@jOl0mtHdEP zWonT;zFP|Z4e1ux9xq4KJ?~3^r`48@LPdJSJT$n!)+6MsxswQ2s;+stJQNrRZ(z2+ zhCgm{==4f*M}I^tWLhj*I%a@>+Ttxg*?2PitCdm^NbY_`pH)uH-}V&EO*EXTCL{K>W|$-+ zMuljfXHQ?y$cp{b^9Kg4SZsfT;O%f^v)F=eHx3eMEW1e41ocB+QDlA+B_raGlFj*& zVoPV^K3BWgFV_dtMjJ?N`mGHh_SN2*po>#v<-^iV4|a{YpL|U*$NL`bxre{QmN-SP zI0kpEKgj;PvGPPsoye&pV4lpz$T|o&%0issJ^0aao)IkpM*>@D&eKT`;x)wB;CPMPz^GvX8mVkGsI&rd%$Sv16F;D&(7Sm;D^W@t9N$RcGSs~e<^D`u9j{rxw!+Y8e z3LKTEYQJKBY_}9UG^(?&D^XGb)c^!Cxf=w?1@VXWyujbW-Gj_;tMMF@|ulsYw&Vx;3^;B{zO^R8i6zZICz5*i4CwHc7VS?U6!+_p1_YjBY&2qK(A*7`JvXU`6r zico;q`Df+A5MZ~Em{J*w4NGa=kvsyJQK|v6nQ+oPm!@s;s?_Eu896))g`1C*k0m4# z=8MYf^Ff0vQew8Wja+|!FZ?;KW$Uc4&jySz2H8Z_ai&MI4pIP#R^rl;x}_LUgcBOC zO-B2xG2FruL&fl=i=?0H6|}(O8e7%)Th^#Xk6zej4*|w$u%kg;@&b}axaO!<+j8KB z`_O6Q0Otwt)qWDg!$-}OA6~M*!)Y$b_1XIF3dl~JGn24E9%`^~Qqtr2V58C&xixUk z=;d^KK_mdMg^)E^B$~fWRpSuPF)6F5`nU=w98pxyoG4GFgU%)5(QW5gP8=Lqzy$2i zD1TuK6ykESL`v=60a(-LfjgcKbCgAB3+5!F&ddJ$42QcTpJNDPUt$6AEmtuHJpLF5 zHj+}Ny%Q>`kvlCMFXi#3Ua){d(4h!5KuhXaN^a)2o=olx@55Km)ZE^&L3ox?^i;)WK7wel}m?bglZ zeo7VpU-jY|SlSYSF6jA*X!R`3aWTe%RxK9<(nce&wg?hgPc9!x%W!JF{miAFtMlu9 z^8p5uXU_22T3+G%j^N&9dL?a5fusn>ieBx3v{kq?n!I})w6eI?7B&Wcm1H+giS~|p z#5pOf)lt^SHn394MIXQKvJT6VPP&1qqG?H{R2`>^&VQsqmrG=$cE0{gg|IyjBNuSZ zAGM6elIQeX;)?5nNzUf@R3hN&SzJ30FtT~h@fw?5YXeN1ky4&(i_gXcdl{l9?5K*c! zdx#qA434nlIh3y}GCSI9;G@M zoBV~D7_nf=&QShPA=AGaHb??@Qk^DqgZa^!um!-AA{TMUPyNYE)>OQ;#Y=|jfbhxIdu1G2@)?5K;9Sm4nseEXDfh(B0qoz4s*} zH8pF1P0}5ab@~)I+jyJ4Ynm^uBEul*NWTzU^lwchYw%`jVT^D-{Wp)767-&2~aL6wn(anJF(|ZkZe*Hw21|1zV^OHB{Mi}`s=arAO;2)^# z@-M>vu^S(pS?4tO==n3!#sA4x_7w(=_ky7!Q_wO>9)R(^N{8zO=TUo;Ph+9*F}-3M zv(PS_WJ-km*ks224WCx|Fq7tNoHQ2vY+XottV(uis<5NJwq-Yw_df`9k5pTkVq&_esIq>#d#OD@bhO1%?f%u)}#CwU+sBg_^EITa7 z?CQ%f+c2Pmdy#+Q>OuZLnpiKgqzRJ-qMYv(u-j){cAITp&JVWyf*N+{6B`w8iQl30 zGx|qP9GLyXPJ}8Dti^MHpvvd;EE>4L&TU3hZdvBc9~n5>#8mKJhr;*@9aCp-` zf=Z)FpkOiVL}{AyArkM{D#`UMQQ^Z8NcUgbUx(8pMJ3!3>S5fzi-y53_D=xXP@phP zGf`Vzev652fX3j!2s;zNgGIYSi^krT+l}agJg_iuR1FDM3_UN|UyUfbM1>;b4#W}q zi-~H(kSjhd3S`cSjApC85h@zOG;=J2#8YLR%wqkK5EHZ>MOvl^BS9E+@^_f`GC=Vd z5bJG` zP#Y_mv9VyCT~r6PBPiL=ZLRaO$j;U?D2gh7XQY zQ5>iIDx`vDg0i_t+{Bz0kW?ys9fV9UbqdR)$KsPfEn91$MH@pt`yFal?=xT+i;aY` zVMP$@!|n()rWrK++A8p8UGNR7yl^iY3YDRGlT zZHlqf^>19m@&`b5`&|)=ZJEZ=GG7P{%z0K6JW^nSdVj)O4^thPL4RRHEy-I{+q8Ht zd)mbCIb$4*h#U`+;vrDlCp98=+$L5kQJGc?2#oXrVej^CFAW zBW}DFZzjl83{B2uEoRnC0T57_!}B<#ykUiQ2H0KDZh^s09zlJ#|{;yV;vq1f^XuZvI{RkE#Z#z}W$^-eGx^<@?Z@llc* z5LFM|JqO74zd?%L{UA5xk;iAzN$O7KW?2Y8f3-Equ`mN~0LDOuQLE zn@9&I@CExMKzBleVd|-O$otH0MsvR(w!9XR(uy1|yQAlyca|_BczCf(LPVMiX$oe< z(}jeI<{iXz#-lu!7t4wdD+r0@YRm>DMP^5`xW3QchoV|h%FBKeiqjrdkJ-&Lv-4a# zuF~cBQ3=0DVU9*(74#pJtXh$ZJSsuXUBT+-2TI zuRkLJYeXoQ)TiiL%zZD+=eb!fn|}5si_hpQ6Eu_vY*BZIfMI6+%A!KhA^Cblk#JX` zODSY2mdkL|+F@D5|5ULIZ-8`7!+uBs_)VQa7}?vGnvm$(&9_~%`Wp8xf?jx^L)DN^r0Vz0Y$b~?&OV{z(8EI z+dP2J*$a6c%qn#U`Lx>DkM9^ZRWYk=EOYr4+q<-rGy~b$b)nnm+xcSs0M}EVvwD&R zy{djWgvoD8mr^jMv`GqgN%oxE5IR4OZ~K{MYD8BV#POx++~apGTWQsr{z+bs+)j47 z6nzzYzbQ#eu?$SLL&&?~{!zVB2HQ!Qd7>UDks(|)r?USXTOd+)EG)I0P9m3TMJ7|WujXa+ghoIPm679w>O-RL!d zI4>K+I)WFEA+4AB!C@&1&o-3|g|a3{zQJ4(H2r-P-!GZpn@4hDG|zYihU^6o0vMbC`RuvuVt3 zF?%X9M}XOBeellIHlA%(xBr#YlVEs>U*u8Vc#J9#Y66aU7tmUSsP!ghhTT0C_ZY$Y zjcjTMSiE)ZqUjm|+08&<52C#-0`=K9+H{0{{eA2`?fTRjL#hPdt!s?%D7~-b_Wral zPx~nPuPhOO_wej2`+Y^fVerIhMJ6E15E}ik@M2Y2%9yMPd}i;umA{^-B^7ZvxkplC zpv@_AF+Mqo_2ZZvJ*|t1wr6jzw=16aC2jqU)On>2L?u3PnTYF|a=Aexyo-TQo)!*p zxjqW)=w^%QJx_dh1(|shm&=7iZHC#j)5$l1`vKo6Q`Uciq35*ER92lr=BnSGJ+r#*hHWZDE6i~v#VRJ9DVw;3VEAE4?p+@W4+*%{bh zT5Nfmz4Up8UQQN8=)ia0qY(qEpKtV#I@ganEG{c>sl=*tu$W~`t482J!V+K%!l$)0znueSzlK$?iyN;Hl?E)l^JAWIC`@& zjwCnqGgeZ{L$ea-_Pu;RJ4|UKDqutX>2lvoQ{zhy5KKuw$8KXu)r|57;29Cv`l@#j z+1$+r5rjS>7gPv#Ch$$=E!c<*h8`(XmYG3vH@!Z1FQqG8Do&eVTzItcDxv0wc2F3M zOYUu9RNv3LbYsZKxraBX92DHh0f(@1iVmC>IB}T0xbb7fj*h|hTySvApSf7 z6h5>HzNX%UFfVLHuD3%cUdQZ&x43RW1>U^6vm*H5$@vuR?`kcGuwXqpZmGvnV1 zI1~G_zj?7!;ZQ5vz(_dVjhFEC$tCPJyBQ#=B;Mt-1z#sWiZ0zrY9t!Ijtl!Xydq)) zCp7Jk$Mnwb!1&2BsveuAl`a6?BqQQqq~0sW1B%RTY5^~BGS@we>1rG61om)!2#xSk z-b7u(cURWu2V|GS6sGM(wMjT(zDf)PQOPb>V5I|k*l2)vN6m^pyA1?^0ISg+@KJ2F z=v_ctr0u_arPb}@rgrjZAiuP`@aSE|i0KU0kd~1Ckm0O|3_rw@s;Sfh>K_+AYF_I|8C)QfbFcoEPwJ8AS6E8; zC>yrh%0-Vw-3~JR!2SMGrsMQNfiZTVJuOBnTh^B#Y9?C(8w-1W%8YLckCRIml_f8~ z7`<>inVe^8^5DGT8sy1bJ^2QpAh_lI-|Hzj|9fHa|E=_sne(Sm`+wE<|M${Q=~!ZR zxbEkgGX7mH-ZJ!AhTZflxHxUQW3jYs_|HFiyo+3Tcauv0<&2*k-f7gxb0+NI` ziTI>(>o*I-1$B6uZl{kKGCu#DzSS`%KI!w4YkvL@F2XtW#8U5H4bEz^J@U?&-+JHI z-v|2h*%?jga+{MO(DOLCx1Qd~xjo-JOIotHSxIS}t7pcQgWWJLcY6y1J$k(|Su=8! zwk7iXrk=#66OTz{{60C|KE~*#Gdn(SZ+ou`{Tipur;klINvnFTzFSE!i!eIdl<7(h z%$_9aV4WceqJIg}ynDr(TLEh>qubGymwnbBDt^;h4jz}(O1UDc>_ot@` zqLwF?^h-kR*s!R0t;n0qwT>q?WX~Qw9_uXI=Jp)ZwRVGZ--~iPj7~Nj7C*XXoB?5~ zOve;TH>W=+SU7-sG0+w0p{(;VyjCS1!g+oN)|m~r+UCz9v1^2V&|f^yUe8)XbV!h< z@lue~rbFWf9j3qsM?Hjhq9CaWu?@MVbRKl z^TmT(w7FJ5+CX4i5MM)|N7qJreYr;D#$%HwWpv*YeIg7wz{v_}Dbi|A48=pcMHq|V zS{{zzJlaCYQ4ZWqr(yhM_)+(8D`z>Uip-iC-i}N7>p#WnHems2qP-u`r zY%M?QAB{OzG%O&rC&DJ_JMlrG{go_AtQt|&#q9~zsU66!2B6!WjGhNb<6`HO7F^IE z_r1}zin7!Fxp^Z&bs7hKXOPZDa*7G9L8B*kuC+M&5IX{}XeX8kwd|Mf>K1g(1BD_b^|bocW=Fkux^{Q`N)z-HVD@pi z%%YkPy`pyoq6KD_@jxNDI0XcP`HQvy!-#A# z=y$a#C^TO@r`FJ!1i%^eNX3Cf5SP^W_(H2l-~!3uFXPM5FiPe|7Zoq2V}?ko6U8p7 zQ-i?T1pXfV=zq@>u;*||iTJ}xB|)*J&@X{kE)A(Z<|N#qiMyJ~bsu<(U=O2?A%fT! zV=VI%kVna#sI{b>30(J6i<%5jU{@7)zvCNR$fU}CQ5Y1-A4>MC2A7grlSFmu*W5r< zF+jvUV-_S>KaJhdaYrpSVOGo5l3AHVTHB@X%1?B#oQBh&@-RLm>o`cgn}R0T6_)C3>lyYD-TkZ_q8E0xGMVdDA}oXW3?~yf)1m1>!Z(YqcW?( zaPb2RY3RooNR25m8ls`mR@7jY+Ak64n<@qc!YNt~@|Fr=(=lhj;u;pnA7;YUk?N$% zhCK&Ax*c68%B@qYdM}TUE4ZPYIjmj!zL^0R{&%2Dmv`ouqxz+I0PvzuC={yh%J}-1AS8 zU}w8rD(KGu(+OUHwoMWHCF47f#VD;hJHL#OJ~vzhErz~55WR>MvHUHdy?_x?5DDo8 z8lhcYK@qMU{dP`FMQVHsqDpbF6CanKX)=E?HA?h&Z0juC5}!yLWrwlR;n==R266@} z1MxCztB9+jq?~pTfb8oqFXV4KIW;^R|Kzd|>Rh<+a&2eRbqTJ*K({{}2R_286Pb^_ z)R0Fk0Hle~rbhOPc}kNml=_FI`|y<{s-GI*#qkAck9jK?-TO=?{}g*0u)Uxh{mN^X z>~Zvf`_ZM(4RuHJl)AB~TLsJiDuaVcv8=(1Ce)whh7^VrA6fb)4NU4nf!aNyCfEiy zRN2E`*k?$P-aml%NRNn{swuF(C9hQ}%J8E!!HNHglxi-^!&a7_4jy5X*kBMYH3Qu&Ay zk8R58e6eF|n8I1DOkyQIw7mICeR)-AC}i2Z zn)wR_hC&B#Rv5}d$EN%uCp4iQHpnbHncrUrWB@2fl9sH1_%-qXr}jK{9Dv4v#;7?p z{WfF^+x5+TgA!4cDAnPYFOD3{V_XUV&DN|E=2MtUll0yWX35lX!QlE?*DgiUp=02N zlF*a9DgHJ`>l{Qej2pF~n00Oejehd(wGU%7 zYXIEKQ5|kVp!E`@N202M`Qo7rr%y)LIhN+mToqx8U%HZq(b2x-?#kK!Dt;Z!Uc9&z z02i0Fr&Rxp)d?>F8no<;C(l38X82W;d3i(Pjh50<=))*qkLOxL{yJ|ymUBp@RX|>z zb}tQYM%`INT5bu?@jAX4f!WC9_pmQE`+L4Y(GfHwUV6^6gqcPki)C$yvikOB~6hl zF;@mr-YowQ4z&uQ0w$g3%1K$;36l}!=?=>V(kNbAWyHiDmw2cru0=7LZ8TK1Yhd@; z-+I5x_2NAh;J1A&F+VPD*p@#SQJMbdxKzjQf}0PI2J~Ucstr2RZ?sg^f8)yIk~;-j zN=l?%N&|31(99%B#r3PDa`M$PunX59Hf}a}I<;}ecqOMKgHs2I}r#q9=lxCOKa zI;M%`Dw+SB5!DVUfa@$d*ku3(#iMc}h7}%$8Vu32LW#&N$16p|KO9i;)tfGRZndmw zShFEB*!4xr?H<@de|7XmrXUP&Mc?e>59+y75`Ng>ZvxVT+M;P)hp6WO_x}!x7SNHB z@nVEI1(bOZc7U0yz+)IM1`pbBpkqZn))lM%ZH<+4wgRGX0XP$8JCuKBrA`=-uPf2f zcW&DuVcWtQRoY}Q`-BPozB-PNiHM|rwBwt>cJ+}N!kUp27@sG4q~EU>lz^7GT0dQ} zsX0ny7O0T{z;WJwfsGPwgvFIRrGTmP_v32q?~YJ+4nOaQ77FO#q$2NNG~`HO&!=rc zY3J&L%j#mL?{j1Br=~+iZOvKgS!U>pu+*)WgHIR5BnRtFvf-~aiZxfr5fulKfVvh~ z?TCm%URrq`XpYD~a`Xf~1Dfc8n)+eN=6ksIt3EP2w&#^<6}}g?c%p_D)9cCa`EebR z9oco3C49!VL)0#XBI-g(UzCQ4czY^s56yY?*nWrERixr@e9u z_gg_zn*?fpiHfhGV&j%|>VhgN>k}5dS^%(l(kN_pa?X#_n99k| z0kra?DB_6yc3#S~gOvAk0S*!sWx6yLJAG5zJk*QDN!NI>kfTL$TWAaFHF<^+<`IZH zis7!E_mL?DYCe+lKF8b9ZPPqM09LQf`mM34feun}(Yi0AYFm3y4uJ052BO#Tv70c_ z?IRHcNP|_%iH6h$VY`j%e}ALl%^MVDdq4|B`LK&JIS+t<2e}1P1X4`d`&}jgW$dn3 zqgYDvZWOC6M_b*P?Klxq@og2NJ9>V>Q5iJNX8>5Q4~0vO+jBrXa!pz93-r0Hq%o_e z9bRQxpKriZj+gN46FDQs=_K#-K9L4mA z(QqNR4i@`8qN>&sz!6tRkFErM5vR6_R-e|sD?d3SghyMa(kqgoJ$%$SjW`xeXs3pU zW50QnR;Dimg_>H@XCW*QkBMTqhMeQ4BSeaT zV~%(ZI+d3V3!42}oxjA4UkjW3EU!8C)#)EJa-q6dE-O5KtXBDh>g7kblt^t%vU2nU zkGf`LAW8j#E2*)tbVWlGs%5VVDNe>dOkNc?;>7Gpfg`Y!m05g{icM&eqrZN*G5j>) z;H~bxlRVQzwVF8tYr4FnFJ7i7s|hOaCeSt4hs(LUahi9%E&=ZIs()4cTkPplhq22j z>7D=A9VFWSo|rQ-{lD&XU}XERyqtjGzcO>9Ul;`f0Hskt06;|mjQ=MI|9#8)|N3Tt zu%w8Xovrgf9}Hj+{=e_|XJTVv{4d%6CAnC`t`bKTbw~VteBvlPMJqsScmCG``bpOl zst6&JjGNhe$km3fYfCUu#J%ZtH||@m3O^!IBM4yfDSA1im@@R8 zf0#E383OE15(U13gzK19RF9L{)3q1IVu{7ccH8sEYqpc`$)sFyv#spUq3by^XU*yL z;1t?rLR~qNI%rv8@cJ-(al5TLcY)faTfTjy+(k`ys@qoVwzm8zKV|FT=z89Bwf<=9 zx*{rnnSr*DTB?