2022-2023/2nd/06_Programmation/3E_conditions.ipynb
2022-11-07 17:47:17 +01:00

2 lines
54 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{"cells":[{"metadata":{},"cell_type":"markdown","source":"# Conditions\n\nQuand on veut gérer des situations différentes, on utiliser une structure `if`.\n\nTester le programme ci-dessous avec différentes valeurs de `a` et `b`. Que faut-il mettre pour avoir les messages suivant?\n\n- a est plus petit que 10\n- a est égal à b\n- J'ai rien à dire"},{"metadata":{"trusted":true},"cell_type":"code","source":"a = int(input(\"Choisir un nombre (a): \"))\nb = int(input(\"Choisir un autre nombre(b): \"))\n\nif a < 10: # Si\n print(\"a est plus petit que 10\")\nelif a == b: # Sinon si\n print(\"a est égal à b\")\nelse: # Sinon\n print(\"J'ai rien à dire\")","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"## Exercices"},{"metadata":{},"cell_type":"markdown","source":"1. Un musée accorde des tarifs réduits aux groupes contenant au minimum 6 personnes de plus de 18 ans. Un informaticien du musée veut écrire un programme Python pour les clients qui achètent des billets en ligne. Ce programme doit demander au client le nombre dadultes de plus de 18 ans du groupe puis afficher, suivant la réponse du client, lune des deux phrases suivantes :\n\n - \"Vous avez droit au tarif Groupe !\"\n - \"Vous navez pas droit au tarif Groupe !\""},{"metadata":{},"cell_type":"markdown","source":"Linformaticien a commencé à écrire le programme ci-dessous. Complétez-le :"},{"metadata":{"trusted":true},"cell_type":"code","source":"nombre_adulte = int(input(\"Combien ...\"))\n\n","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"2. À l'achat d'une voiture neuve, l'état applique un malus écologique. C'est une taxe qui dépend de la quantité de CO2 rejeté par le véhicule. Voici quelques montants de cette taxe\n\n| Emission de C02 (g/km) | Montant du malus 2022 |\n|------------------------|-----------------------|\n| Moins de 127 | 0 |\n| De 128 à 151 | 1074 |\n| De 152 à 200 | 18 188 |\n| De 201 à 224 | 36 447 |\n| Plus de 225 | 40 000 |\n\nÉcrire un programme qui demande l'emission du véhicule et qui affiche le montant du malus."},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"3. **Questions flashs et correction automatique**\n\nPréparer une série de 4 questions flashs simples où la réponse est un nombre ou un mot. Écrire un programme qui demande une réponse aux questions flashs et qui dit si oui ou non la réponse est juste."},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"# Comparaison et logique"},{"metadata":{},"cell_type":"markdown","source":"En anglais, `True` signifie `vrai` et `False` signifie `faux`.