diff --git a/1ST/Questions_flashs/P4/QF_S13-1.pdf b/1ST/Questions_flashs/P4/QF_S13-1.pdf new file mode 100644 index 0000000..f281bcd Binary files /dev/null and b/1ST/Questions_flashs/P4/QF_S13-1.pdf differ diff --git a/1ST/Questions_flashs/P4/QF_S13-1.tex b/1ST/Questions_flashs/P4/QF_S13-1.tex new file mode 100755 index 0000000..46ea6ef --- /dev/null +++ b/1ST/Questions_flashs/P4/QF_S13-1.tex @@ -0,0 +1,96 @@ +\documentclass[12pt]{classPres} +\usepackage{tkz-fct} +\usepackage{pgfplots} +\usetikzlibrary{decorations.markings} +\pgfplotsset{compat=1.18} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Première ST + \vfill + 30 secondes par calcul + \vfill + \textbf{Calculatrice non autorisée} + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + % Racine + Est-ce que $x = 3$ est une racine de + \[ + f(x) = x^2 - 2x - 3 + \] +\end{frame} + +\begin{frame}{Calcul 2} + % Dérivation + \vfill + Calculer la dérivée de la fonction + \[ + f(x) = 4x^3 - 3x^2 + 1 + \] + \vfill +\end{frame} + +\begin{frame}[fragile]{Calcul 3} + % Probabilités + Écrire le calcul qui permet d'avoir $P(\mbox{A puis B})$ + \begin{center} + \begin{tikzpicture}[grow=down, sloped, scale=1.5] + \node {.} + child {node {A} + child {node {C} + edge from parent + node[above] {0.7} + } + child {node {B} + edge from parent + node[above] {0.3} + } + edge from parent + node[above] {0.6} + } + child[missing] {} + child { node {B} + child {node {A} + edge from parent + node[above] {0.2} + } + child {node {C} + edge from parent + node[above] {0.8} + } + edge from parent + node[above] {0.4} + }% + ; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 4} + % poy deg 2 + + Quelle est l'allure de la représentation graphique de la fonction suivante + + \[ + f(x) = 3x^2 + \] +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document} diff --git a/1ST/Questions_flashs/P4/QF_S13-2.pdf b/1ST/Questions_flashs/P4/QF_S13-2.pdf new file mode 100644 index 0000000..cc77083 Binary files /dev/null and b/1ST/Questions_flashs/P4/QF_S13-2.pdf differ diff --git a/1ST/Questions_flashs/P4/QF_S13-2.tex b/1ST/Questions_flashs/P4/QF_S13-2.tex new file mode 100755 index 0000000..c75714a --- /dev/null +++ b/1ST/Questions_flashs/P4/QF_S13-2.tex @@ -0,0 +1,96 @@ +\documentclass[12pt]{classPres} +\usepackage{tkz-fct} +\usepackage{pgfplots} +\usetikzlibrary{decorations.markings} +\pgfplotsset{compat=1.18} + +\author{} +\title{} +\date{} + +\begin{document} +\begin{frame}{Questions flashs} + \begin{center} + \vfill + Première ST + \vfill + 30 secondes par calcul + \vfill + \textbf{Calculatrice non autorisée} + \vfill + \tiny \jobname + \end{center} +\end{frame} + +\begin{frame}{Calcul 1} + % Racine + Est-ce que $x = -2$ est une racine de + \[ + f(x) = 4x^2 + 6x - 4 + \] +\end{frame} + +\begin{frame}{Calcul 2} + % Dérivation + \vfill + Calculer la dérivée de la fonction + \[ + f(x) = 2x^3 - 5x + 10 + \] + \vfill +\end{frame} + +\begin{frame}[fragile]{Calcul 3} + % Probabilités + Écrire le calcul qui permet d'avoir $P(\mbox{B puis A})$ + \begin{center} + \begin{tikzpicture}[grow=down, sloped, scale=1.5] + \node {.} + child {node {A} + child {node {C} + edge from parent + node[above] {0.7} + } + child {node {B} + edge from parent + node[above] {0.3} + } + edge from parent + node[above] {0.6} + } + child[missing] {} + child { node {B} + child {node {A} + edge from parent + node[above] {0.2} + } + child {node {C} + edge from parent + node[above] {0.8} + } + edge from parent + node[above] {0.4} + }% + ; + \end{tikzpicture} + \end{center} +\end{frame} + +\begin{frame}[fragile]{Calcul 4} + % poy deg 2 + + Quelle est l'allure de la représentation graphique de la fonction suivante + + \[ + f(x) = -2x^2 + 5 + \] +\end{frame} + +\begin{frame}{Fin} + \begin{center} + On retourne son papier. + \end{center} +\end{frame} + + +\end{document}