+q#4q>l>+@c16FYM?d=Qh^puRAD*^n!%>n>H53>!~ZiZ^EQI~v+rX=wjZ!Qq$U0p^5@NT3;Z z4EgK!A1&HN^T#>k*f${FN+q{|7ZJ_ne%1+e9BkMTG~3@Dv@KNLc>VeH=?9?lt+#tR z-U0{W!T22WN0HEx&~>$kbm4WyCjz4p=A*39+P2ATRbm8fOU+p!P4fskYnHc_zSJ%K z*c!YrUD!{T(AGP*{l5t9v7qPmx70_EF^ulN-|=&?LJ7(cQ{j(cdWl~C1nuZ7qoiQlAA0TW;*dWGj|I+J5b+WA#`_kw zAFF^?M6fA5WB{cS45h&KlKW6QuLrD1B%MsyL2$#ckQN+yAdQKyFKTa~b5QG&S+aI2 zlxQ@oqRNh_#anP(SwgQx7Sm=^P20B13?aVRTr7 zsnUNJjg3WM=?~Y#Y?5l}@n8l9OF#0CrbVzbG#ESArjVtSTk==vYz)vwG9kP%Fy(sw zlqmt04I+&_Mqd&W?C?75XW3@+=V*~gn;qPCl7%xKe(5tRG6?3J{ zlHOsQ0>~nszb&#}6<>0kgU9oKN1I-g_z?)+!6Ne=zPw`iE)+jMY*kDC>q#4V4 z%8epI0UtdJoKmR`Onnn@U$S-BI^eB9QHyQD1O;ekU?JF>j54C&CQ~lY6Y~z)5i~2% zm7PRMDNEJ{*t(Odv3oAuvJI&q%pa(s%mh9TccF@|sq6^(#FfPbsgpWMV8{~^+HJU; z-j?v!@-T*E;T4!PD>+D^<(dL5Q^1=Req2V;umB;jmTD*xXRCkR5N8g$+~hB8p);wT zTt+ye>s`Fn=3p31ve=M-6`M2zYo-_1y zkpTp>Rezvd1?@|uDM)a0?zB*Np0P;HdFz$P_H}bzi zIPmY*>UONOZg?tsKPdw)ybAI>IYTli9?YY6Xh=F)l!ysTEW2n}DFQKQ$f{-DW|3DB z0Fl~nafWNex1R)9od21^K+zEr?;%;&0l@ba{BM?4(@hR#0zZ%7l>~HYc}QD9dPmK;oI8Ea9!n zYLd!+f0Yz|t75(?qh(NxWg#vbBzFv6OK|DouBvdnLO+EE?L)1s1{A`xtdb$V%yPv43q59l7O@= zroe;0t(yy9H^}8?Tez4Q!<}b~aW-U4pB>jL8YYtxfBmG!s88N_Oz4|pqECSqpNfj# z>v&>X?qK!F)X<>%S!S0-arQdS=!I{`>l=m7_J9?Q)p8(Qp?w^T%$^#_xiD(JIa%T; z&Sd(9$RFnU3haGLn~4Tlg}S&Tl4P-~o6?u^h@A2!$ZVz>W5HvodQZX(lg~weUKEke zm#`q+=~k#hv)iFKV@AMcd)z>3&X^MI72H?ulYeaKVG=Qz4 z?l(bN9YfPAHM%>j7>KAo@5mX`Vnq;0kLG}t#b@5@fs3C|$62epS8^BCU5U>$F5Kos z^XvzQln3*7I8|}p5t|+(x=|9rZ<+?{ETSLUZs0Ym9+6pet@R0#%`S$N3NesWxXf>g z>#LZOwe_9@0YOr(NTD27rfrG_2YW@@6pO6Zstm}HGN@HhkRKS5QulRG7aHcuS_U!; zutDR(V06j}Nt1|$Gfh|f=L9b2qZ6s-v0NL;H2F94Wua2p8Nb#0UdkeBj*^y=)~R@| zmeNV_vo>1xRhOd+^tZ0Ji*#d?>o>&E!;3Aq=NCSA!M5-g&I*2x?#TuH_2u@eH-~Q5 zmZzE7%awUH`i!@1SJ*T^i?{uk7QIW)OXRiodo;i9y!XRROJ~c$XUq21>!CA3yKi{= zin#B)iaut=M>A4?~3SjQ>x<0vaQm%P?=5??+?mDf*SS|saiR*H0vFgS8pz}UVk@u&Q z%kzA`pS|PN@UO>IhpXN+#;ob_`b@b(GmAOh=-7%Z?7bD~ar(Z0nHSUM##DEv`PjdU z+%PwI(m{B+douGR#)dEAR562BY%FL1 zoO?mbU-4P9*@{IIYmU8i3kM*=snP-FrA`d(#4vsTt2()Z)S+5*OZun!iln?c<)`$W zqkiYm%&BDy-EzlikvHv@Yhzz|jWmvZ%^H;&$_qcX0$lYnLE~!vRniy;l(Z+?-=XMqSu=uUJ2TWAKz>|jD~AhwrZzsT79C;nSh?df=Fgq_ zKU-3bQfds{=W&>#JI$;f?7bQp0fQi{#a7$n;DpbSCkf@_xHaUr6{~n!K^naai5dnZ zF4mN@DeXedg+Ol56RbLv!nEIuuaZstSp-NSD{Bf!J4Ho&50~L@b~z-J`5mF+LKW}E z-Q&lS9?0OuxqAieG$bCD7MXEo3|CiF(W#?a3m(5(2YRsOqQq}3pFvi?cSrwK9sikP z_V4f`BlADX_>VgN6*&QZP(VPfKp_9>@BbsV?EeY2`M**)tPGt0b?`qGj%?IVakQMK zuI4hD5IBy0eePsZk&apJXB!_NYITd5M>p=A?DWaW^|ZjM?VOD4VO||s*O^N4RBaGq z1EYd8VF08Es5U_W4Dh5pyxktKU>HcK-2@@TS7Ew2?chtfr;lqiu==u%n)A~8>$c~P zXBTrB2!s+dGc!VRE-T$R2A^}EUJGE@LBpy^n>vr(H1`GnY&!cAU;asc@=^Z!g1@up zJ0664zE%uw$^~2v5FBh$WT&WC#8b2>r?KpPkOW)>4EIt?G3&oXo*1O30 zZ1j@1X!-RjB}PT8tAvd^vbvjgRDq`@Pp50?H8C^_o>P54nQ~rZ^lhVHX@XBBd1bx=BK3 zDTD+~ntL=i-i{52i|`qY`@%WFEss@indZ-TGN?Y_zd9<6M}NoegF}my22LnBu9rMj zJcGbO=%|+g$7rk;JV0x87U);S@vN}&a#lNvrQs~3Jg`{<+8izBrAuq@V$wGHXUKm@ zn?xjpqDa)MSyN_I8?7Jqx#OhixG&$^FkZy~2V5H)}9#NtM-HQ&u`Sl2A%+R3EG(nC6C`LzmiM1I? z8r?T8nA21rg?|l36~2VGxV-3)X6Yd|IfiSXdLqli$p8)3$Y5x#w7d$iRR!_?R5qyP z0_QO>pThJ9f9?sZ>RAT`K_mC(b(>NA*lfThGK>1^rOoB8cN#E5{M4X)ei*?eQUtI1cmaFG)&_jyB818F83BSMh})RsH?xNxH(U zM;bPNG|3(aPyWatm@%lV5{RsmkJ;dgm4 zQQ2M5!tT~!KaDM@1hFl+)ZcQDBTM!1n#Q0{O+N^nC8Pa?z#D(VlRCJC)FqSZBK{RN z9YSYg`f>jdHl+U{YzF=co3p>d2EpS$g-xq7sEP9#|IQ}Ltbe26$sgOdV74WOATXCa zKL#m6P-dH~zr(cwv8}*PupyCJZr3 zWhb=2lUEjLR(e5}f?y$KO#BgqKYQ~HilK-Vu?h}kk@hJ2CHx7S(W%(a@F@MlWOu^_ zX-x0KuW5xDTN4}gYCA#dZMY3R2USOxf#%$QmJzyw9epwOu|AmwlwjRCZPMw>jSe~E zpK>CVIK(hOzM_DosciQmYk{Ah@R8D#TV;qQ76+h&`3Ozn$4ip=V%w06!{^HbnW|g-gerXX2P!jUxV6P9nGI7l6M-hXtPaj+u zaB^Fv;ORXc!_1`g!I?)Ai5`{Qr~tF5T!ThKJ|Kx5?odXH3;XzV7s8{T{eyeq za(onfkvrPKlr(W=%DG^&+*0g=Q=72&@!=WQl2X7s#EFBjSZ0KQrox^LXzY9q9efx zYl}}Fe%h`nfa_5oH*k1Q`#o{-kr+AZclFC3Xn5=J+p35;oT*>_z#$aCn8pDss61iS zrNqKY!~@FKU}O3fjJ6x{;BG=_8WC}~3I4xi4eS4uHD(llWlby4Us=Su zePPl7jG|tx9n^*@w3(M@3nUbwMp&2HFXY*Q0$g&+7KuBF?SThOZ9H7vV1fSa9!T!H z9j4|XYXjXN)`aD(RJM5e@={`Y%iToZWNUi7mdi8Wwc&em4eP__;p+P$@IB-z{i4g` z_OiVb5Wq_lLJ^>aA?=t?ZX%zL!7b zuBL<2hOTF~NN*1-5byYzo|m9moT9!{n(nt-$p|msK98@d?-w0yOxsLLNzm=W-Ch5xk zXK3!<6kG>KCjt&8rhjjbGjcNgqig-I=J85%%?5`Z)q6$lmQm0kB9+@8Adod^q1otc z%`R(nVn8H|`XfRNH#+k0#`D^|#W>R6FfY=0bcXtSiJ-q+JSpqjuvq8zpA~)!V?5V%f;;e0;ovHz1lM&+N%PA<>Ng{d< z11K`y{p`k_SS#c`p0Z(Y>i}v$vwU#eN!fUKo9l$On0FyxwhWdgNbTkEGbz30>TU|Yd&OHB#4I~%g>6eA5+HWTz@q;MfHB0(d zT%|S(G6WGI5N1r0CV9AvEQL!H3l0#5lwzp_UKVHbr|6T-lgvYoH!%lVBfI`lABY20 zhOR{&$2>O>U+51@&4t8Jg+yd1U|t{{q*J%cQvUA{F*Y~RU&?h?H_9@I0#x9xA@biL6?R@R}qnfvax9mHa4@fuv|WwxMn z2`ZguB9CyC#%_ILl#Nh41635s7)Z z67Mk=_5Sed$a4U&bws%y6QGe2m7MR{q{q{anXSxB#f@3 zUZL_H%Jx&A8PTC3H_jT3a&@@I#KVK>Dz7KDof2*W%}bAkIFHCnbM`eChrXc>*)l_@ zKWFd}rkVT6iobORjKfuJJpj|UNB)nOY+aGCgIj~>ybDEOfhGjwRhJgao*~kG)CXY~ z{Hf~^S`S7WwbDMRm4jI5r?ncSo*hyhB|~|K+4fOG^D@EF%wr7>nmQ|84&yh88#%e- zU$q?7d_Q6^Dy8MlcSRdXjP_YQH5dI5r zv)DzIo4MDpin9n<8n)23U04tbWBaE{vTkv{IoF};AdY{muAj7H9F=%O?KUI#z6zuC z2GdLU!R>iN)k_B9aVLmERb;=j? zD~>XQ#{f5(1mi|jUHS_}DTkrvUY`j!o18Zk9O94MPAJ2WwYcvPt!ESKPPaGrHVpb_ z{P&?tuWHWXR29##aLavKw?6d_Vh-mTIkopXbymP*$khvz#dy&0s|+7Ty8M?hb3Cq` zkC8*ZPSW_v+km=-3Y#U0Vu_4-JyS>;O!R|P;&k9~P+bgDzD~a)rVd%-!+epQd_S8h zS)wSSGhO{q`&<$hI!Z11oG$k26R}M(hf&c+CO#QaX5Gw@Bz+hMZJ=|Th;|%Rp*E4m zJPgsWgfL@jn4l_Wwls;fhx_6_s6tz1a_UED5{-d%g37vSMrpi!h=X@Fc^83@AXn;z ze%rhLma9TFG(|e>w)}Y?w|(1TgGcb{xE^$UE5dHQ->-Ys zxDo#dh=SW&m#bBi=9zJe8a%m-@*Li8ZLh)6Of~Wo@|x~f`+Ma%FAgqhh?Rl>FtH&Z z{z|iikp{;<6ng<)#v5unl%RrMwj+`s#_I=(9Qxi)x#)>E6MMVDfd|rz8*8gb*QS8? zdP=c@?Zi8Mm41w^hvJVv5&S9V-8nOLsxvG(u;Qe?2rLMD3#l`!dROFV6$3sd*tOL= ztXIUY<*%OXK8zdQYY_eh53i@5bG&rLM>1dN4Q5{NV3;ai{B2hJq=wnG4}dpo9xJ_* zJ8|vzFhAy($=AyzFJhq&NoC8on=3OpX?m}mehd1Mn+moU22T#_^O^m*M4zW>FPiqA z#m{=v4t&~6pUEt;zY{I-Ao->@7#o9vV!HPbZfk80&jSx?@;;rZ+WCQwL#*A{br&Y}wvfzR0^UXr} zu3@kmHEb{(6q53#2CY&DDt5d~$11b+CaWE~nS6D-`xbQ+3x&!@hSxddR2S^v{1l zsYS|=DeGsQiy!4QG7+vFFLceR7ZIhB!1l3IKZsRy5aS{F)?iZ6L1T84u*4{9t&nPB zLrS3j7}$hmTf3}>?rXu3PgiW~?vdMFv+rJkR92JcQm4XVa~4xH0SF*x00ltyH?Vm>3=p-ZZ#(zDWS4&sn&aLLNH6)~QVX=mfwo06X~i z5U$iW>s-6|mhclduh)zrDBo?_{fp}T9Xa?fPw(GV?|(lR(F>xEX$}Vp1pE^S?O&bn zABpt;e_TU$)_-1w@L!Fex00TOvf|I~mW~dcOB?HH%dm@Wt=6L?a8u844~7HHdWB|5 z7K5R6QHbNLsWUrCUX|e{6B7%GLW618Ad-UJlsw|u5`QFf1VMRt?0kgmM6=H}HILHN z>D<`Zn-}h$8y+u?;yHben1<+W6lXfMB1D_mWv57t0Su9nS;`0qp1o!Tg)4JEo=xgG znnry)1o$=FI8uTVg9b{*+Yb!c+NaN>qMucFL=C}L>;0p=m?1bWW$M4zu?t@)qk2!7 zelaYl%9Nzxy||KBZ~m!qc6Lr4aIejvSDX0A<-$kdrVr`A3Ux0j7(Xj*UJ2pe&(2R- zrqJ`*p8no?n_(uefj@46uoaeN_=zYFKJ;u(fjyFxOpNHiM@7tF7}`H>hy4A=sD)$z z4=dFqE(NL$bA4BHyEyql9%~h3{uM8KZ-Y|Z4_m+iiv%WBfC=WJfk4BU5&uVYZO#}C zjWN@9BSGsHFnM7Y*7N(!zKkZ)R>Y|@On(6TKsw3<9e8>pVcC^Zqvh4+{+s~>80OWa z@$V3=c@v&U;LIC(@HcJvQ~&KRu(SAW-F(Ao_{S^_a5TDNHJsCDJ)4va((lh+;&Qdf zsOHbn(KhFj6W|9LuafLsPsW)d=U(&oh$ySCLlPr7k&z9&AQCBi3?4jx?jp-<*qPdh z*W0)K^L6R*+NJuwJdUu$FEwXjSzJ`;fILuG3MlM2sC0pX{zqg;0KwWEi^|Kmygx@o zqViQu(IRS7n`Ciu;mRIrFrWX-WB|(!D^6if2EY4%f<7;6- zz5H{PRK1M9Oi8`A^$pP1lg*D+F>BHPPT^I*M&Sw$up;KkW%XJ=-OU+i(8>i7TZ<@#s-|G#^E znK}NE-}(>7KUzsgdVm4dd#0w954JgU-O3S~3A$Z__VlMEl3vH54ft|lA!WVqjchwr z7%Ys1qv!M|2RW8@<-@652CdkFG(3)#j3t;@WNN)>VBdULv(S}l7_vz$TT5-T*x{*u z>u5^4s*T8@Or$V%o!O^s`$*S3Kk5!d2w1oH#s1mdE2mVni)(I>8izEkVNzyb0@6!c zumi;SD*|p9h#4oMRCm60(p(Ee_hHsTECek^@qGpkdhT&Zt6IIX=K8{I?UT}~8?X|T zYec`6igAwobZqnh)dKgxv11rJDBCn%U;t92UX@72BVLFZIjQOP^3#t`m0pbmzd>A9 zf*VznU_?)0CdpEVk%#FIWAqVh1LS>s_D%-m%yv|B=`L|La$z^%hoqdK{FENMZ4+x( z9f=?x?lYu2MNPdE14(C&+$oNpbO)cS9+Vz=$n4@5Tn|wR56wt;I8kA=ot=$0TFu7g zg#BG_#KR(r=$#Se%yqM1wCScEXFdG&s5oG^n4~>xag|5XD09oreI#egSs(uMYp`pxplrZz(1nz&6>T20+6%j@0lawQA&)8adwf9G<4oqQg5K_K6JUcY2N z@Nax)!AOZpgb9_YJcr@D9JjX2>tWu=uy{Ivrwv-wOkEnv!