Feat(2gt1): QF pour S49
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
ba17cedb9e
commit
73a13ba0c0
BIN
2nd/Questions_flashs/P2/QF_S49-1.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S49-1.pdf
Normal file
Binary file not shown.
99
2nd/Questions_flashs/P2/QF_S49-1.tex
Executable file
99
2nd/Questions_flashs/P2/QF_S49-1.tex
Executable file
@ -0,0 +1,99 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Développer et réduire
|
||||
Démontrer que pour tout nombre $x$ on a
|
||||
\[
|
||||
2x(5x + 3) = 10x^2 + 6x
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Proportion
|
||||
Dans un panier de fruits, on compte 50\% de fruits exotiques. Et parmi ces fruits exotiques, 10\% sont des bananes.
|
||||
|
||||
\vfill
|
||||
|
||||
Quelle est la proportion de banane dans ce panier?
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
% Equation graphique
|
||||
Déterminer graphiquement $f(x) \geq 0$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-3,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\draw[very thick, color=red] plot [smooth,tension=0.5] coordinates{%
|
||||
(-5, 1)
|
||||
(-4, 3)
|
||||
(-3, 2)
|
||||
(-2, 1)
|
||||
(-1, 2)
|
||||
(0, 1)
|
||||
(1, 0)
|
||||
(2, -1)
|
||||
(3, 0)
|
||||
(4, -1)
|
||||
(5, 0)
|
||||
};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Vecteurs
|
||||
\begin{minipage}{0.3\linewidth}
|
||||
Déterminer un vecteur égal à
|
||||
\[
|
||||
\vect{v}
|
||||
\]
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
%\draw (0, 0) grid (6, 6);
|
||||
\draw (0, 0) rectangle (6, 6);
|
||||
|
||||
\draw (4, 5) node {x} node [above right] {$A$};
|
||||
\draw (2, 1) node {x} node [below right] {$B$};
|
||||
\draw (4, 1) node {x} node [below right] {$C$};
|
||||
\draw (2, 5) node {x} node [above right] {$D$};
|
||||
\draw (1, 3) node {x} node [above left] {$E$};
|
||||
\draw (5, 3) node {x} node [above right] {$F$};
|
||||
|
||||
\draw [->, very thick] (1, 1) -- node [midway, left] {$\vect{u}$} ++(1, 2);
|
||||
\draw [->, very thick] (1, 4) -- node [midway, below ] {$\vect{v}$} ++ (2, 0);
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
2nd/Questions_flashs/P2/QF_S49-2.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S49-2.pdf
Normal file
Binary file not shown.
104
2nd/Questions_flashs/P2/QF_S49-2.tex
Executable file
104
2nd/Questions_flashs/P2/QF_S49-2.tex
Executable file
@ -0,0 +1,104 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Logique
|
||||
|
||||
Dire si oui ou non ce raisonnement est correct (logique).
|
||||
|
||||
\vfill
|
||||
|
||||
\textbf{On sait que } $A = 2x + 4$ et $B = 2(x+2)$
|
||||
|
||||
\textbf{Or} si $x=3$, $A=10$ et $B = 10$.
|
||||
|
||||
\textbf{Donc} $A = B$ quelque soit la valeur de $x$
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Proportion
|
||||
Dans un lycée, 20\% des élèves sont en première. Parmi les premières, 60\% en voie générale.
|
||||
\vfill
|
||||
Quelle est la proportion d'élèves de première en voie générale dans l'ensemble du lycée?
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
% Equation graphique
|
||||
Déterminer graphiquement $f(x) \leq 1$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-3,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\draw[very thick, color=red] plot [smooth,tension=0.5] coordinates{%
|
||||
(-5, 2)
|
||||
(-4, 3)
|
||||
(-3, 2)
|
||||
(-2, 3)
|
||||
(-1, 2)
|
||||
(0, 1)
|
||||
(1, 0)
|
||||
(2, -1)
|
||||
(3, 0)
|
||||
(4, -1)
|
||||
(5, 0)
|
||||
};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Vecteurs
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
Déterminer deux vecteurs égaux à :
|
||||
\[\vect{FC}
|
||||
\]
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
%\draw (0, 0) grid (6, 6);
|
||||
\draw (0, 0) rectangle (6, 6);
|
||||
|
||||
\draw (4, 5) node {x} node [above right] {$A$};
|
||||
\draw (2, 1) node {x} node [below right] {$B$};
|
||||
\draw (4, 1) node {x} node [below right] {$C$};
|
||||
\draw (2, 5) node {x} node [above right] {$D$};
|
||||
\draw (1, 3) node {x} node [above left] {$E$};
|
||||
\draw (5, 3) node {x} node [above right] {$F$};
|
||||
|
||||
\draw [->, very thick] (1, 1) -- node [midway, left] {$\vect{u}$} ++(1, 2);
|
||||
\draw [->, very thick] (1, 4) -- node [midway, below ] {$\vect{v}$} ++ (2, 0);
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
2nd/Questions_flashs/P2/QF_S49-3.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S49-3.pdf
Normal file
Binary file not shown.
107
2nd/Questions_flashs/P2/QF_S49-3.tex
Executable file
107
2nd/Questions_flashs/P2/QF_S49-3.tex
Executable file
@ -0,0 +1,107 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Logique
|
||||
% Logique
|
||||
|
||||
Dire si oui ou non ce raisonnement est correct (logique).
|
||||
|
||||
\vfill
|
||||
|
||||
\textbf{On sait que} $A = 2x + 4$ et $B = 2(x+2)$
|
||||
\bigskip
|
||||
|
||||
\textbf{Or} $2(x + 2) = 2\times x + 2 \times 2 = 2x + 4$
|
||||
\bigskip
|
||||
|
||||
\textbf{Donc} $A = B$ quelque soit la valeur de $x$
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Proportion
|
||||
Dans une ville, 10\% des bâtiments sont dédiés au commerce. Parmi ces derniers, 70\% sont des magasins de nourriture.
|
||||
\vfill
|
||||
Calculer la proportion de magasin de nourriture dans cette ville.
