Feat(1ST): QF pour S01
All checks were successful
continuous-integration/drone/push Build is passing
All checks were successful
continuous-integration/drone/push Build is passing
This commit is contained in:
parent
683e0bc045
commit
f67a0d1afd
BIN
1ST/Questions_flashs/P3/QF_S01-1.pdf
Normal file
BIN
1ST/Questions_flashs/P3/QF_S01-1.pdf
Normal file
Binary file not shown.
88
1ST/Questions_flashs/P3/QF_S01-1.tex
Executable file
88
1ST/Questions_flashs/P3/QF_S01-1.tex
Executable file
@ -0,0 +1,88 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{pgfplots}
|
||||
\usetikzlibrary{decorations.markings}
|
||||
\pgfplotsset{compat=1.18}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Première ST
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% suite
|
||||
L'inflation est de 1\% par ans. C'est-à-dire que les prix augmentent de 1\% par ans.
|
||||
\vfill
|
||||
Un objet coutait 20\euro en 2010. On modélise le prix d'un objet par la suite $(u_n)$.
|
||||
\vfill
|
||||
Quelle est la nature de la suite ? Préciser les paramètres.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Équation de droite
|
||||
Déterminer l'équation de la droite.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
]
|
||||
\addplot[domain=-2:2,samples=2, color=red, very thick]{-2*x + 1};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
% Tangente
|
||||
Déterminer graphiquement le nombre dérivé à la fonction $f$ (en rouge) en $x=1$.
|
||||
\vfill
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
]
|
||||
\addplot[domain=-2:2,samples=20, color=red, very thick]{x^2};
|
||||
\addplot[domain=0.5:2,samples=20, color=blue, very thick]{2*x-1};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
% équations
|
||||
Résoudre l'équation suivante
|
||||
\[
|
||||
2x+1 = 0
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
BIN
1ST/Questions_flashs/P3/QF_S01-2.pdf
Normal file
BIN
1ST/Questions_flashs/P3/QF_S01-2.pdf
Normal file
Binary file not shown.
88
1ST/Questions_flashs/P3/QF_S01-2.tex
Executable file
88
1ST/Questions_flashs/P3/QF_S01-2.tex
Executable file
@ -0,0 +1,88 @@
|
||||
\documentclass[14pt]{classPres}
|
||||
\usepackage{tkz-fct}
|
||||
\usepackage{pgfplots}
|
||||
\usetikzlibrary{decorations.markings}
|
||||
\pgfplotsset{compat=1.18}
|
||||
|
||||
\author{}
|
||||
\title{}
|
||||
\date{}
|
||||
|
||||
\begin{document}
|
||||
\begin{frame}{Questions flashs}
|
||||
\begin{center}
|
||||
\vfill
|
||||
Première ST
|
||||
\vfill
|
||||
30 secondes par calcul
|
||||
\vfill
|
||||
\tiny \jobname
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 1}
|
||||
% suite
|
||||
La production d'une usine augmente de 10tonnes par ans. En 2022, elle est de 200tonnes.
|
||||
\vfill
|
||||
On modélise la production par la suite $(u_n)$.
|
||||
\vfill
|
||||
Quelle est la nature de la suite ? Préciser les paramètres.
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 2}
|
||||
% Équation de droite
|
||||
Déterminer l'équation de la droite.
|
||||
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
]
|
||||
\addplot[domain=-4:4,samples=2, color=red, very thick]{1/3*x + 1};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Calcul 3}
|
||||
% Tangente
|
||||
Déterminer graphiquement le nombre dérivé à la fonction $f$ (en rouge) en $x=1$.
|
||||
\vfill
|
||||
\begin{center}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
axis lines = center,
|
||||
grid = both,
|
||||
xlabel = {x},
|
||||
xtick distance=1,
|
||||
ylabel = {$f(x)$},
|
||||
ytick distance=1,
|
||||
]
|
||||
\addplot[domain=-2:2,samples=20, color=red, very thick]{-x^2 + 3};
|
||||
\addplot[domain=0.5:2,samples=20, color=blue, very thick]{-2*x+4};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}[fragile]{Calcul 4}
|
||||
% équations
|
||||
Résoudre l'équation suivante
|
||||
\[
|
||||
4x - 8 = 0
|
||||
\]
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Fin}
|
||||
\begin{center}
|
||||
On retourne son papier.
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\end{document}
|
Loading…
Reference in New Issue
Block a user