}|1nvjmC1dQyFKC4H63 zeVHeJha*;;h44?Ps)q8H zKwcCoP#8I-s{!u5se!*A(S4oED|(V*UN~A7~V^ zikUcnmYDvj7{;pAfNMH8^gO7ZVY@x*5N;@wQjwc7)8OF%ns|z?(`HzVNYBX=FlU7k zyfVx!K75P&3)Tzm7c6!u+WsVbg*nQ;wQ32;<5bd(Vg2e>4_QYQZE2|dR9!m=w^AXE ze9jsvbgO=YrbsBxj0bKyK>9XMkTL|6aEy`*I1>dJr?DS&?xKQww>r&9q`F%K!xot3o4erHe9+ci{DB>e8A0 zNNZIy=2-Hlp^_Ky-^sPF8@V*7wSh(t}+Iffx<- zxBjq0R*Ys5E)}9NQB&um&xX(YRigD9UGNnnRP7*&!u}Mz820*w>KS#vbPZLF+ZgH) zkDdC?5$_!;Q+{gXYSm`KFx&=kLqw0m4sK5e?ZRC?(Sfv5LtmdxKt=j&%0bGM(ps!1i4fZNTfmoU!|xQ>++H^zB?Dm+|;*0Y?+uvwhd-jgwX( z&BTaUj+^;4sMs&R8&`#QFt z22x2ZJ0@IN2#FE&P6w{elNhW<8W$`a$^rTj@L2u2f^TH9{~u`D#_`x8j7V9(iF7hJ9c!%F!86gUCSwNIwc}$`5Xc~CQo5<4uoR1ic>-~k~d-Y2O&8*5=;@=F%0vY;+ zp*Fu~KGgrnjS-G>9v*L)+KPWe(S8|mp=3th5OQ&=MB`G1N-~>`vmV7a{#hjRxD}gd zc)K+vfN<}$62xT4OQ%-X9R(#enCLa()N2R;Z}Nk$yv5bYGl8b%G!kP2~la7r`Q+GkW;5H>7Osuer1z3F|K3W1XOz zA7zhr0B96Uy9i(~8cVtbU<6H@nuskbJ5sdV0T%Gej%{1@atIK-Xk~KyZ@zO>=#mgMNug zA>C+VpaA~#o-5C{m_Ie2!9DU_tY^;60y`IV*$dp?fZDGQj!iBH+4k3CMUxmAwewHe z4!JRo5nqRCtT#2BKn?gZzC7q-2AN#tucI6El4ssHa=S7e0V=$gaZj1(gHc6Eh~!ij z+ZD-^OHGDjb^#4fo@?Kt^SB)kBnE@8OSf5*afzW6K*Bne|2YUOvt8{eZBzFuQ~OCY zp%q{0SY@b7t!2>M&cH=)^jiV}^eA@(Gv}SlJg8z=@DWqsqLgKRlt;EDem(3cAwKV#HpD;4`bzeM@K)`*zAIygH zN({65Mmy@)+U3x9MMLVXyeWOR^Yi(tiIPStfnzPfP*`jk>?T|uKNcmP z&qb(VCdE2fOnNFKppz6_5dbU5FF3=)pqd&-u&dlH8p6OvNeJ&6yG-nX+bsdU zOW?8Qt4S!AT8dL3Z;?FF3`Vo7#oG%XHHY&=rW2qlA-Oz){Wqa^T7Q0|c)VN4wcrkl zNhpg_>Cv`$5BT~Zkct7^=&2rhuyVk+j)oO<&5&4g^staDT}dlXhNbYdDPY=ILJ-oc zlM-sL9&sNE{gK6qFfx@fEHyZ|iZ>0hH8T4c1bq0+8H$1-xX(@B78d`{QwZY6li03Y zDy2zSh>U7x4ltNcFeQhmnW&m*&_2>oL4-}jb%ewaN<<0j0O|mmMMQXnJeq5ga+2zi z)zP&aXST&j@pO;#SIzYIE?Q^8&7h+f$4+vr0%elSazljKT21sYWdtfWDn?R|@_KR! zch_8**wU|~U*47N*Z_DeR3`F6p)ft2JibCc3~cOjI9cdVf=MKo(9B7lo64&XUfToy zGp6>5wYd03C0Q^Jbz!lD@!l=mZ+UD7 z2#Sui`#=CiwB~qpQAHUzSG9>V^`TQO|G7CYl;Ee}=B)FwM0=y~ML$LkH z?A`oGbXBiPU|0+3&pcvCen|dE;7K8w?=F1cUAIJ#1$kqd%}-}}BFw+s2c&sF07TVZSZPW%yITafb!- zNao~-kFCk&B zsrWkX0ch;~vh@?z!uGGAdzp^08HWsvPgEnDJ}?c!rQwH!=nLhCz;J*wfRZkr4x#6~ z&84VNTDXO}SyA}1rt62q_;fx={*q(=mHSL!DfFY-rmZbK^Hbb;{&Db?vR4+b4ig~h z%OvH!-ybY}Yeq1RWR~kMA~C}(zgJ&oIDo&XHO=z#53)@FJy?j~x0+GHJ||b!aK+p` z$QM8EjgJk8hVw!8M!f6vCqRSkP;6RU;0?t6k>Bqz@J1Z>XH!CC=gEf8J_rYdtM1k} zbeg_HH)-GmmIA+g*FekBt~&=jzHBgwo4-rb(1`=Iv`t)**JwnSL+X@4vl+wDnBWq)Av<9{`>1-I)c6vcS zw1cuATKR*+AD)1Elivpx6(BBBY)(QvmKN7ow1tZk_58j9o>B2gcCv^*dlYgi$wzur zvp*yos=v$n`GLiUzfSD$Jpp(Q=~M;e14+Qrcxuuz=dl=UG(7&X9YJ(ddR_2C^zS0P z_FqB4C_p_E~dZCv6UO6H#x+{*{I|{ zCB|*a<>Fmg8(+Z2*!6qg?v=icUMj3IqP ztmM;+_TEY*^EPv+HzQ~#B*zo?MD#>(GAoEr+aQPG=J(jwI^9oJI)*xTo^~PGq+3ca zPvKmNJ!Ii$0}buxWhXGLU7p@2k zQ53ho!1>VvZIwx{Slk$XiHO2d^NL^R5S}@EJ|sa%v8pYXt!$Tmy|ChUe!td;+#ywl zn2;)fPR~68ar8A9y1-QiqioQ74<|2|nN8=I(}uJ$_(G}l4Nn{zt%7pjQd{-PY)H-Di_iRxXQ@yVyaN2{t*S~tab6hlRTgv#a&L|$d6lS_cYmxsrx>7$ zL&O$*6WPO-g;^4sT+$HfdoA#iRm@-F-)ViKHg(B}B?~1A51AD&MZ~R(a`PS+mI&@k z+Zp8s@Hh_g??Gzz2nj zV;gJ!!T!OXVG|@exNwg0b@48-hGfD?yU_dgv0i#`yWK6Tb@O!<;xgZF3iLa6aFjRnFsvhJ{Tf4lC=Yc7lgLlv2Fcx~9p5$8d7=b@tH`faT%(d(ewf;UM zxx!V=E}lPmQ^Waw=9X7wroy}Bx0bv2QVLbIL(4iVyQ?6fUHl3fIK?I-9t8q@C-9>r zrai^`ycc{C`lJsx&ZdGAZ$oz&^JHE&dB4K7QZzW7&Z;BeIg-+B$G@fZ@sEX(7*0!0 zR79uleN|8H@p$OUH0~Bf%uOcKGAip>_XRQ$zp_Wp=GQ`eZilZ+*N5r&mc+NNFS+cm zoOX|)x@_uvWb{-)O4J^ynLwCM>XXX;NiNsh#}RF)2`=ShniS^=h6~j#qHpk~+TYjr zhP%am4IZI`qF+KRBsvE=XKRg3J_F0865nqL;FQ1HJ;9N|wgfEYUVBW+C9hW`U5Rg! z7hbVf<9i6tK~_7xPF9wpJt6g6Qv;GJKLW}%7=fwt68nJ zRoq2;9JIIKY-?*Zg0uA(6|g>SUTQvN&C|FdCH3M{nbkDl=D1AVZLPHMX*vP2EI9x< z9e~zo~?5<%WBW5aGax`u~|lN0fQMm||mjYbHj3ALh=kC(J-Bfat% z>m`nIvzi!91hZ#t4${=SN@GXHq`r?L1-PY^k8)vSJhk<_=G4NI*rcQE@@zF!IGb^H zT(Iy+f-)ux3du=UrgQ0~693sMb$eqqRy(xFlj$7BEab2+fLNECGRWRC-sUGK6k)ul zpH^3Cqun|6Bb$ituL9kA3z)O^Mw<<=`M}3-#NT;d@Th^0Tu+SU8oEl<%2P)(>a&ri zJ*3K0!03-}6^D>ygU|C3UYMP6E+w%gu?Mx^E|#m>np%js5RV$`(kxZ0df&L{syb^C zhPA>y93_d7ZaDG2o`RB%E5C9Z1G}v5@FSGPW+xD%`!pV=>V++zZ+Zm!C1*Zsp;IP> z;2+OV2|v&vg$pui^*Erjd8PrYet#5;ejs!W#R@1 zS^QhI(V0zR*}OVb8Bof-GE6|_syd`PcF^Y9d>{Z^)f`#;)X=6_p}?$uo>#kp3J4n&<*72# zB|4{&NTz+05%o={R^DUDl>>*fb&?nz?`-j(nM5e%FTal*4Ft7K8==moO(5)&Ds)s@qB0-Psk_eHxY8o^ed&D{zdLSEJohpuA}?olu(oax zye7XJiffm1TSH{ZHQP-e_7&P4ELIcjeAsttjmPHEqz49STwm>!j}k~HsQNp;*nOxb z;Qp0&`_C2Re`g%CvixsQY?4moJ_BmV%{z5HMu6iSqa=A1yi#dZK*QunO#P(p^6@Du z3+-p??T)QOjHbGAaKy}e4vFnNia0+Xn-8D@_fH?OS?;W=x3XVu_i+)bVQWi*`ARSq39OJx^?W;g2yqnbTU=N|JPq4Th$Hn?ot{i(TKA0Dr72j7)? z57!&tLBhV1IJq5+8};1l>)*+Y7j+$Y1C&0(3n|I&ru*@ZHo--67S0ZymR)0{_?g-$ zH_`=}(h|*%@w|lTbdlFWe{`}g3ETQI9XI+cte=zFa~r~S+N?T`qr&k!$2<%2DX09S zZ^#7XBiJ-%Th%|ZgoTNV5|HAekS{b2 zL{6yxnG}|^l&22>)w>r>k0$~rB@~4p4@f$bg#x1#&QXYGI)oBd3gIz8Ri4q0ZGCoV zIb5C)-C=2tzoRnfX_upg+qBWrS+YUpbCa#{MUUB5+t$m#5LfvZPaNz2F@O5!1NRU9 zWJK}(?Vnqf)A#lL4Gd0T4zvdX>*fyvBI*YNL@o(Y|F6#c=a$R=4WVFTW&H;X`!Ar} zs~BR6EG9E8$=wz93XlADP4!ERdN*cexvM+zi(!DKigejN$}MUr$*- zs)T4vEoBmlPJyba54r}D6cGr`1$*!ko-@&zeeyo-nOHyek^B0!GyiCD<9+jY^o%fa#aL29C>2YC*!hRYjwE}k|k`gG6&+a9`_ z^~GxY^kjS-9#V(79g30H<1r%Y3~6hFX3*qa`^#@6 zlNQ<@UM*#V@NG4xG%6(1Kb=o8YW&fe*%C(E--=N5F|ylhj*`S}^GDzDC|dB>Kqm;G zQNAMVI*`f`FeTJEaE0s`6!bH7h1kh?+*L9C@>(zPvz5M7JTv9$KGdbqg9!u-K9^!w zD27_t>HW?sXM^%B2#71`w=C+V?i}uV7UsG>x>y)r&%^;bpa4)H)ZcHGo(3Dc5-da( z!I=ZxuxrP?2Kbv7g7othUMl=6dF~t@DR((oQnU z(VdBN3pvT}ruEV9Z~7`L-})gkl2vO9Apq;Np>z|EO*bOt;3F#XV0brAXpIE?g|Boz z8|M&mCJV(}Ky8>%3dAQmPx{~M|N0b9Bj8<7FyDT}?jp20F!KEX9XXh=M{msnEK?p6 zM{H{&A>=2)%ER}c+;IX|dnt|@13LL;NEnHC*(ZqZJ9QDr@E6GVr*6YrR}PjV($oJ4 zunooU*+sNf!*Vil(z&YQnbL2Yx;Z#LY*zb8KZXKAfE7LX*8SrRErwN_@Qy``5l~>J zvS?a2g#??aiM5tbFdT42G2Qxdqvbe->t;-ZZoysu8diQdbu%vR!fWS((%yeB4?)Te z5|KfX!S1>29k7Cx6th&Y!=p<>D(5MQ)H(FXs+LicNJM7^kn^n!b^>t+gP)*6!OO_T zaz}oO<%=?{+QrIYfd@2HC=O-tp&#gxN{7Wg?BmYtgH6KW)V-~&{ zyVi70lsYAcG(y8`k-4+Mijqo!j&@HkLhJl2ar>{3448pP1v75odt$v-uO=JN)$du& zW44B83t{8T0U*X&eBPJLrnQ{EQG2;oG$;YjZ-YPQ?n?iYQwZgaQvc-?fq4D>De&!iHDpk^>4Xk+d&cn1?9xoFVw zI~9G}hQHe5V@l=6y>}Ukag+#;gNd6G3=XeHg?{$M1|0R~(aW^srs~*;%YiiUMk5%( z7ea}7KrZ~FEeSXD0-G)WOO{RvKJnOYoE7ah?am?w zvlpi!Wl4Nn7>I8k9{DG6DJd6^!bm^1pxmav;uwJh^_-Z3~S9s zEreKHYuB-k0`R8L=dKtb?gFP{&o9FBvzpxMFRn;QBC-5Ug&r`g5!SG=KOh=U^X8!A z^S^LKw(!+8(Ep1okf-3pLVtOZf!Bs1fmH=IU51YG6Y!WqeqPVLifsI#U znC|@z6r*1hiqmk+A^6KHLR;>$c73(0p5rwqA(vOMfyN$dhkJ!W%sF*v;y=Bc)=zB$ zWSxRBFWK{*JiXws4*EwsZhzKWmfT^)T=+F^E9agTREP6d{5$FLKxmjba3gYx_Gz!D9SAi@nR9yp!`l|6mp@XvZGv;gL2aBcZKzLXP{TNOoh^ zjS}xHm#s|X5j`&{g0vVcx(CIDO35VKK0PVVEo(A3m6nV^e8{e}t02ZrX}RAVQ6Y3L)~%>E!10;nhg* zIFEn2WQ5UK)DtiuUjIX0a@5`VfDOnX)KcKx6dS6xPw6#SS z(_9EyU049!j7PSV#)-ax5UR9pWSION$!t+e9Pt%$2yn6woXH$zF;L|3Je{MmSChj zUul09UPme9;2~9yyMtq7eMhlu+C*BIhc2Bklu|5Ov41&Mpj;UkT9|&PfK8VX+?cfL zCaq*O&cNI-8$(wDd7nbjh-?Cxf`lH@8@D*{y1XDD$0TV3jvHKek6SYq2sIv z7JmaGekLmS>felDx()Pufp^FsF8Z}Yrjp^ZEHGtbDIC-t0;iRfDXlD6)Im7e@=3IV z=|oFRJh&KkxonldMht^Q6#|(?cib^WAq1XQ!U*YEES^&9!pdTr%Cx40Y(p6lWacPJ zm*#XZggN?x^5T#homK{(8tSX-wkW`^bqnipfp;mZBB*KOlYgeRDXdRtaD@KM;N*9x zmzV*}o$J?OQSJXM1uZzpwwY$dSWY+XYC2SL@V@*s+tqaJIas%|ZaZn)al~zt(>AMy z!59;@pVNkYfqtQS!Cpzc7=qj1Z*`mQC$$S~Bg{(18HYPSZX=li#{Ha_t1LE=?TL{HSI51RZ5T9tcgnIUyf)f;nPQ#tWP4%%E_Jtt@r}%+ z4Q+C2hHcJRNK}z-{sB;zSFcI@mLv zxX=hQA>H78L>g7R03HyU>b%G$3MV#mv=YGz9`8{G_X1a~vl1NX7I(gEo>$r%THfn`0l0oH#h%>C6M`|Br) z3O5_BriP#o>HGYs1a+;{8AF&lppu$7nG&V! z-Lx~__y*;>x1sq_U=|@hTP%^3{$A+DvysedStBjSWUa6L&IWa zul4OwzfZ9F&DU>fhVzn+d2OE<>8~^Djb6yu{KKyXmlPAxli4CsJJr3-PR}RtGm2Ew zc-1A-YLS?Von3LU8kO_1psQ-irydm$mW!fIJ@)%9R~*j%yID4~LVIcqdJ-Z}67sQa zuu#G`u@^3`lG_Z~@*!Vti&6Bxd1v2T8_o@-x9XjZ9M%uecX>^tn0>YK;wNRwdEYNeKO_Wp1)ZFj7pAvBr?T?J%Zf79?S-T`)rY^A!9pO`5aGgbt+{-h!K~I`i91ZREO7fApVE4cfMpY8 zs(_@(l0Rw%*jgre7D9o)zF&0dvEmY^s9wBUVOkT<9htk{l45-54@qn#l&vFTTB?5L7rSu&YE zivl`%=XCPN?a2u?3uVwI@GQo~na1PD#dNdSsE>Z$KpK>oF60u6mKctvq+RN*`Ku2n z5Q&*kMbQBA>ytkxpx7xm>``TT@oN(whpWmjj?bmo+q_$+fy6o832DThoC6$e(JdQA z?