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
% Equation graphique
|
||||
Déterminer graphiquement $f(x) = 1$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-3,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\draw[very thick, color=red] plot [smooth,tension=0.5] coordinates{%
|
||||
(-5, 1)
|
||||
(-4, 3)
|
||||
(-3, 1)
|
||||
(-2, 3)
|
||||
(-1, 2)
|
||||
(0, 1)
|
||||
(1, 0)
|
||||
(2, -1)
|
||||
(3, 0)
|
||||
(4, 1)
|
||||
(5, 0)
|
||||
};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Vecteurs
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
Déterminer deux vecteurs égaux à :
|
||||
\[
|
||||
\vect{EF}
|
||||
\]
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
%\draw (0, 0) grid (6, 6);
|
||||
\draw (0, 0) rectangle (6, 6);
|
||||
|
||||
\draw (4, 5) node {x} node [above right] {$A$};
|
||||
\draw (2, 1) node {x} node [below right] {$B$};
|
||||
\draw (4, 1) node {x} node [below right] {$C$};
|
||||
\draw (2, 5) node {x} node [above right] {$D$};
|
||||
\draw (1, 3) node {x} node [above left] {$E$};
|
||||
\draw (5, 3) node {x} node [above right] {$F$};
|
||||
|
||||
\draw [->, very thick] (1, 1) -- node [midway, left] {$\vect{u}$} ++(1, 2);
|
||||
\draw [->, very thick] (1, 4) -- node [midway, below ] {$\vect{v}$} ++ (2, 0);
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
2nd/Questions_flashs/P2/QF_S49-4.pdf
Normal file
BIN
2nd/Questions_flashs/P2/QF_S49-4.pdf
Normal file
Binary file not shown.
113
2nd/Questions_flashs/P2/QF_S49-4.tex
Executable file
113
2nd/Questions_flashs/P2/QF_S49-4.tex
Executable file
@ -0,0 +1,113 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
2nd
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% Logique
|
||||
|
||||
Dire si oui ou non ce raisonnement est correct (logique).
|
||||
|
||||
\vfill
|
||||
|
||||
|
||||
\textbf{On sait que} $f(x) = (x+1)^2$ et que $g(x) = x^2 +2x +1$
|
||||
|
||||
\vfill
|
||||
|
||||
\textbf{Or}
|
||||
\begin{itemize}
|
||||
\item $f(2) = 9$ et $g(2) = 9$
|
||||
\item $f(10) = 121$ et $g(10) = 121$
|
||||
\end{itemize}
|
||||
|
||||
\vfill
|
||||
|
||||
\textbf{Donc} $f(x) = g(x)$ quelque soit la valeur de $x$
|
||||
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Proportion
|
||||
Dans une boite de jouets, 70\% sont sur le thème des chevaliers. Parmi les jouets chevaliers, 5\% sont épées moyenâgeuses.
|
||||
\vfill
|
||||
Calculer la proportion d'épées moyenâgeuses dans cette boite à jouets.
|
||||
\vfill
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
% Equation graphique
|
||||
Déterminer graphiquement $f(x) \leq 0$
|
||||
\begin{center}
|
||||
\begin{tikzpicture}[scale=0.8]
|
||||
\tkzInit[xmin=-5,xmax=5,xstep=1,
|
||||
ymin=-3,ymax=5,ystep=1]
|
||||
\tkzGrid
|
||||
\tkzAxeXY
|
||||
\draw[very thick, color=red] plot [smooth,tension=0.5] coordinates{%
|
||||
(-5, 1)
|
||||
(-4, 0)
|
||||
(-3, -1)
|
||||
(-2, -1)
|
||||
(-1, 0)
|
||||
(0, 1)
|
||||
(1, 2)
|
||||
(2, 1)
|
||||
(3, 2)
|
||||
(4, 3)
|
||||
(5, 4)
|
||||
};
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 4}
|
||||
% Vecteurs
|
||||
\begin{minipage}{0.4\linewidth}
|
||||
Déterminer deux vecteurs égaux à :
|
||||
\[
|
||||
\vect{CB}
|
||||
\]
|
||||
\end{minipage}
|
||||
\hfill
|
||||
\begin{minipage}{0.5\linewidth}
|
||||
\begin{tikzpicture}[scale=1]
|
||||
%\draw (0, 0) grid (6, 6);
|
||||
\draw (0, 0) rectangle (6, 6);
|
||||
|
||||
\draw (4, 5) node {x} node [above right] {$A$};
|
||||
\draw (2, 1) node {x} node [below right] {$B$};
|
||||
\draw (4, 1) node {x} node [below right] {$C$};
|
||||
\draw (2, 5) node {x} node [above right] {$D$};
|
||||
\draw (1, 3) node {x} node [above left] {$E$};
|
||||
\draw (5, 3) node {x} node [above right] {$F$};
|
||||
|
||||
\draw [->, very thick] (1, 1) -- node [midway, left] {$\vect{u}$} ++(1, 2);
|
||||
\draw [->, very thick] (1, 4) -- node [midway, below ] {$\vect{v}$} ++ (2, 0);
|
||||
\end{tikzpicture}
|
||||
\end{minipage}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user