`!WKg4~Z_c%~ekydHl#Q!=G|Umko{CBOo6so zX1hFV5XD$2@i8NFFS@WDX>Q(xzNHc@El$VT;w8DmaZJ~YelFawMN#MqRGxL;Yd(JMDpQS)8w*i|mYwL1MbwQR9^h zCi|Xo2w?+!?TAkNd$vztj}qN1an5r&W_BhSrgON0r-{3X-n>qdLYjRh*QQZM*2Kku1>n42+L!O;T&cOHT_?4B z8A=l|GyI`QlP*oG(X_#T(p%YejBqbsj+~Z$BuQ|J|A6A?IUAa$2+@rOaFXi%>}tvD zXy~yspBmhiR6E%0?&B>2cjmNfXs5_pDUrUuxqkd1UHe%N1aHw)&DU;)cDdIq^nmkD zs_eofjsN(RCH82WJM$V4F4(wY_5r?@|0wJ>_zYL3t|;GMVyhgsm!(*xmKHU{U!Zrf zwLY`rzx zqaEUl^QNL=yL)X$lhNh&K9TzLZ@d1pOE-$vAp|a0W74-aD=Cs!oAS!^$-GF*42tl6 zO@+9Tx2x@wZ8Lv7PA28h!IpXLzjuj}U~_(6K<`G^z){JrQNaxz1ip3-dwOF2?iaL2 zoTE|v+MjCw5&-$P7iz;D=^b#G601xpM*>ln<|3Pmy@+Xh{*8ZY`n;mP_<1Ea{A{Pu z4*Vu8M4S*scJ&`aEUVf9c(3O!pr)6mD9xb?3A4t@qFHHpxt*0`Dgc_KbU)y`KT5~i zcP9rqRu(R7u4*x|-8&(7_7>U*(_J8Wxghu8BOo+zT4Fs+7MxQ(_Nuy|(7`}tv&(Azs-9N62@_o9SaV!(eF)CL0Ay5Lv z&s#2;tc;}b@{02e7$pcZ$H%%i9i7`Xe2r~(bfl$UC;m=L+q9#9JKQhYq%)wGJR@6Q zURp^%vWgx|;RHr`e~5PRDc;$eb8$KBZBYq)WMRL?@ASJr6C914IOin$);i2uDD+7t zfG=<{BW+D!m}d%JGvS5g>Efp55NIzeHUV{jh2IGrxI5tsdfRak&$)J!Ex;7TLUqRa zbu{3`C4$8Ep1g2~7Ojtv2^E(s$Bciwp$Po$k(~bu_k0$-KQ>XcYb3t)JxpjgKC!&t;?Bx{o39yuCa66;XZ!o zqtp?(+=;W~wu%@S^NUbj+fIMy9av#xxga3E*ud~%Y>(XKEW=Q$ffCYpZleL`B(hGN z8hdBw!S%2@wYkF$tmbZ-7q}Z+B~dqIO~aUjsvND_+0XBKjz(_VXr}%z-8~B?$_t{k zc?a+M^+lI$oC~t3$HNIz9?wA;<;Po1R9jsGLQ^GWi)+JTnxxrWw8qB=lR~_Jud6=L zDA9|TxAad^^XO;SiBbWHQwQ*L5Qy@)++rT7GU84>DT12ruPxN1&r8JD3ZN#l$E0(e zu_5urrsL0>OEg_(k_0|#?B=Xx_q1|?;cYtQs_2Ej&)kD>9Zq0djM7(FWr4yQVv4tx zTcm7{fH~=?PhRz|AAIjv``S4c6J&eI#e|zq5k=BwhKd)2{SVr{;6?IuNpW|MO(-`F zN=&@t49halj~HJ*vxNnQKTZ16R>7)h!5_G$2!>#aW6O-7b!}n$D55?q=0J39IHi;0 z4(^gs?kc9rO{Q}`KCKu-VUdSpjvly1L~chtvD~$fRzr3KS`EHPQa#06JJ;lR4#)dA zZ+TjEMQnB=usZ1xVY=Qc4&Fu?>i?Lj(ssM%SnS)pDZrcvb4n3*LPZ6`tRSKg^Z1;K z#q(pI4P61YCpTVN}olbBTEBxuMhbjImD;elG4E93;w(1V#Gsp0`1obauoK|GO;1<5L$YUUFy zPPF_CFmWtao^fvpfk0MOH9gWos86bN0x>CORDtZiQeV-Pd$H0wbxB`{Z3TJ}b(XW0 z`jadMAD7}=(|wA973~tR%YCDNawQ^p1TU328M8kl<0h}6W(Iaadx=jdRac%1BdwEhDif?W||j2+dg8|zo#aj zeYwewbJpo5z4|Ics%~MNF3m2`jyJ#5`UlV+xTaN_&U}Se--0K7Y5@sx2O|>#6c8p9 z@Pc>;`ei+}CZt`M(T&MvPDl)`YuKHy3C;D3IQy7OmeomO*0o8^P!iVoJwB`EMQwR0 zDI=X;=Jus2vM+Y0Z;B(-jE-AU=f?$tI6Nu)x1a1$pS14~+)tHFz<478Ae20PiLcfE zBllZwR)N=x&7I-h+~-p=<6q;aWx98C(s*!9Tb?s7t4;O3+ZF^Ly!nn?(R-YAzN4?L zNlq6WC&Btl3Zq@1b7)DGit`PF=}$xrNo%*l5k!Qi>ELLh%x|(blk&0u9SrnuHnRU6 z*vZQBFIwe)K~LU^+LpWg-(cq*l?fg6MG(uVS0U=JcTn{vnnvx%CDH<{8Dip_KHu&H zcPSWQ6*(_PrYnxC@%@c=w^i6;^%s4JTVCXvCJI?+3y3@2b;_1j^~94CvxvvhwF#3C zi#u|iQ^w5|m5r(82&q)9cUATV72BAC(O2 zSy-KmPp6fofLgA*&-O<`?$b=VN-@sDi2-wrj8FTwO51)6OPm z9V-#*6*z4;8H&m{R?AV40i!}jE=Pgdtg`C`DE(8@M!Kp(GGABxYy`iSM|>zg+N(NeMxcW9-|26dgG6Rv z(*ZDM@HBZ~4gSg5`9C!T;>a)n49EhA;RImfVuH|&vB8KV{0MTuJ7T-!eQ^Wwfka^i zsUG1T3=hZ;2B#FKgA0la5#oS2At}UgVqzN>8Izp2A}#-L<0!Xgq%MdlP8l5`i` z-OF2!_yS4V;%VvVWL;TW*$>Z?zx|gem!z{t9b&T17r{Yzsy?Jn^Z0bOE^u$Nu??8Ce5D z2n^O5I*yg*1eCFO)ErC95fHrOFi04Hwju?sA{5IAiB^bgoQ?boS&2HyLK9c!iPKK` z(lPgQxcP0#d|B2)j$_xbbc>(je!#tsT9Q=~u~m(N7$)9}PK2JWyG zWJjRDs5^ycN=c{)L7bVY*Zq%>ecjXv!p$0FP_mx zkFWVrVGi+aH>riA4$rfe_Xd7yCTiYpbYrsf)C1@E!K0?xqtmssoq*!0xM;k$JhrBR znh^dP7I{7x7K4-ATI>`=g`tyrA4YUvFO9gk-Ma{=8QH*6fg6V{CNYqhqKKGzhEnO3 z&^TWbS~3rMl*(kxFZ9?cMRK>_Fn~xQu$opOBrl>tsUmd;{+YNt_2dc6*#5U_rzC~G z>sRK*l+a9AtnMMqu+GsaNt}eM7~+lJ-=jES{S9UVCPnhQLy@u*M8|pFI$pA{YtZ_UE7}{0Jlq0}$=XoZ zpdoSD96$@JdI<@i(x#@#`SQu z23{ANxOkJ!L}DE8E1Zp3-jdbObb95RA9c`UV=Jf&1kC!~P=2NE_p<2_M5 zdi3*HfsZR_Z=9fyZP7FplujA2JZ!RL3sjYx5nmr!$i^?-AmU_t#okzM?OUNfl|>%$g9I2CzUTnGi@%!IAZ~I9iEj|H%r6E=0cVpzJszL? zURLmOp>uFuVOXbR=B}p}5b8{Wb7VdkAxgUB4xNruM6e+iHTc1fLH3x#J{%sj5VSm6 zN6`hwJ{;dPduEQjp;u;)}){VI7<)k3d<3wmk4BH4&vNS>15O>q|y zL*vSG2S$ED@B|BsrDHq<5hr~zU^K){tr#m?d*xLi@v9iEFyY9Eb`cGyk==KSRKFU)l8E7;!Z9HwFMw0ryv+KV zCfB`&XQfj{_Hv5l0qyv8qi})D1aJw8WjMH+fm7+CdyXj%ZC{t|qZ$nGhd40r#~Hv^ zjey{xveW9;Nen2etRpC%cy?0iW`PJ&sNCAg-41ZzIMTLB5;Cx$a%c4uLCsMj z!1F$WZG6I;pM@hR!Y4wJenY5@V=+;9i6HS~d9`*dp6$D2F1y2CCa%nXZJ*EQSPsZJ zCeqg{9+iZeb~U?^d$B5dUWqg!F_FXSA$D^Ga5Q?|@}MIli9qlwylBG67BHO7!)8!` zsT_|f93dpq&Jv9BwK zi4R2#R96;?$YT!9ISJjzfO%uq>6C)KD#MR?m+S-@2rJ6;Dg9&y_72)eNu9nwBxA1I z+uC0Pp9UV$OhjAAtqP?ZXey@PT<8}Psn{L}LaF3s>61g?<@RMp7m%En8nn@RNJP;7 z8BymlMm0B8HsSSg)6C6d<<&x)NlF3br-RBZry3^_Q9qSbzE}vOyqDc8vXS~!+fk}p zghgswmw?2=Ccr_cF!B!`7zjh~kOLR|@)d6fk^LBu+<(20ghEh}Q(5?4x5qN@>6_3-+4;r85VuR?ay_-s?M=P)NXVj*iu!sDBM z0^|oe57er`Xq9C9KS30u@I(E;1$kXkDTeXun5wDiQV88pdWpcY^*Z%gq?=;C3GW9( z$#4e@Bzz|Cllv8hv!9=Zlb-U_RG$mSs4Rl4;Pjm@1uRCEQ4XFg{nr=RmX8~HoH$u& z=`(A|d2og9y?(_tI)WkqdMz>Ox7=~!-1dJ?-Qg2ayQr(8L?NJP`7OpsI{wa5vva8b zUO|kfPpt~1|Lf1MULnqrDJZ`R&;XK2(!)-WMI-_I?=S-Ee}7&-kDwT~xh$?(zQ*G0 z*9PpBKs+ELa-k%TR}L2aR)r_9shsU_TL^t#V9+3O3c^X@y^Qm>;A-b#0(KyA=vE3Z zKu+P)awUP^X*P(Ke@@R8tYZz!!fi_yZBf7-IP5}a)xNJ%jGkFQv9JGJf~@Q++CW_B5s2$>H$~>vnuZtj_FglS%VpHO^#Z z)u{d`rAn4#NV_4A_bXB&c)RA;b$H;vl*@v5HZfK86At*8igt+ZxTnq_TE9fR9bPfa zF?8ohdl6<$(RSJoYpu=%hz9cro?DLhzjdk9jl}Vhmf-6SpwMP8`2zdkg|Z%j+E@0c z>7$(Q-3U_A$xhgZMW1g_hw$`Ma%P^WgJHlQnb{*>Iv&;{bXke=VopxWHxEg3oVU;^ z_NdJbZ&z6-5{<|4^-`K}-eyghkYYB5wX&*q5q08^A0j%!Xti=YZ<;xpgqj$pb5gYF4-BbFgF!U!|V_8qP8>G-g7~^XR{I*87c3snM zqOM3yv6OYKg$bP6sV_OIP$Sq#^-9Jh$fmeG--Esesz%zStpztcFNcX-4fdVKU=d<5 zBr_Q~-#==(vylL=B@u_|#5DeEwBiwSmbUU-T)SUVVZG+Za+r$*&&U>Dp3n1A_ zPDpF5&CfZiPdl&fm)?HJ!+oB+DoG+H26Z1c(JkOvf6WRdn(BjUmlY85nE3yyWpr_s zf7t>>gED4YFD|7Md;7yl1lJ!aGHIh$u?fc{RofI-y@+Kl$WmwlFA)AXgE61jcH;ST zQMuk-Q@O=6smeKNRX9!Sx3@;(GhYI_uR9)$m~~TjH#T*b4uao<`m+IITN0`9GB=1G z3E(XEBVc<9F;(JYL05`w-p}NxhhR*R9vIU`MQM2WRU8JmY$aOw_~~Fj~!D!MD^jfz&6* zawVeT1Kn)`sFAda)pLU?lMi>sa*@5;tGxp+uPmkIKt$2z3t&yy=YX4ii(d}W0##~w z6m2;Vzs``Z5OM1kwEZ==V-UOq=Bb%R?t}a|xC{F}r`O)*Bu!ztnsBN)gr2*vaMQBo znZH*T1aa32ln+);_g|`r@zs<;fOPngp6R!TZMlbT!6$4J%rxijXa;)$6eolSJ_Fm| zgM82Zv+?8m_w^n=DL)(U+QQDVrcn^HZ8F3pj}1}jx%DkRy(Uk5vB&W&bSm*wj*n$M zMfjh}Fz%GQES5UTyo?n-`Hx2*Ykr(Lsl9}Ctn)%}FgGi&F2*;Y+y@W4pMge(-v@8LiUa1rWJ3YQ$?U_3KJsdAA&V3^6&7ib#fw zw2-OXPQg8W1!XGtVk|;?YW~9J>45KO(n+(*Z}$55QJ5MN_s8R9sp{PXPA2{&7xgO`g z^P72@u;`}Em36Eav4bzy`mdwHqFaQ9d!(3%b?AG?V1m1KLpQ7m5R8#Gx>LytP$4EoAXS?#aoXGTb%GN}X9B>^0jn*}{GLwLQ4^5s?EN&|vm zS!<@35#FEF6#xgi6|XpaCGRsD?@O3zxvDZBTS#|d%w?KuI`(#wyY~rffa_#~X-QsV zyJBfDsRn=h#zM=}-PL6KXjjm~A2$t4G2Y!MF&I*PYGbr%jY!EuR>0bNuI87w|Dq7dvOM*y9067b-;Kxm$jemgQR704bhp~F~hClT23*~ zM#z?4aG+puk?j@FmJ}}u*AU(0Zq!1Q)rmW}jpdBja`9&2J#&`j)oSs5pv~*iRBp!^ zYK_MGHxISwawfX~YXZ)nW!1ZosZ*26NnMH^Jq)x|jwTHqEt#u#oSIqxWF8X}@Kr0XNW zJkwRWbZXHL}PO5Ebg%>n~-!1R9hGg}rXeI8t<&<8UllFEu*f z%8m=R#`c|t4Hm&f#qJ?%Yaj>-0> zE`%Fcn@N7=DZ5WAJ>E{VwWTyKT%@)-x3yZC=mnF!?1n!+Nm)zC;Bg07rT@*%tXW`g zG|%{4RB9+Xk96l+{pwr7{2cA)MD+G>xxYDTPEFc0!{e3fpVw-E%^s)ElU}dfPfwoK zP!KMEe&o{ur(dY?zG&qM^mVl?odL*d1wX+VP3}71>6Yr=osMk=^0f;3OaNq?1OoD$ zcfMfw{a=b-HT&Qv`5+urKt!d3yB5V%31~B z!M<60GX{Gmp%8p%K{N__Ac)|k$F`qG+tF32I_66G_=_wj5@w7Sn6m71{nihq1Tnjz& z{4;&ZVyYQPL3q8;C?h!}Wr|q8>%$C7is`(f-1ig`TG#>!cMO#N@KfxnIg%{FMB3YH z_BM!)Mq`Rk*0&ENM}K+kRryVhvWYh}8>Q{TW*k(ZexW^yjd$8Bk{1FlDxGHrPNl*8 z>9B_z$5}&L;TfE> zUYOC^(~U3oyxZC?|AHofASexTAq{!_h6s2dy4Jf(dBKyZkaM6)m}>0ZXxaxk;%A2A zREPAqqi}Hez{+^pA5KxCOY5w}9QOM>fs?f*#BwhZ#e2;ncs6%fLmPGWq_#sG z#Z~bX|D!U>(7W)Mc?Bt@;86Q^bN$ZLiQ=<_Q8J{`v5 zk+;5gu@nf+Cx~TNG&Sx+G!QF^kMyw{jt>l?{!7CSU;O2O^uSv2;Z9;oVnkQIT|icQ z98MA`2z+PXkxGS_wCTajleO+BUTDu3m}kk8<-eO){-5$ovi!fWgE}Wp+I+jD1wFY# zPXmY1Dr640uqzIVQkYmVew0`j(oH zk8#%?XFJ;Xs$pa)o0^uviLj|#Ex_<3im1E~c?}g?zNLd1-SgQ;mwy16A-&cB9`km2 zY`qGStOwjXGTk)-RI&--H3A4_p&$lxArpTa#Qq?`heE^$i_b+aAGZFwkOA*uMX50KQpcm1L~hl{6Df5=^d3mL1+X-Tm`q->)5`4z>sem z2kyda{2hWI2&hF0r5FaD{tgZ^XCkBOjsmk??7_?YZQj?nqw4DQ&KMF3T4_VJ0lLz^ zV9j7fc`-QE6>G{b&AOkTIm5H_oX;>{=+b5XO)q5oH@qR>>||!^Ku$rYWbR~T{JsCi zJ1mS1oxV$g4#xUU-{++Cm5kN!UCo`$@Xfv>w>mf&n^4e68oRsNIv6>UQ{dCdIoKLG z8yY*{lS?`OBTK_T%fLcQ|9$2^Zeea~Bc$(Sj887a$w<%0$iT?R#=y!#&&WIuOG_Esn0~)22Da}oyZ;N0 z`Y#ZuQFYyBUF4_twCZ`mCja3U9lsub^xjaIqd9hoIUFB3YsJqbVS)Vh=POSWVF|79 zdhLE7A+skt7ut45ljJ3)slZz|?ChSz0WHVkNIemzJ=o&(R!A(=z@Bbn0O(+3pPCpc ztPUnlHWW3Y%rC;UecZE~8g@Cuv<0JKcG4>10VWJ~Q?-J?87VcWvo$8e)H%d_75(iG zrYK*Kg8l3Rw}>2P`0-Q+PJTJ21CAU)5U8U$Xhx*E9(av>Z#`q%j&OtN=Z z)&VsaWeLi-jBS^)y#&7LYQ>4MyRy_UHCNYIiL(4Ayw0CxHErth7n*epout3F+R5Ijx(ANo zo+V+PDPHN5q%SOoat+CTTh48{fn4o(e2GUY=hbYRJf@ zq0m1w=*G@AuqW@l>@;M;sUT%U_Q2-HQ6L}=5RUQixxfLOhgx zo>^#nSE&-K*rLLg*S9U0(&6JfPTZrvL|wwOo`I#Q-!y9K05p?0C<&Q!?Tz;C!Y4jg zWjyrWmtmb`QT+Xr%yXx+=1zYvUFV>L^^;_FObd}n5&*?>h9o%D@O#+GBUawDa!UAw zGzZwpnM^Pqy7YpAD9*VP%!0Q0V8VjUnBn|}MCR1`Z5WDR1L%!lhLVO68XaR7`b!!Ybe%4=@5LA96(NLKDK56pMeHCeoKK_w z6gzy)dmAX4V7eacDsHG+DA4u^Iv2>-gI!m_FqT*D-;1R^`OKL$-kLZGH#6e9?T*JsD2BBToS2=-t) zCei1ga|X#01imXZAG%4Z1PVgAmE7aav-8e%T|;8ycF)DBbnw6_NEsl*!l0HzO+KVE z_|ip;$7QF}qQ<_b9UwGlh~679__!u@ae2Hs-$qZf<4mW$%*z(u!z5>qSdTI3EknJr zTI(z=tqdz^a-lQWXWhlfLYyuwA>2yNeG4`93^ko72y3=(=Ne#g5auTG0lx{1cFrIV zb{aaE_xDC{$MjG~%MjoHiI}|}tRRGQRJNG9VlH%UMyfE!T1ZHMWMotVB}Cjv43Un_ z!)VeOAr5abCp_9GzE_Gm(}~LieldX$D~vv?`Vy=t^30MFsbgsZ>#0@$7gZJ6c@y7qk9R>cw(`SHQ97I= z*;I7UOMcc>_x|1}P~01+8s%(pEWfXJS@qCr@$V6zN*A%m=@s`}!Q~v0hR5r>Iqy#Jwqtkp!CYZI;+|QGEByF)uQ^M)YI|iD z)CKll=+gjgxP<4F>+HM6@4(;YlZ&*AIS*Qfml}?L#xpG@X%4Nu;qRJwW85`$e}8y* ze-h>BqDFYhin6_cOLUFGA>(q^`Sr;jvB|leu^I3DX~rVwM%%FJ$<}KIB7!Hd2w>Xh z4U*GkOL1hkU2|-~u~0>QF;-5T*ELwtj`UZ-i3B9$L;}O(MD|^b$=6l~49ZzUMEbqL zqxV~hWn>{Q3olMK3q2bUF`YFdSL}wlKr5dh0}3f0{D2pw3>dj*1H@twjmoAF!GKH#B*Y$B8-ei0*zArT{my2zG-)`Oma<`*K7`jH<5O6R89 zT|g>3Dc^z;surzCjjPl*3b7^B`-tv{r~o_~*p_}ch%isl~1 z|52t>{XWcq&-k6b4=dQ(I^i?0{gCN-%bZIU4sGF7;x_-K%IRrsRH^RoOke{)x)s*z~iJ_yJ7;&KVY!w$VT*IT$7d$6MH9 z<|~XhB|V4=FaIhI`LAYBo|HL{GmA%E^aFikI7_bV#4YcAz@IQKcR1(D!O%OI4zAw< zk7;C=q+7Da1Mi@i)el3ha4VstB6Uz1bzquxQC#+y98HE0E(T~Wh6vx0gCF;P!0-Nq zH-r_nLmsxnzGFYBdvR+HQe=-}VvlfSkAXoS1|_xsm12jXYKO9Hhr>o6WImA_mC+Kk z-V)H>67rTh2r{ulfV+diiTm}9WqmurJa^OTY!{g(AGk}1N}rHLI3~& literal 0 HcmV?d00001 diff --git a/2nd/08_Tableaux_representant_une_fonction/plan_de_travail.tex b/2nd/08_Tableaux_representant_une_fonction/plan_de_travail.tex new file mode 100644 index 0000000..94a187d --- /dev/null +++ b/2nd/08_Tableaux_representant_une_fonction/plan_de_travail.tex @@ -0,0 +1,60 @@ +\documentclass[a4paper,12pt]{article} +\usepackage{myXsim} +\usepackage{pgfplots} +\pgfplotsset{compat=1.18} + +\author{Benjamin Bertrand} +\title{Tableaux representant une fonction - Plan de travail} +\tribe{2nd} +\date{décembre 2022} + +\pagestyle{empty} + +\DeclareExerciseCollection{banque} +\xsimsetup{ +} + + +\begin{document} +\maketitle + +% Résumé + +\bigskip + +Savoir-faire de la séquence +\begin{itemize} + \item Croissance, décroissance, monotonie d’une fonction définie sur un intervalle. Tableau de variations. + \item Maximum, minimum d’une fonction sur un intervalle. + \item Relier représentation graphique et tableau de variations. + \item Déterminer graphiquement les extremums d’une fonction sur un intervalle. + \item Exploiter un logiciel de géométrie dynamique ou de calcul formel, la calculatrice ou Python pour décrire les variations d'une fonction donnée par une formule. + \item Résoudre une équation, une inéquation produit ou quotient, à l’aide d’un tableau de signes. +\end{itemize} + +\bigskip + +\section{Qui est-ce des fonctions.} + +\listsectionexercises + +\section{Construire les tableaux} + +\listsectionexercises + +\section{À partir des tableaux} + +\listsectionexercises + +\section{Tableaux de signe et inéquations} + +\listsectionexercises + + +\pagebreak + +\input{exercises.tex} +\printcollection{banque} + + +\end{document} diff --git a/2nd/08_Tableaux_representant_une_fonction/solutions.pdf b/2nd/08_Tableaux_representant_une_fonction/solutions.pdf new file mode 100644 index 0000000000000000000000000000000000000000..aa55930d055942a647204854832f804e7fb32fc4 GIT binary patch literal 37461 zcmce;b9Agt(=WVZ+qRvFZQHh!9h*D0ZQI$gZF|SIlO5yB{ha5V^R9Ki_5Sy~vu3WD z)xYlQtFEf9uCD57G6fMaIwpEnXtK$rzQv){*}-9G7D7fsJ0mM-9v(sl6%Tt;LIw?a zBP&y5XF>*L7bE9?m5A9n{v>4h=lZW2OoR+VLU!(i+TTqX37HuG*GHF-LDtaO(ej^i zrvHWf>-t@;Wa?z+;%IE@M9BJGr1VY7(#F};@%!7x(AiYP)Y#7CyI&boTXSa%LMB#1 zK0d<#{epIKb~H8o3GKeNfH18T_TTK5sHE&}agQ^d?17%OADQx8dULJ){`=G}P#z_RK?$Y5%sjtGvIkr7quQx5_SyDs zbML9m!<%W-$BjGIbK!h z&kMlS=#AoG&yAn&L(eVq9_R<>$NNio4bI_Qq}9BPG2!R))5F9<>5_7r^V&{|5~O%b z%CJ{@&f2FXtE)d4O|>m-wo{BIJ3_WX+qM)zR+c~ zLI?7yE<2Y(m~DswV8%h(zw<#`!Ev}4?Su@4$%zsx!V;tk1O~Vgd*U)ix%q1Xa7x0l z1DTj|z#nt@cT@d#x3}k{!1zD(2Yquo4Py3F7VH)fSf(k=%qsOsS7cUoM|4vErk+8Z zayY4V1^X(nF_J9S5ZEdx61&KERy-yWNw0)1(^9$xLu08aME18?6JDM6);kQ0psIVe#J^XOmIJzwu0 zYmZiKePA#^pwsdg5Qn8dFTTof8m()7jWbg`sLV>5@!j+c8E(N^w_l$%=c>iZ2F*D8 zaUIE8qbG5UWx0TNKGQq3>dq<)QXKV<^zi9>v-s&8JQVPL?8a*7@!HJX^-oXU6YmaA zkzrxsTYXA`&NMn}Bpg-t$jbBMvaqE5$*Zc;nof<)obQ?GsLf1)VAr8nhS7O$g8SI; zetdWGJ$rY{JW00Km?#?Tg&t|Fcawsc6FsGD?bR_N2QBm_ADw$UJ@7%GEsR9x(#NxX2J}GPVb)UZqK52x5O3z@F&)Y!htE0|A&hBLX_H2Zw*C^=1sn zc$tG5Mp0kb%gc(QktQlc1}fM0R+hKshOpKhF)nPSg+jp4V~aSDvDREKaT8WlNs9el zE`p?AC9W|nwPUM`n38!AavC};i2LF^ytY6pVp@=oPxUk96Y3pSG|cSOD@uvvEyk?3`_7Y}|Z^@QdwmyT07a?tCdbRk1@`V7Xj&dBSU3`@|$L3 ztXM|d+5VIf!b?rlAH#W1X*D}-vDcH&WZr!I8V!{wA3)opEvcz{86FXr;ZZF=9wB60 z9%4#1@YbLN8!d`s83qAGF zN?oT;CEQ*~tI90P6*q7`Vb{m9{8zLpdJzH?%;d0v{5Z5(x4NN*8gnND4O-n1bNm)M z+WS+_?UyygP%#GtJHAcje1AUiOM}55iHY8|B zcO#|o6rcrS4G*|nAyYNn-2W_^QKm_A5;I92@WTCWPS8GKWl(L)e7Uk|Iu3TUAvx0o zA7EK6o^0i>F6C0IV7()kPreq*a^{yJf1*djd+HNiepwtxIOze#4NBg{imRQ&|H;ey zp=4Xt-$U6g?AC5Z6?_)uVVA##fv z)DK8~N+$jktK|dpXgYD7I~d-q1D>Z2VaPB}OM};XIX!+JeAW(`_DgMc%A6>fL)XFg zrjplN_-r z0Gy4P0&GF$Q2jtE!Q{t-o1B4xZfgbpV^g?tGt@>J%^0e3p}#{Dk>yexq9D^0obyW&~Pl z--eCf%=$He+Goo*w)_G38heNJ#^7yJ`xd{;scu!0Dm@m*t;z)-z%k7p=rR-DI%%y1 z^pkhHb!K5Q#lyVxPPp>#Tc+K?%U&OLi_!s2_+4u~@9H(WIU?4lT#hsNP**T|;B;O9 zpYzF5FNpc9(5pXSXO8<4O>X#UY%PTjukSQCl2Jz6Gg|I`R%6%sr|z_xX- zEQb>=4ELx|1=x_zW}I~7zBG_@>S;;3S^6wzxr7E)F$69O7*Ahozk@8D&E~@_9SMHN z9$wE<&i$lal99v z%BLf$>HP-iht`bL~lyO4Ee$jav~dCMdjHp=4VwMoIb61z<)=ZBkRpp$pMv{?#;SOc_=?0 z6VhFYHI7=-39DqRo*-%7jQWhObfoY{s6}YfT@|eR|1yKt0myJV@?w?m?tIi+s)0*& z*i|O8WkxeKNecBIjBLm*{wB4>&9;yqpoOG{USf7r5y(qT5|*BBUPiyTSEeu|#=6-L z9Nr;QE(iF=dw1G16V!HI&L%+<4DPJQ1a#-bs{3odxaVU~5AW9=yFbK0-N_={rR~z; zk43z!9yD30^vKHE=p3_}wu~iuSPzBbQ_U6fJp^>WzE*&<|Gqb2aHBJ8ZA&CF#@41G z0;Fy{wocvz@WEqM{+hbrS%Jcm#WXZEJ=fcd0RsDNl=g?)zn1B1kK54#*B;7ZvN&Ln(;S^gS8ncv{13856wC9arh zac@V15{SGx;aQ@l={O^rZiTSbcbQc&I2!=*@A{YkD#cJRG<`8_50S&zO?RtGuNia! z=A_`@yXvt@r0OIUph}CmvsR0GhaQYc$ye{U`&7|f19I~BT%}TnjqSpQuoaIY4j(BM z@+4Xe%x1&|5O8IdU1R$ep;@X@GUAdNpMDh84LEoH zTPMDJx<13DIz34Dtg&nr<={u{TASp=P%Q)3qMkb(o#rcbQQSWa-_#`Nc@Vc- z%hjrcNU==xJ&XtNJtVF420o12o~##IZ#i2PBU|N-&vkN`Kdef1Z@kK9dc3Bzn=DZ9ojsHG=` zOO2s1r>Ga9aGykvx#EW;fu$aD`cUyFEjuo~@|F}pUmSxS?oGGr&I<=N;Q=M$21t0m zL^+lw!3xXmF&*md&>hyquz9!?ZlY7(&S`@Z=((LM_> zU{@Q;L8jR(={TFhS6IHt@HcApTrV!J!#KOPIW`);{D(LP|iCwc$Tgd*rN zj!{ykLK$e&_>txydhC>Rpdt-!Dbroww+xsrg5@M}B13&u^0jFCtd*AQQj4;b>)}x} zF}TGL+-&#tSl#O>NX0y^&Df9Ev&Z_W~w| zFh_Ks1vL**&l~=0ea7;m7vU;TJ?ixR!j7Fu*a>s4UlspuDXW~x=2Bs z$>(fngtkT#JyLk+g(>gWEY#VCt)*S+>AJ%LdQxT_Z)oJnMIgA2#k{(qD2PQh)!q@_ zH|=XHZ}j(J>rF*(3XHbStjrqWQD@a*KlqbyHQXz##6!@+u+24>{s-Ot@F^yEINZzQ z?)_mvAbP5jyXNlE#7dZqC%sa77%httMM1#t_6L@tnX|gfV^*{7R$zMG4l#Q5mD%(w zIOp#6fURL^#we%QCG*YGqz(frY_rW{faAg~zs#&z=r=Fw_<rUWW24miGRBn-S%t&b-H? zG{K@Bl^ACywb=H}>cePnt_zXJ!;TE!IGqSaJkC8`kHbz3;|3RbQ)wB^)!L7&p8@8u zdK3sQ(4XRQGW$ZY2~u%YnfH;o{nyHcPm9-A$B^2QDfvgk>=wLgftL9ZYN$$`!cf#0 z5ju?bgmGXGcB>b6g2c50B+bUoF@P8vB-VpK%(St$MQ9Ci7P}Q@NUq2&XfarWMNva3 z`bi8|2PvHTB)twBbv58TVY9 z4{8?{z6N!5*Os-?p9)hF-_+cpdp}2>MtVL3yHHY@Rf9pLOQ`BoB6!;xJ(g*ERerrd z-TNmB>|tj|o>tH3hAN?rXs&rNov5*3${G4Fp0dzN;UNQ;9Q z${QDzkGpwGB0<`R?aR`HDvGWbRg_(Kb=1oH+TiqAomd7sr!J?Urw@_IKaz)em#{{t5CXU! z(VvAwuJ6ZC)RWra2zO)-DLc?%gOC#PEI4ukzr4s!X3k5H{&v zTy#<(XrM7XwogE4NA>|)``9GG82=nxP%NvkVyQgw+r)dGz8}CQ6HA3qr&GxVnmI=` zm9K-2M1Xf7ZyvLda_W(cv>#$(NppJ9r|$?EsP*otv7ms0(>Il-HccYpg&7UPo$ zF!;03I!WpE&ldj~o3lKa7_rAOO}H3lh6-V6AhX`e^iI~Jv<%|}6>~qo$74*0*%IyB zOQlb&q|{gUCy>ahCx(M2r{i2AJSPn$?>a*pS9phB;vKemY-=eT7fCIy6id0pZcHuC z_-MuM9DO%}YeEJV5bIizG@Zkb@$!5_8@m&|R?q~M=H?zHf2FMdK__BMEPLTO{nHcE zxxE>cGZG$n}2>zIn8i z)SSN?B(*K+{J=?)y0Ijbg;E8*3#P~_WJTo69AEZwAXaKcV^L&$HR3 zzcaT?h z$v%mx$xe4xaje^AKFb+r9%+`W@8k{n%U>CLJuQ(50wtC|iR#bsR=e#eC(M+PcvTng1I$4lxD8`IT)c65?E1L;?fsTu0m zl4h3V0b4T1R%n}Wf4jP^RX$+eT?sZJau&{<0{mTDty*@(-{p*2h2Y(4l5B-_2T=T6 zBru&B@o$B)CWuIk8(5g-;Q^cy%NZ_gCv_xm$B&sObU!6)8BT+Zvu6g za&X?82{u|ompo7rVMq~p^nlJhgmdzxUUt2NsjMV463jMy@qdSDGRgi-uF#B?(7jk6 z)MeeqzZmsw<1~3qtrZN7g=44?JqK7(%!BqOVq{;)#wF0RGF#(BC2IhGVl8n?5oI5&p=z8y z_glInlA&mI^}LOb=-VfoAe!EVfgtI-e+AA+wom$g)c6#ti`ie|bh$yAZ=b9peml)U zN2BbXEI~Belr8!L>|7;sFr7+eBi(Z#E}kbiKFX%Us6*B9?5ru#_1zuIq~DWW>8W}z zzadz2%Ok-HNc8|Y?`lxqzT_Of*Sp3ev0n)RcJ#JBU$>i#L-FEN@sPJc zIs8Prx6_3f)uf984w`#)bd4H%CC*Z9FES4A)WbGNn41^RRTA?GrnyuZ_QE07 zrqW@k>0kw02YW<#_*TNxN$G&E7BvAjHNxrM{4rWMW!DR0Qfa~HbkU)-rgE*%gBER# z$1Uu^UAix2^<~BPx<5#zO%;>Eu6gMA=QC9opWVR7gXbUJr>I+O_d2-i6g;1YX~A;E z;!|8iWO1$YMmKs@erun| zaMlmeiRibVc|SgyJmj0#g5$Radk!sshdVSBk{Y@}gS+M*l+x7pyeT~wlx?4FO)NsH$&o_MZM-L#`69vy(O^?+L8}* zfM`oGZiY3xx%Q*_htkvn9e|WOx`%0lA^XJq!JTRI3-biF?6yaE6X%`@TFo3oz1W{g zM=Xua%KGLZzabgc@i4S4rCC7gCsO1chf|%;v~<{?yv9Z$ga>2=-XYI1s=!!z+(|cG zThDF(K=b(nv+1%kQFcdhg@PVLW$@IKlpfy1VAeS8OoC<}>zNx_O-I!2Bd}~yALE3L z`5RNmgSDs3+L{>b4Uis*fGmCw5j<73u;f!T^vo+LEUfH4Yliss;$*w}>L=oEjMsWx z7Wbz&vvFHDm8>vo@mBi4?<(p8ZqygMRDqjG91f0oVae zU3rjPyW_8kBQTDEwlYdqChT;4g@9+PW&PmIHWlRC?9r4~xTNET&yzZL;Sfrf=4(xT zuE0x|WqAZ^UdBBYSxC2Uqy! zZMs@}RD!#j0fuXNrV#p4-la5Tx|3?;pPl@xdol9eodtqqOASgC7=m!JazK#A zh3d0QCv6|+@o+U}3@BTeT?}b8RLQc|V47y#sRxR)Sl(%G3cFj5HAiE#Sn1S#irF6I z9qD5Kx;*0!S0bFlUX)6Ii~<;tKmITG=PF2A02)R79aS zb#bKj>SAnlX1*n#o-gSt)Z4LE@nM%|aja+6rKUM32t(!6#dt}v0as8G!PX@vzSU7O zTwW9c40avGS&`&iBOk?(Ljw+$3&gx>#tqW~wk6Gx7Tp|k=GO?)6@`);~X2c~v zK)S?Whg#5QK`zA0j!hJljr{rcGfn{k!O4kE_A(00?KG6yI>yGLL9vh#Nz_nxST1`y zQpN&&P@5b^UH*nKO!M%#VD~kHm*-kPpCZ2b;WGet#`? z^-E^+satQ)$hJKC6qj!?LJ8k|spsoCgCBM4;S7Nv6$fXVgu`z+x~$0c+T87r4>1G& zP2daeW{K;E%UpJr1-}`)uP@;*`7bm>t*F};ZuZE8H1=)JMe=mco8$l1LHVI7Vwu(|SSH?cfENO78Z_B&wu5cTW(!N_~okmx$?4uS52J=!u8Au^2_IDhf5($=^s`6oh{{)1BltHA`+HTL*-d&~LTKM8!H${e#jGVE+d@4aj+7v9GLWk_>s$mh!T%CM5s-vNteuD0h#f$N4)rHxOpzDewH*m}&MSeF; z%lzw*mfO@1Dq;D%t16)Joj@QhoLnS(Qv;H#w`Fn3y@W3Eij0NCcTGvz*}}Y<1)X3jM0EWd&f-f(xCvE&ZneNh<#YhI7Ht`kp zdUw$*#Rtp9-8<|&zzw-Mc&oz}$Qs)DvD6BVI(+LM7@Z5LyqkEE1)ZhJUW}oXKaCjR z>R1PghF9Va2Cx@V7$9gNE)#Mdl`Hfhwu53T<)7_A^eUTK zZVE4J0wqT>1?Ekg^Z>5p_3U*^GVKAMd??5fVmcwx{8X5^$uBM8#rk76P003zS;Q}DHN|)6# zw`=oQep+8(?|a^3p&(JNZs`@~)u`*(O0CXxNqei*W^ZWF$=z%d-AVnqF%Dw()+{xk zbHDZ6I96H^C`Knmv@FmpNi`;`ASho+`MWW(9j8m+^0tn zjl~8@uHT;;pWO`xC2bL8Zu~ZgM$RpoBI~YQ+TFmuBX%Fk>5F^8{=mPd-ZD~FvpHxs z5*Zg-0G?PmMFh>kxEfvfRiZ>Xe!DE(DG*#tb&i^f*yrd-bK6cHgzPDDF{Uk=ZZbxn z%n~VXTxWfNQcQ>K=m4KwSpJbQQ9&J|Bf?qqAePPD?)}fk0hCc#s2*X4xLUYoSr+M) zMxOw?WkG>#77hk)ItH&-W$taL=Cz%|sfE{1ULz1U4Ic53%FT(3AULCUWM6O?iUg_FXmc>mYO&W= zO=Hq5^CyqQn(dqhDk}8KMpPVh?-38Bgw}u<^=1a_oD6h|76vTO2A_0XaOb+pfnQmv5ul4*gi)N2O`kZkto;CXrFDWw@TRA-!Emtio~I$ zi`><1IGpFo^qbM=#uRpy*FFU(yle?N>|#tM(-|*?;Ky`x#8wN1(7^F#sjm*+L#tzR zwdRU1IA&mdpzx7h5#k?@8D8Y3X`>|NdECmi<5x72Q#QycY5w#qo6pD_CDpX6y2_Wb z4j{f~K>f4-FIfDlW<}>wp_o;04nb#^qdJhfIvu64ki_S=w}Gf7J+AUZlyNz$Fja^9 z&>u*(4F2f(m)@iiGRjGhtUI3lEH!7*jU-X1H1Rl=njz6M?XtC10kt_h!OUgw=J+r4 z)}OZdmFUj1vQ99%SPO#eQ*aLx&xe*?^7!Io#Sb~&+PAO!1ys?OCuR%CEaCiN!C-gQnK$co@YshDq3@_Z&?LqMZ((WA z$Q@_QJ&S#MwZ0|iZ5x`eqb_>kUdb74Py}sA#H(*NXQAlTNAKX{zNoRhr?X=rP`ZV9 z;vqNlv$!73-GvxChT;Mdr%1(dJmk>6^zdBuok2nBQJ*{x&xjP$3^w(?1Cxb`U zyRPw1r%3*Nk;*GeI8Djw5c;#aPNgQz$LRT1cv&7xnhJ$@8#Vk*6Xe;=QV3 z;vydc5^cwj(fWmPDe}ki=Z4?}lsfBaNcKgH`Mv`As*xe^W1?peb`_#=}gS<`LDl8w-t={c6 zk<#c;Q1BCUJmZd7E-5n*f{5+3G2l6BG~x?BK7j{rmjPMwisAT^G#;u|8}-{6hUX(` z*y|B4D)9;IDvQTv?~3A)Gy%pB+sGN?`ggO&5#tR#Qsi>*i=sbcy_;t}?1?TnSn+6I zc*NDkT?eWI!f#~7GuSzxJcw<)|AwgIfnqbwIf8xTBt&s=2y7Fi)-3U~azJzPwHJQp zi~zY8F&X*Qp3GP{n;AB~9lJUpFeHo{DvJ=4tnMx5%aPx}W_SI9^5NYP&>wu?%Hu1J zW!rBQkm`o~NsucXJ0L5JW1W8y&I#%sVk;L%Zp8H?mIeIc8t#>wWiKfCzLJHyLt}Vm zJ}qxunYmul7|&D8Sky06Y%SNmuy)=e?xN}+ERw&QJJ#g{D;n(soAnPgz1<+QI?~Iw z-SsCoZp_fWAjy1vjv-{P(>$*4+r9jH&j$z(bUjo$gK6olF60j=<~;nDUlQtt!-y+N zk;ifod4=P|c*)q8#MP>Nj04c=MyipC;F>`P*p$0P5&3crI@q@~g3{$TL@a|yXsSgw zI*6I5xPFamqV{NeqY>UP2X~-HaR4w#xnV)TAxITs<6o3M|I_!V$lc8xbCmz%sa}$!fksfl}Fs~cK!O>C~i1epUNfO}JGL1?`N&&fnj_DFS(J0yI zwpYZ;b{_Kql^pC==4=QOEjWuLdkpe4fZrs1nuA3=1d)l)qPU3-S$0x$)Uf};t zU@A%m8ARD^b)T&PrkD{}k1h!)kn=(}n`vO^rchp}6Dy9QHfbb(d` zJlhBzavpoN5Pl2RWBs_=f%)r1W4w8u{Hz$4fShv3^zzOd#Tq)EcA$`h&uYe=&{X)i zT2>aLC=QWRMFZN)=z%^q(*x}kLygVS;|69O+se2aVAjL5^3KWA>V;3d9SIIuh)C%V zS~)?NTmU5FLCyy3Il=-Hh%>nD0Hl>qc2OYS0pYHmB0sgwUyHkL*i%5bfP=F#U7-2N z2Mhq@##NW5$A_7wuC`T=YvdLYgiZIf{SpTH$INU;UmlXX3lGjMKlN5J{f2(JL@Yqe z&661AnK3?5688uD)%x`eaodE1e_K&_h6YsK8jF=6H|E7>d+Z^;tW!Pug+G(c6;!&m-_Pc~E zkRT)Fdzxo1;A^2h7Z8hq-N>Bn4Oa+xq>Rba6YsMRr{z0v*2b$z`zjSLqZ!hb+=nC&6P`yNhI%bVip+nD z+QC@bLyvQ9Sh^Z&YR$~iFF}7A{?*hbMr)S$)vvXIP;)(B2F8SzHOUTDh11OV!+dqq zLKLB0IoOL^qfh7oXR(;_8RVSaR68N4;?g0kR$EAHMM00j--UnqYxG^jtGd<#R7x@ zwQuh$^%wl0LG={gMcFjcQz3Ao-K0k=_>CM=5$-~l3J4T~Y;P0Bq2l5jBl>sX;lWqI z?MDuTOKmdHr@V=LIVdd@NQtnCxuTG^HZ{X$ zV_-gZf=?qhveF-&hC@9(&p0415I5FM^X}dsJ$ED|Kxkjp0ljuS88>CVr zOa}Ev#Oq|-Vcq0>Jscy_e0U{-KvDs*mBFD`z36{>4j=(_d{9k~U*-ZmI*s0?lDdWM zy}w_*5Y=2Vi5YChlNc9C&21yJMX9R4oxg_Yf%Y-w!P@m^7T~)&m5&KUIZ7Nv(D_MpJ7G zeT2@3;zhsq{}4J<3aq2y+{G{3zH}&PTa*{v$X^Aem2GJT!k;mEL{nJwg@%hQS7@k?de2lvv?jZKEZgz9j4D zNS=-ngEVgK9H^D0rT3-V07zP#9?XDm)wzl@K^fPfWmsdzYj%DuU{91w=oO!tz4;e7 zM%M$RrWQY*Bj+zqi~#PN;9{|50|f01ZUZ88VR{B(0VNEt{pbpw2zp$Cnv*z%dxQ?>s z0$#_gv+Bt=Jov}3BAFpyRf0Z=3^BIihjhLZXoX2sYV*tD?zK86%nGR6Zf);lT3f_x&1Yj>7h z<*n00#vQ|rk>VxvA)yBw(PhD)UnT^8m{M~VM^R|^Y&q=SW#9*3H0vTfbYRC!RNyy? zT8K1O68&wBmaqV0oW-V%ysse0p|X`Hhd_P=4KMk0JC#}{?p-H+Tvp^f(MzW5qRK)F zw;sinGzs$kT;V_h+ht?K-}Zu!qdSARg`GeGy%BNLNysh=?fOd0?NPu&oV+w-gG1MV zu{?jL7<@Zc&9zkDI#Fgo)!<}R$vfm-FEkQo;U?~h1kkR_ zI?|LyMRnS84T5@5h!ed^r!6THD5+%+-)J)Ezl6nnV+pWbrp#Vn!t2Bf++$po@r!t zz*ooDu@lG|($DOf6b7}~J(ecRBsZcL#QGOy5&GaWv!Ncq#-Z6fKwk9n2A(%w{2VXY z2&~)@-Te0GA1NI--)~hX4AQMD46lJQ0 z*jJk)p%A{zHpX6g00uRhT{?_Dm6PGBTZkJNz&7vB_gEeSpkW`+-3;Rf}LPsUHeWvRhj$~%$> z+j;$K#QG&p#`hz1;wogBii2)F=rXg9r8w`2EgdWQ=yit zVu7e*(KIX9<*keJ z7r$aiC>!KdnDrY2?EuK`Jc)U?9v=R{P^Cc-xjsm(IxZFy z)nMRW?^k@VI~!lidH$Rc`Pgk?dg3~4_VRPB!{E>YeKP^b$EqNI!?481DYu*%-7|UH zL4@RxDqmv+!S-)RJPYaHolkRW7B7PX9WWa6h{;=vl=IxM3Nl9>4xP`^7uBACfsW%8 zbH}BWXect%{sriVNPEpZchM>;fD(7p=3n_+?6DA(feLOI zpdG>c{lT8GlrAT^?Id{j5wfsN0reQ)f}H`Txw95e@+1luS~!wT(?tf`@&wAil6-fN zHJYDnR=~eAHzUny8r019OqlWrKI4*FR_%UWg#wcgSjMVVI{l7|S;i}z{$v!rIN)SG zqpB}mf>a%S$;Wm;(c%Ziy=Mnr-fmKAaE!dtc@vyd+7_IfloYMpZ-NQA@Er<>&oNpv zH|i^sw=?llPpH-kL*dQ+PRm+Q9_``C3*iZg%}dpg;NSaDRHx63&Ma6N|B5~QNyUJ+ zWBY0lJ_BvPa?1*7FCWfN*BjM5+f;HN2xHAJK}qkC5bHBj=pw=NnZy6Hif_tG5TT8g z@cl#6HTbE2ec{b8j=m`n`Z<5}a=hFZf1Y`gh+$Ikw`ns19TEQO{1mTBC3rOGp zPj~;EZ}GqX0sViD&k&Xr5wo*({^#rrM&bYd@Cz1ZM!^5yUV&mw7;k0M6nV(}ROxad zimT^5Z)Psw5>*8xLongYS&0ni1Od82p^ObSjD!vQYguV+d{YdFgS_DR{LWl-x+MQw z|5!_(DM;do9aI7m_?V7L+Wq#J%KM?V*5Ah+>^=c+nVVD!SNm_%FS%cw$9~<7W(zxg zr zUrge^Z{OFv&AV*YZLVm7ol_=Sn(RP7`W%LxKWAMqxqG;XKf+y%C0yXhY6i-fEvS}Q zi}A4TB_oZ9b#fM*H^|x1wfY$4Csid6Rg_5$hm6FBw`_Tue-3I>$TTPRm(fyJBt=0N zF_Nm02?b0pqXu=@U6m(+<>x8kn;%AQ%~GNKm%2 zCx<~YD>CK%S{L?~Br>FZ#Duvpi6NvZNFqdmCP&2_X7)-?uS-ImlL$skw7MWo3abmv zPa}?3aFK`#rZxhes}BjAxJ5x$D!oxum6dBdL?@$-lvJfs7}W45Ro~om@^H_Y`TFv^ z<@!`AO>OnwBD`&d$=>?)o54Flo?MQYK3_;K_&|%d+AmeOd-2*iY4V069^GF>5|cfi z+J&BBH$H0U#|YAJH#L$d+I|`V+F1O7Mv+()q_;?!7jmeR~ zTD3Y98^Oltyv7>!7cjuH%1@TMKW z9RN2n3$dP7Mz#uP)Fj9SgS{Op36td@^dcpk?~))Mk<|%Zirlz~r)KFTv7c%) zLN9i*tG`Uu>;L2IoPuQQ+AUqSZQHhO+qP}n+GTU^vhCVs+qP|Wecc!5i|D^kcXUKX zGr|LCm?2 z>Af2e7f@O4P=}0D)vAOzvJtxqF*S*zsiH3SEILS45?&S8Qu-}EHQJRB zY|HJCe^OQq3@C-0iHN98OrfUbF~mEAEGSk;|Hw!GkgrOwz{Zzk`5GtplFgM}doxf($3YC;+^#r8## zhgbzZSb>f)Qe`vFy`SV%-%@xFQJkYSLyX>xE{G5Ez7l5Vt)TZCHECZK{_&tlj90>& zopw^}G~gv1jgi3>L<%G`O~f_ZgFxaga`)6xxRn|t2E{WXj>02bAI8a#ggQWmHwsI7 z&e}>Ma=9Lj(O2t*dd$?6<>mzP8SC)$%{L@9~xN+cFFHof*~cbe`_^5xIgEF z800fBEw-&uHXc}M__Zv&lXH0AB!KUEA~DM%wcOKqECDyZJS7*huQu9!KsbraMu|9- zFvz1USmZyY}*u66yhf$3N{d&JDg_AWYpFUM4lEC(kH{M;P)#_Z@Ia zV7S8N*M?*w@krxR<{9fWT4tghZ%hMhGp;VVo&jU>Kqd2nEL{RuyPgJy-_D^f#y5Dl zgt?SJQ+X3Z;H`1ft-UxX+^*;mtAYN|nwAK>M)YDM7a+c02Jk6N?!A`ea6Q}s2p(zM z;SQQmj^NU7HpK~t<5_*ht;)=xZVR%F+M-=JGp zOeSZaTyyGNX34NEzFJuMyClb_%8IVa4h6~pa^84o+XTcd*)2C@CZRLq2VffyVh%NJ zV`Jk=2IQ6SX8>mAjI;`4ON4tC#CS_4!7kZm$V40Gu$yjmrluYjT};a|_%}m;dfs(nGw3+2U&%fL zZH>p;(e-TB!F9&h7Vc)zsp}2afU~639HZ;GmfQruUG{q7SaqyZ%N)O)JmP~N>V8eC z(RxqOw^)6A>cpY@Wow&}Yy<9lPt^}lxHb|HV< z^zJ!;qEBu&jCs{IRPCeSgrXk>!`m%|4eKm!EP<+Vbl)rJUA->nH+XC|vL=s}$p9dh z+Is9DqbXr`y^6G>Xr6JIdxlN5*s7e$1$b97`0DL%R#MQ2H4X`GCN4B+BV$ zRK823v~JBFrIwq6wx7GhonA=K(>HuKNOL_Fr~PjKJk{_1G`I2sZ0>yn`yGA&bLlA& z)b9AIwgNf4)}eQ-c2P^GsYgZ^8gAf9%ranXejXR`^jj<*W4F;!Ke6!iqZtqBlZ`bX|QdL{j|bShd_*hxogyzXI@*yWJ= zsA)|K`$Dgi_L|~jZ)E?S-p857cQ_2awI=@%0?_)trbT)B{RZShyPbIO(!=Fi@jME5 z_6VyLw$OP1ek!lypcxGQIH>&F;fyOmK9TYwVT6b#`0N`pEIm&fSlref?hZnR=`B z=}h>_&H0U`30sdjDt?tu2V93Xb6LCJ+#Jv>cy`^$jTMGx(W<%?oQ+x?A74}o`30t< zxn5IU64+W`$*t8@Y$sfw3w5^FQ{Lx-t?|_EwCS7!9p4^$SF2(E((w(xHyh#P`o1#h ztZWJw(^=U38=)iHI*w6(cT?2*u|A&{YtDhtZKvjQ!8VhuOR2Fve2tK7y+zc9pfp|5 z+@MUwY@hRH6QiSX$n=h|H2Pm7OsO@G={1x1^ZtRhwXX$v^q_Wt8#^)*I#U)#>c^X#+Di=4J3+7K@o_HzI4VK)L(6s+ zBA0+S>MxhdLzO;}(!mL}0B1U1-CZ!6C%g0LgJ!|Eo2%Efwv}S%REl9MXn-YVPeT>J zf~e`7v{SX<`P+>5$vm)f=dM5#`sHHtz;%2E0aNQ}F6-1!KZ+h|!Y5q*VrqRCnntVH zTPtOrKlO(TaB^j2o=nWAc%K5z7}oOFSfq#ZK_} zV88)RayjirJ|Eb!UrGX%329pD;v!sU^dRS1%Q?9YE(t;H(0XpJn0gp*_2eStT1&}w=&R?5p-+;$oN>+Jm*})fd zL+||9j98w(5!LtLPt=yqe$|>w{ei6fHF7q_r+p6E@+!d~os|g5s5scpdyS{^Ot2f=Tl}$is7$*F%DWI8>^F%49PdgoSCWVIWDA_CjFME#B z(rt(Z%)s^y-EEChhY-Ikq11rpnMD|jcqVaGf|EF+s1`9}F|5)_gkmwoPx^@>Hr z|Iyf3S${x<|Ka~QU0To{%BszLgvFdVQYk|Wdjd`Zg5?DYI07iMGo>tZWF?ZG!O3K0 zwgjV*o-DNXAUXYF`4mtT3MuTOf(m-H_Qer}JXC;Ei+zgOh8R~bE5jY!+wRMJlG+p# zKF;{twl8Cx?-yNo-&*JT=O8FD?@uv81t&~Se^+)rU*qFpR&u@+wtWgX_FTbElW8K; zyz))D7Ge|IsY!gfNApwgY~gM%!1t|2Y}10gGH{r*9NaVq?8MtoMcOmm6@?m%5Wl@XG(I%8 z*8bI`8X^VbAt+Y3iBcrKe&{$YoX1A;H2*Wd?~3LHs@J?YYMvo>J9VS1Bgui|QLf*U zKz#xkB5X+*&n^pt_S|54=zz2Q?Ef_|`gEL8<&!#jw&P5LX;!i6)A8z~@7GJfCrtq( zmfh#XS@}&Js-xGvn!?R93{wl?QwQO9ZHhzlcgO`SbSu?DU6L=A-opy3B`jJ~J4l!5+1|;Z3xdND2Xep-7ndqg6 z67m;_x$F*)AD{NNRm#MdaO;>Ry!XBU$zcpPzAGLo5PJpF0c^mpxBD-0gn0!-Dwwd7 z5D=dxX98IQ3*l;Ds!fbEn6-cd2wDt)>fg%(biUb3%Dca;j`@f@kX}&4hF(xGPpS8E z60)=UGT&eYhfFJej1%D^^u-pOx(}fs_J0th_WK~@)XYGPb@gTh;ortRe}lFciM%@b0dOoB z(Yj`7tuG<09)Sp;Tr3?E5~~x55&8zz*Qr3PV54*fH8l1A5#t2$Y2_i9Igkjz8z!RY z#JB|k<$Ndb)dB{zmV+>7mfcYMvO}ya9m@_3Xvq%lV)84bCX!CPPb`O5v>2dmj%Hf- z2x{R5&`h+Ps@I@}i=MPP_SzCu=j{t4lEAfsMMXwB0HVC}5cH2uyM4K%Z5%Td#tAXV zQ#k9gDFbNVF+rFcI);%e*@YIAZIhzF!Q*Ue^Dqh!VnlL*bPN?60fqF`XV2W!G#JhV zJ_AC^8*nOj6y6UX;U_p%fZ*=^)I1n(-xq&2VN2KTePW}`%9oErHF=t9O+|yX`$rvO zAU3h+5s?xE4odt4X!{2)sy@@104Wxd3OMfc-bHH-+{}pteh8e;HAs+$|r+ zm}Ai>r`k;Qa`)voJNpriL4PU9D?BL2{AnnaXcd9kx-^3D;;CW`EJr*+MR8@EDT>z% z2UU;U-gok9vzQSsf;ig;MF*fPyufPRvlrw+tmd`>dh|T{(23rJ3+;VAVzybD5K%mU z6wD(hd1e}sPoNHP&fml@Ehcehv&HTm8VssiJqfX@V}KEbp>U8}tJhBG5^nLK5Ypy5 z+;A%DMD|cm03EALGuXZ3{zJbd6rkDVp1`u8J6^>@9%83H-c%kMlkZ!FnLw1t28P8X zFn(DOiQ^TuKd0qFe9~-FFmoD{#Q;0Jp*hggKYVBSvA-P3pWOuwERtXLn^8 z83$MoVvh)7Dsa}r=P56cRl@2X_bu1M&}@kjguD_67E(kB(ig)nmyRF>+Wm_)Ws zPoQz{fJ$jzp~hcT1lqv}IphSae>;Nirj3Dy56InbSj0WKw&;4Z5$IDu0eI!p%MNkE z1SuTE0m-OpR*}*$Lj3UZA)!^5QbmzvLEQu%kQXk>kfB}Vw9q3bz%hK82o{Xih$tk% zPqKG=gOl{q9 zj~48WMa#q%i>(#6D>~HCUNN-JkcJpJyl|0yj8+`^G$IUC3i>k8ufW~tvWY9Z!4(7F zH$}?BTMG-fhJ`m^W{8u;_OmV^Mp%@R8}e=3Z>J@^-9hP+zCp&(|HYDy%x3N^2Ja#7KsU7hqCIlM;o8 zc@S-3KQLReG&ASwa9Y6n?ano(d4b7ECSA>$=WLR-Ut{d1ooXCIxjmtM;iK1W+ekW} zJ^IYDy4zirh;Qs@vJQpAb1}lMiMzk^8NjYNd`nEbBtvYD2TiZ##%(`-OxxzkiRN6I z*rLJg1jR(Vg!tjWVcs;0-mMc29KvODHyc6`jX7oNXdo@dwvid8?L-sjD8@IwSF4nv zNwDzuIO7gCH6{p0nJ-U0AoI)GVzjm1Lm$1ZBrvrgm@S?)8N?B`!-Jcf6zjx3^K~aC!)FI(4f`PU z(N<1_u9&>UX_muGvGmI-r_<(Ea2;x(hhB(=#ccaA#=9pT=de&c0GCuB=P=)Lx*AeIzOZuvIfn&=s2?eoPitk5yx84~at#o7Xrr} zI;XakV3boRUf8Cs+39ptjiDS`ncBX;uWPT%+xAHOs&pzZPsWq-Vm!_FihP3^uXS_7 z>u4At#{CP|!NJ>-z`e}aR8+IS6_=K@deD^9DhCfQ)HD~X1^VGvtQNT@joNd>s!FoR z_8AT*Iex=%ml<_)Pzwh?P&0U4EzR!o!bS98Hg56?Xr)y;mk`U*qSqEqv#`t8I*(~1 zyb|Z2$2LXk>kzJ8{7$D7FoGNbl=7^w91-};or@oXl zMuNZv?;JIsuAIyFJFA_rw#sWi?96s==#R2KjLf37-kS!Ow^ZG?wa=IJq2EVU+{2a( z+0LJp4$S!B_@AKi1rZP>6`9;!#Me39il#GaMeUJqA%Pi_3IT3pmT}j1=5f9@EmI^s4>Se7r;+^N^cS7itJ#h&n zA&W^+*a%ZXt;XM8bEvSQ#%2edy;oV4YjvkPH%AuJV%XFe;YxhI=#vxPKAN!9Jdm-~2}4 zZ5UD>v?`aXtCGV)QkBr919oD={mNaTGhQ!gH!mh6P8!+H5-ac4ts02F)fAa3XK_Bi zVJE-YnUB)e-&>3wlU{6(|BKBGM~GJT^?<$s>OT4cEy>=hxI2F3gtmT@I4?U|Y}n!@ z{y2LWZm9kapXcKgVT@o;AtK+Y+=#`)7fGMp4@!=T&$`2}tK=8bau#6-FF9CrlgwVT zv-MK&P*Ggt2ZY5osag+3?Y3vf0edORN`IL-Wye>N`LMKNx{oNm^qKoIN+CQj-rkUB z*B-iBwAB51FGCXfKs5mWk-t3gu2IgPd$&vaF8VP#$e7l+?HA$fQp~N!aWinEh~E#! z`?j9n72h*#WgL4xy_{b`6WW~WKoF86kn~`26S+4|dO^@K8aStU*^<_tUlXS~>^4-o zFRpW<*!;~L>iZDS+x46&h^-AR=~3sm{;Osxji*T56PRp`_~O0-{}Up|ob?m%;fG-L zP`oEZY$8kC9n%n>XoEADCeQXLJGXOuv?O^fM+K*oOjS(@zjN(Ma*c)=al8jXa(T~z ztS!O4ktZS%;1U!xxu9RMunS%z5Xcwq%ug7P$U6&5a(aN7^vQ!4g1=xbC2;suA3y#esG_JZjK71bW{-wC|F@7RuZeLFef~kR zgA$;b1ivs~{bV+d$!(0`nZ|q?mybZ#W6t#U2JHI^t)+adM<9hVY;xkID*M7@13}|y zz@7ncf{KLrmHkOz-i&|n+0w#N9jLZyKgqKTw25iQZL4mj;q-HB*RFA+?a&la^Aqr5 zE3mP8`i@~wAaCSQKI9}nS*p}#d~hh`FxJgidh-#+)44>4vq&udqJPv=HCKJc;*Osxp|`u70+8}Nz2;1z;&^PeWx ztT5s+_;tS z&2&!lUj8Cc)e~D(wZp-P#D{SrnB50;{sr3C&Z7s`2VgIHcSrU*XN&y5Z$BshSn~MlJZNplaO;r=Wg~ufW9S z(a_+;f6YiN$0GL${H_6VJtS80>c2ZbCswFE-WJiZ8<&qSa^KTkDdGXW-urI!WC_w#w)|${*EOEyYw_mTM%?NTLxF}Sz#SDypQ$M z`u>}OdkmAQ1W-1-D*{y=MS0%w_l7^oYU#rBox+Izk^;|CL&9pgNEl+5xcs`3T!Pyd z4vV`BAjxrwp(*SGb!xrPzw4LN*HJ+F(~{?@b52jW%l%Q)Ih$=%H}RQoNeN%@)7xF? zv@7E%8_e1ve&lUPV-8-M*L`IAQ+pauskbko&y1#v*XB^>vKp;!Y`KQzSS?wZ*B$g0 zjlyGo(Or|z+!^rZTj+%!|ND~RlDXutsJXua793mU{zxWq*MFaqM(x(Cbjo@YHgJ@?C}wLu1?Xema~DwM&^p< z68Oo7=M%#b;U0Y^NA3zp1=ZEz8~wO49J}6kqoZi8QwBdp@uVpP)T;{qP`7T^1Km^* zqq$|POL>byqnFz0!nEM>+iN);JMeZ%)2AZCy&ktLEV#19Sr3dKky`Jfk6+VlIb!yOsLc<7UC!B_JBx)VNwgT7P^?{2Ix$Y3(T16}B@#qWGEqMz$INzF@#BXq) zjmWyfFO*JxFepBg=+sXI#unWq(ZR_uDm z9qZp7_eH=%*ZeSqia#3?PMMGLZf4gc+9aa2JD!RBB-l?PKE*$ePhQ%MwKZ)qGjGot zNtsurCH*y&>(HtUNjDjsl&dzm-Og4rh!L%+w_JMz;)OAJ=+HBaazKJL^^WLA zWvai=r=x;6|MmLa25gPLLOwa$H#28=-(do9^~cIqsN+_7CY-NV^xM4(LJwbW(H71S z`ih|x%z}c<^Hyh&kVnK*BI;~uA~4Y@$h1sK_?y4?bIv~5+dVw3PVYhgCA>@`4L_m! z?1(PSX567~uH04fui_s+)(r0cMVcxZIlBvt3Yn`1eJDeb;{PB5|G#cE!^+D3Us~_K z6ldQQY5N~jBJ}wcH5U{~x0oaHvJq7Xss^#VR5U{-yZ$|v(?cTV1GqmQBkKMMlNZEfXE1@G(cs0lN z>U%CdwyuNmNc*F-l$QFwzfgRt?bFcop|G99-j<>5)Hqr2wvMH}Ez%@U&Iw^qCQa0x z_*+xwB1z}=$Cq$fO*clBDYG#mPqSUt>Dmi7xZAR@l5#fM?|`x$>aICw=46clZ@`>) zX^g$J+q#3Ui)8MeWz%w7e#d^P=FqV=syl`-ik4E=J_coN<5Xm5g5F_f(_LStAt?He zbXM`j3uH5Vp-LiD`549Crf7)eh|e?6P0a_j0M!aw%KueHahKwt023tuNdX3_0F*=k zs6+rMB?$EZ<8_BZOokxMVF4S221yG^CLtrCK(0uhuPj&=AP1TQ#D(et<)U~(^v@dt z@~-EvAX0(~Rry*59Z>72&I({!0Y?NjdWQEvS?VjDy+^2Q^t-x!9U;#sTcjT)H{`qY zq5P2klpm5W(!28g`cVEzUrH~@4k`VLVW-p+;|SWG{)$J9f3M;PGVaYMaOK^{yRU?1 z*<-sPzNp^rujITePtKc{R4>av*7fgq4fjucaX&y|P2`dOL-+l^T4Mi4zr&z?x_6>? z+~E5o?|=Cn8i3FMmHHr9|Do8wcOU!z@;eyV{&fxfSG2iH6WT>twVjVp)`=q}Mj?2- zgbdtAZCocr^Z>$h)GbK{AwGyb`oYtwPv^Y_cw_4ikf+F)@p1Jy4o z+U=)wTK7F(~21rp;I@~x!IIoI^Y ztxDZz`@$o%FwD$%>^J9u1P`|}h*qYpL@#XLTB=7kG4=pOM#~9U;U^eQmV+w7Ynay^ zE%zd(>+z|?e%5-8-S|6q&-vF2#Ue3tllU>O-ihNEQ%0m;{eFSdw-Km>@dWd%8CzFb z;^U@*BQ$CAlR8ZpkN0$hL?fy}@zcpdid(yoP#*)x{rgO9Uv%|D0nryU%z5XKkwO8} z&=H1_J>z8?rm6EC{!?!9L^~nQ?}HM1u5~JSRZk;8@bEx|>JXv^#xw`WCVWt zvD>#CYTynoRSX<6zg%qJc?xCV+>fwI$$qQDwGpK)DsgPtfogzs3k7w0{?X~X!@_y( zAn0@XF*|;}NT|RJ0p(Hz5RU@tH=Q7J_9z`KTAWPmbQ4su2y#2{nmzE8D>f}lDvDf=dMhbKMS%gHf(5D5;KZ>nf zN#Rp`MU1j$A%Brn$X4j%3e+2=W1Tx`=)9gCXJjXW--ZRqm;&r-!LlGDqJUMb0~7F_ zON0D)=*{vYZ*xK1=_WqtN96#Wgyt~Kkewt_TfP#_DC_Zu3agAvl12c+m84&wBEe1e z0wY3Yr__j$CQ(vfg8zwWRr|Ti4=hZf@Fbz}NY0kyIOaW^4Z(8W%H2f(9FQ_3K)2e2 zj2}!OpP{w=ye$|5WD*pGH#n>Kn0YazB%#2Ga!_w*;rH`__ggSGbie-$n)cI01{p0_ z;^8YPD@?-N0t=zoNatL`uVb3Yw}|1}VP_9z1W%U3auv1r+n>XRYW#pZ5(?m7I4RS0x7&Q`7RteIDV2^qoUn8JrQ8o2~s#XlF zz@Fe~M=qyiSw)f&LB_%frXBJXR07T$yeK6_C6=r>ScQG4z71TLxh55~P%QZWb$>-=~L;qAu_s^gH6MY}e=mR<<1 z<#s^Iv=f7TQs71(B2uRV!MJg$W89#0g<5MV%%lUmp$G*}#HYZup#Z|J14d!td)|pa z*iT8=$xYt*BxGP4$Ur9wDYrNOu6uOA%jP9s&M)r!{tbHr2s{PwAFPQIL{tVwwu8`b zq!+y^08X$_>6nL#2f0~~gs#6o*QyuZoi@+eOx9tM6w`Vh`Vn^wp1pu7bz2~K%V zsrLh*mynXB22_Y4gfq1?a|1F6K_OEox_Bss4yd8TpxFk#h@`UZ@mv7NrUB$Qf03lN z%)O)$3%uo>K7z)g36@j~6*eo>detz?o#_>X+e;~W^pICdJ5P(|aTZViwgxy5buzHS zoJ1<-Hanxh3GMR1reAbkNpvQ`-1EplLhCN+izW+$stG(M&*2o3qorpz(kJ~G9Klco zEJj>Jza_#?ISE~U8O#)){_UjKL({zszeZ-jlwY8qlAobGu&jIlUdb%xk`shh)oQ286_=x8Yq)fhfpW z@qn3TQp!mX;T{gv;ScNx$ifUY3Qi! zsgI&{rj)d+S<~Yo~XM@n4{9?HJD7sI-$yZPZrMh6QOjK^?3y?HkrN zlqY<0Col8a?t6cS($}|cG-o4q3=X3IYK_XiX`9^}0d0WGBAy1-s|-~O&kFwSlr5^P z)BFL{g2~plTae-2LDRM*6m1=pA$AgyqT5+df?NoK-PyDtg-B7ma>>(q=w)*QD(6jC ziDw^rLVF{~ga{{6vtxebOdFc&W9?X@+fI`RxEu|znPBg#p^Mg$K~GnIv~mI}VD7Bx zyaA;Kz)oVXP87l{TIXs6$rIqJGY7hm-&@`qkWPD(BmAe28k3tq*lPIFrOjI?!-Tpy z(=&Qp4TjLcla4$@S{j1eVpbYJNQ+*aNly#y?Lteam#RHWnk3!2X{FDA5q3YbDMM$^ z9-HTLU2Jb|FL?|kE1u1)F)Wat*BO^NMAEq09A<*y2nSm0bQ zS={c`VJ7${J4G1+Zmhq%3MjulcexnlttmgcEA2eq zE6LmuaWNZXVu;w0i2L351I2jT5w;!WQ1PQ(&z{2u2cZv=&~^o1hVc>T1U)Ebo0GC; z2S!-^`)Qh2t37Rp3uK39)K97`Eog|4J5)d;4(i_4oISj$a~Vt%QST4Yx-^cLqS(n7_LT0G17xouaE zz^$nJ)EQp!5G!q#o@bT2Z}9@I9uQYgC_>@)uEj2c}Pgd#OKXdz9I`7Yag=ec%fU9iP5eyS&G$~r-hxi6U zZ#~S+r`Tj1+wQBe@dU{kp0*plHY)4^=J%ak9p3n6ByecsqzFaRPx(UQ*P6ovL(Qk4 z*4YE`;;i=w2J%6N_j~JIeIRehAFWT}-VkEjE9q;k<%HE!y|3(Vm#c|%vEP?kBXE<> zh7(pDev$i!`1p!4E|&Fuk@l6K0=LuneguqIbC+_~=P;H0@YWwc@2hyhl;|Nos(4`= zw9KcdPmBuwRRz@Va^cXtuo?Xbf79M3U428@59-d^qVs93PjgsResk4|+;7hD0QE2L zCDai1uWV3Ia^!YB668I4tB3cr#vR6CZvLQNWe3+XEI-VlT)OwU7jYM(aqrl3AlN&< z2Q07m4E5$(=u8&qG#*l9j4B`4&X> zxrQxA&&kK#eQ(~ybf8C1A8-zTB8@Vo6MZ(GvE!nHuKBVg@K*VH+v~xbZ^Y;D)dkLQ z%)`5ko=W>rPsZYKYV(dWzTkXC!Rax^NNvsa&@*O_C_Y=Zg(*H~@t^d=U*rT&bkm2- z=0B0Ano_feyC8Myl_liNq@wEfy51~rW;GRPwcuo@KM{r5rcXtoi#j>6L z)}C!H%e&-9TRb1Ax~a+Y^rrUFzND%xw&a|l?+3%0cYwJMf$syZ!P53}PDVXav*mNS zxXh0xpO7|sf2C?YjbO@}cD-W)rdSzSOoeD!iXwonO2oqm+5MG7!(_#;5FaO+u!_+^$0-pP42p!;$pj`7SofxV=v6HIRApxUb@m~ z-v5IOQ89~-UnFhuzIW-|VyD&QcqsOFspvS(UTyN9QsI;v1m{O%* zj*Oiq)076g;j5PNlBR*4Z^psuy1Jq42`WBKtn>f_KNU+p>tP)rub@hjY)Mbe9p?OR z&e}5jr9YfVxvl-72r{P&=5{G}#p;tF|M(XHMT49E6?sDC1g%_P+tn+Y*ikHqt3BedcLKQb(0+>!?ML~$Sr46^1K;# z6T)$xp@^ryFwe~i&@(ygrED}e>)W@N>)r++<@4P32Gx5fMF!SR#weodb^qkNcy9)V z?PJFiJw4D}s~~eaf%X)=du>2&X~bl+&L133(`}2$F7SGSxi^+S0mMEFVqf(wf*HLL z;cC~uVowBUVPAa*#*jUi{(#ys>b(B!>g=1Rw|%@3?>qlp7vJDJA9pMAqsCMYb><(s zG*?0AVpI^_#G_}ajI7KICbC(cmE)0i&o8|lWf!EVUo&)Y*3f?deyy@(%4D-Y+BmdM zwbknm^G*E#F739{_uYR3CP3xJo2VOa*)q-y8dHCDt9>*76aUfB+9cbA58rFez4%^d zLeSnI5<5B6GFy=a$6i}p&-^8hTduF%bL9EN*2qzqu}HwfjmgEmPgqC_EbGy$C48RS z<7d7REl0E26yVnE9_RkLAAzg-ipvna0UKdOM^}yKRn2U>jbGqUaa^!n;AxXqhm5~m zlC$c1^CEp+a2)tD{he$3qSN5;`0=Z0Bo6PmI7Q zwb0II+M&F7Kazf?hah`R!kUU0LrNvt+Cb%FL8J*<-eslSkqv)rTPr@#aW(97S`I~&gR7J%z&m^7I z@`NUq29}u3Y9X1z*P%y3b@eY8VF+t+0+Gi39e~GhQvB)iD0EeL-t|ay*HT=rXis4= zXUZik`GO0B2=x1>h%9!PfJ zRdcGY;x(QaIR)U_BQB#pE|Kh3DEVH&LQxY0Okoud7zrT16qPUk*n0f^XqeU*i!Cb> zHk*Y5cifl9(WRmz54XqfzZq+Q zKB1{xT1SAhA#o%k4ZQpUQo!`ae9|jb7n>LAJ){v ziWR9U=g1eoixY`jDRg*0*<_aI=f6> z@O~%O==JB>DxT5#Sj15sT=h0z#W&yduuec-H1vM#vNP#!o_M2eI!#@|TUVt{{!oO2 zMiwN2L?;dPgBl)ktfV-?yLr@+0m~b$PU2j2)fuq*Hy&PYQvYl5WrrSj7uDp=^{3bU(o$9|(iV1Yt6g zAV?q_1_Ol2WP&h~Ko}e_4a0}tY9EV@HnX(l%HmpW{LF4d`~lW_=(zsfUAnl6(NXk; zc)Nb`RJ-)>h0-K@F8A8v{}E=sJv&eK0)2tOvhcsR7bC;JITwPiE*ADq6qNKTmM%7? zKhHlRwUw!{%g>Rplj+ZnR!$T$hAO5S1n!nD76cYQ6bvUPQ!`3>X;V*kdnXfT3Q7Wc z1t)tGS7TEr0ty+|f5y@>(lN5qG5mb;KYzl~-cH2O#gu?T#Kg$N#LmdZ%D}`y z&A>>`z(D>pPS)P!|29O$$U)Z~Z2VQAxQ`cqUzRD({;)y781(9Z6k+A0>7&ICV? zpE*bf{mg=fK+V+2`KLI+|C-Lvh@aDtv2-&f_-7jQf=L2*W zzukdw|Q` zENPn2!*EhOp{Rr-kTQ&g0w02~Rz(>qB$<)aAfJ7rz+D406~T5g=>y?}vJjXeH%!UR z2!UP0(HH?2!oE{1z+XIh5$B*}%@&N5E8FcBw^R)6bneHr4IxfRaNj7I02IkN#2?|d z1d&Wpkeb;iTALAeNYY@*hxNq^CONs^f(q&mxJ7&btp~5dsISd=r9{8+5qHa;BO>=F9rixBvNv4P(JV) zBuyAJL%}Jd#S=G(uYsYsQ9ba5l?X|1uIf&7EwmqW4^fKIh9DL>kwzmCVxN&AWU)Yc zWHC`YFt|Tawki!V>kQ$q2$YP%K2QaU(F=uQ68{n>@NFOBcJ#cvF9#lk==K$Yu6HI% zhM22pClxt*GS3=>&HX+80X;`Qrw}X89QffqB{LYA52=y?)P}VAFB`$_6GS9m`r~~) zR+{0_iTcEg^mSCa*L-Jnx$WHulr*Sa1s(PCH|&&cKkBQJ=y0;@0&7bDWIC1jvDfrt zgbY|lON?JSks(vpLtXXywb@8K10P*RqgU>E6-FEAY54cEl?bQot`6I)jTgEos4i~P zar#iD->`fB%RJlS%fd#M+ROT+Uq;Y?@~_{|W8eJ3A9;7*xwq_9d)FQ=Nf%--X~n8} zD<&INKCoPN36{Wdvh>$&Y#Rk<)`ra`<&R_e%v)yfs3KZ~MVV810k`PjVPlQ^>H*{i zJb*=jF(jpz$P9Qm7|*L_KVSLwyk*RolNZ)5)k``?pZ4M%|j&UTSu2NJR z_c|kz)>T(fS2WI+rcx?MwPj1(M{7f=TI$7CS(3VGwXrBlRKun_^Umzd&b;&f@yz_5 z?>xWx{rh>I`F)>3ZfCVstmhVK*J)SfvwLyYxzSRqI_)EOMB^xq<${d`+)(x6@tK3Y zE9JyM-A9qXb!_+<19QgJ{)CW(8^fum$8sm*X+~=Y*8^c!^TVh$L)oEyw&(mC&Nk|u z&w6Pr-Z)Sg%E@q6IWS?7C(-wuY79 z9Tjvka{kb0(KPb;x_2A=yZ1&?`}2%#2UgUK0&S;~qQ|aUT77uUAqk0v7lrC0smKr( zlsyXz0Ftf--g>I3*Kdd1Ll2^wzp8xlbDikH$xkCw@cqBq3E-?dvhrR&vj}9r##j#& zhVK>8hq)`a+K+Bgs!alJbdK7NC5r-qO_%Mp3-*HIsvh7_4K>&-(H24tD@)8Xd53xnUiS4zuA6(* zCb+M$zfW{i$en2qXYO@<4(|_&MIkN((=P49N4f8fu%%v~#s!EO1k%mL6;LNVNvy@c_Fp!?PrqrDdk z*0SbiFKZqi^la%Tl8)*4?=%fq_e^ho@o@nuPi0lN?Wao%yjTlW$;#Bs0+Z<7nU~Be zy-U<0I#Q+*3~NP2>^G%du`s9c_^?D3PU*I9qC3&(yV~AXf}1Xvpt9A?PL$fyG#ds_ z8X4R+XX+%WNsmgIj(8zvA(yd)ZPpao;pwddu&JS^eb;@J$DGLT^>&v?E7#rZJ2QiZ z_m)T%ho(jop-WIROm2IRn*AyI`~ypn(wbb?v%A@lN{UZ!#p&#vDxup>{nAZrrbP3D zCGzka@GXQ$S-@cUtT%x z^y0U^MiVUy^k>V|KLnR%j{`3<6%hl8yt_c9-0;d4 zGuKqOqU94p6)cgIl3UX4l!UDOM{vM>^DU8*hM|>_&xkVfPV7EE{7P_!*QL$i;>BRe zAtAkv%Qvw(`^cfO<YFw}wddnvQZyOkDhK3%ypRo)G5{Y7B9 zz0EQ`ujvyO=v zl63WEWY0vf7AE(Dot;6qVoq4w*<*HS*xD&ek7L1xD8kO4kCe^4kE52`TzKBnIP%|w6A{UWy0HJU4ixfl+HrRd2n2y` z@cscYAPm0|fkF@Hky0f9Ze17W^Nc(0}|BQW&y< zr8+66&uv!jHiw|oWWu(HO23n=Ps*0d6DH;}HVw{}Cz@nBmG zojx*8n8s-A#@7T}(u7-?t@K0I%T|ImkMds&ME{U4hcEYv8RWOlSI$i43CKe- zPe}YML|3*vx=_@m@feb$GUz9@>E3mcQkSjp%ukYY#usqGjaM+X>d$xB^r&q+)xXYp z_Jwcv-r&i&zI%4{KHSXTv6Bg0kdG>vJFc`nNc}^Hcc_$cYVF_H9}(#r9vQ=DcX2%f OBYlLprY6!6CH@!7V?GrC literal 0 HcmV?d00001 diff --git a/2nd/08_Tableaux_representant_une_fonction/solutions.tex b/2nd/08_Tableaux_representant_une_fonction/solutions.tex new file mode 100644 index 0000000..13ba2dc --- /dev/null +++ b/2nd/08_Tableaux_representant_une_fonction/solutions.tex @@ -0,0 +1,30 @@ +\documentclass[a4paper,10pt]{article} +\usepackage{myXsim} +\usepackage{pgfplots} +\pgfplotsset{compat=1.18} + +\usetikzlibrary{shapes.geometric} + +\author{Benjamin Bertrand} +\title{Tableaux representant une fonction - Solutions} +\tribe{2nd} +\date{décembre 2022} + +\DeclareExerciseCollection{banque} +\xsimsetup{ + exercise/print=false, + solution/print=true, +} + +\pagestyle{empty} + + +\begin{document} + +\maketitle + +\input{exercises.tex} +%\printcollection{banque} +%\printsolutions{exercises} + +\end{document}