\n\nQuelques opérateurs pour faire des comparaison entre nombres"},{"metadata":{"trusted":true},"cell_type":"code","source":"print(2 == 2)\nprint(2 == 3)\nprint(2 != 2)\nprint(10 != 5)\nprint(4 < 5)\nprint(4 <= 4)\nprint(34 > 2)\nprint(34 > 50)\nprint(5 >= 10)","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"4.Faire la liste des opérateurs et écrire une phrase pour décrire ce qu'ils signifie."},{"metadata":{},"cell_type":"raw","source":""},{"metadata":{},"cell_type":"markdown","source":"Pour combiner plusieur condition, on peut utiliser les mots clés `not` (pas), `and` (et) et `or` (ou)"},{"metadata":{"trusted":true},"cell_type":"code","source":"print(2 == 2 and 4 == 4)\nprint(2 == 2 and 3 == 4)\nprint(2 == 3 and 3 == 4)\nprint(\"---------------\")\nprint(2 == 2 or 4 == 4)\nprint(2 == 2 or 3 == 4)\nprint(2 == 3 or 3 == 4)\nprint(\"---------------\")\nprint(not 2 == 2)\nprint(not 2 == 2)","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"## Exercices"},{"metadata":{},"cell_type":"markdown","source":"5. Programmer une IA au jeu Qui-est-ce?\n\nVoici 4 visages.\n\n![qui-est-ce.png](attachment:qui-est-ce.png)\n\nEcrire un programme qui demande de choisir un personnage, pose 2 questions et qui arrive à déterminer le personnage choisis.\n","attachments":{"qui-est-ce.png":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAvwAAAEHCAIAAABdhwWfAAAgAElEQVR4nOyde1xTV7r3V+53SAj3ayIWbBWJtVoFKyCt1jtoa6tTFObMdERti1M99hTPGTynemprrZ5TKzPnfc+A+NqZzoziWNvqFAvWW7G2QbQFqjYCIqhIQsKdkPePpelmJ3tnJ9k7N9b3M5/5lGRn7yWsPOv3XNazWBaLBSAQCAQCgUAEOmxvDwCBQCAQCATCEyDRg0AgEAgEYkyARA8CgUAgEIgxARI9CAQCgUAgxgRI9CAQCAQCgRgTINGDQCAQCARiTIBEDwKBQCAQiDEBEj0IBAKBQCDGBEj0IBAIBAKBGBMg0YNAIBAIBGJsYHHE6dOnvT1GhKdhsVgOJwZ1eDyet/9BCE/z1ltv0TV/Xn75ZW//axCeRigU0jV/LBYLi8Xy9j8I4Wn0er3dyeA40tPT0+OB8SF8CgutJ7INDw/TeDeEX6DX6+m61f379+m6FcJfGBwcpPFu9Bo0hF8wNDRk93WU3kIgEAgEAjEmQKIHgUAgEAjEmACJHgQCgUAgEGMCrrcH4Cs8KhbD/wjl8cL4fADA3cHBe0NDAICb/f29IyPeHBwCgQhoxGx2glAI/9tqgm729/eazQCZIASCPlwUPc8+++yECRPoHYqHERuNsvv3Zffvy7q6uBQqbYe5XKNCYQwJMYaE9MpkHhihxzh69OhPP/3kySdGRka++OKLnnwigjmam5sPHz7s4Ye+8MILUVFRHn4ovUDjI7t/X2w0UjFBA0KhMSSkW6EwhYQMiEQeGKHHOHDggIfL1ZOTk+fPn+/JJyKY48qVK1988QXFi10UPXl5eatWrXLts96l59at+g8/vFFZ6ewHucPDirt3FXfvAgB4MlnEtGnJeXkR06czMEZPc+3aNQ+Lnvj4+Pfff9+TT0QwxxdffOF50VNUVDRjxgwPP5QWOmprfzp61AUTJOjvF7S1hba1AQAk0dER06enrFsniYlhYIye5uTJkx4WPVOmTEEmKGD4n//5H8ZFjz/SUVvbWFHReuqU+7caMhpbT51qPXUqfNq0lHXrAkP6IBAIRmk9darhwIE7Fy+6f6uetrYblZU3Kitj58wJGO8LgfAAY0L0DHZ3XygupkXu4Lhz8WJVQYFiwoQZ27cr/Dzfh0AgGKLn1q3Tr77a1dBA+52t3tfUN95AJgiBcEjg797qamj4bPlyJhQP7hGNFRXMPQKBQPgprVVVny5fzoTisXLn4sUv8vNvHDnC3CMQiMAgwEVPY0XFZ8uX97S1eeBZl95++/Qrrwx2d3vgWQgEwi+49Pbbp199dchoZPpBQ0bjha1bL739NtMPQiD8mkAWPfX79nnYBLSeOlVVUIB0DwKBAABcKC72cAAYunnIBCEQRASs6Llx5Ej9hx96/rldDQ1I9yAQiEv/+Z8ubNFyn66GhgvFxZ5/LgLhFwSm6Omorb2wdSvFiy0AWAAA2BPpLBYw+oA6/AWkIKODQIxxWquqGg8epHjxA/Pi0MJQNkGtp04hE4RA2CUwRc+3O3c6vghaGYuFBQALAMBi/fwWizXqR+sFFgvF43pbT51CRYUIxNhksLv7PAXNYXWlHpiX0TbHDvACKvIIgBuVlR21tY7HikCMMQJQ9DQcOOBgowQ0GdDKODQ0WFgswHr4AUd259LOnSjJhUCMQer37SOvXIa2A+9rUeSh1XIofFCwB4GwJQBFj4cqBx1ZqyGjEW1iRyDGGoPd3Q4SWxaL80rHDizgwPXqaWtD8WYEAkegiZ6uhgaSDeoPLIQL3hUJxHbHK2WMCATCi7RWVTm4gkb7A3PuJINhsj8ZAuGPBJroIfNsLBYW5UpAWuhpa2O0IxkCgfA1yHQGE/aHVEK1njqFkuwIBJZAEz1kIsPZCh6KkBsdh24fAoEIIByYIIYgllPI70IgsASa6BkymbzwVM8GkBAIhM9CmF5n1EoQyykkehAILIEmeoi+4cyqEmRxEAgEAD6YS/LACRgIhB8RaKKHCA9X81iRREd75bkIBMLz8IOCvD0EBAJBRqCJnvAnnvD2EEYhiYnx9hAQCITn4Eml3h7CKMKnTfP2EBAIHyLQRA+hp8VcCSEpigkTvPJcBALhFYi+8hYmTRBJHFuK/C4EAkOgiR7viAzi3BkSPQjEmIIouMuk5CHL3aNgMwKBJdBED0kNDYNFPcQ+HMrxIxBjCrLICmOVhUQGyNfS/QiE1wko0dPV0NDV2Ej0rsOu7a5BckeeTHb6lVcaKyrQHi4EYixw5+JFso7wHk+ydzU2XiguRiYIgbDC9fYA3KXn1q3WU6c6ams7Ll50vDmTAaNDcscho7H11Clrh9bwadMipk+PmDYNlRYiEAFDV0PDnYsXW6qq7ly8SH7lA7+LditEfMMho9F6GA5PJouYNi1i+vTwadNQ2h0xZvFX0QO1zo3KSqc8GAvcu06j0XHmbncuXrxz8WI9AACA2DlzkPVBIPyXroaGG5WVrVVVJKEdxrFYLCyqBgjrg1kFUOycOajoBzGm8D/R01FbW//hhw6dKruwAN3BHlfvZrU+kujo2OxsaH3oHBgCgWAGd0zQgyNC6bNCrt3IKoAuvf02NEHjcnKQA4YYC/iT6HHL1jyEtmCPMz4WCT1tbY0VFY0VFZLo6HG5uckvvYRqnxEI34QWE0QndIgnZIIQYwr/ED002hoagz30ZuZ72trq9+1rOHBgwurVyO4gED4FnXKH7mAPXUATdOPIkZT168fl5Hh7OAgEI/j67q3B7u4LxcVVBQW0eVd0beDC2iz6NoUNGY31+/Z9tny5tfwQgUB4kcHu7tOvvEKbCWJo1zp9t+1pa7tQXHz0mWeQCUIEJD4teroaGqoKCtz97uHMARMOFt0CyGp3Ompr3b8bAoFwja6Ghs+WL7duwHQRC8YoQFvB6AYu+kzQF/n5aK87IsDw3fTWjSNHLu3c6eIRwbDgBsaQPRxGho/DDsBVetraqgoKZrz11rjcXNqGh6AVnU538+ZNAIBer9dqtdYXdTod/G+NRiOXy63XZ2ZmAgBSU1OxLyJ8k8aKiktvv+3ih7E1f3QU/zkBTgC58fA7Fy9+kZ8/+7/+K2L6dBoGhmAArVZrMBjAaBOk1Wr1ej38b2hzICqVSqVSAQAyMjI8PE7fwUdFz6W3326sqHD2UxZrnQ20Ml7MmuMG4EbV84WtW3tu305Zt462sSHcoKamRqfTabVarVZbXV3t8Hqia+RyuUaj0Wg0KpVKo9EgGeRTwKy60wEeqDAe+lo+UbPjtg82ZDQi18unqKmp0Wq10Aq5Y4KgAMrMzIT/MXZkkM+JnsHu7qqCAudiqg/DuT5iZ+wAR2a1icA5QVa/b1/PrVsztm9naHQIEvR6/dGjR6urq6HQofG21dXVWHuk0WgyMzNzcnLGjvXxTboaGk6/8orT3XesksIHrRDWB3NJAF3YurWrsXHqG28wNEAECdAEVVZWQqFD121hQBpngnJycpYuXarRaOh6ig/iW6LHWcVjYaL1DnPY2EQL5S1gsA1j9h//iHZ1eQadTge1TqWTJWVsNovH5XJ5XB6XMzJiGRoaHhwaMptHHH4Qiqo9e/YAAHJycjIzMzMyMgLb+vggXQ0NX+TnU82qY6WD/1ghrM2kboIaKyqGjEbkenkMaILKysqcFTocNhvaHy6XOzJiHhwaHhocNo9QNUElJSVyuRyaoKVLlwZeBNqHRI8TiudhyMR3QzvUwMgfx45XV0PD6VdffbqsjNkxjW20Wm1NTQ11Q8PlcPh8nkDA4/N5PB6Xx+Ny2HY2B4yMWAYHh4aGh4eGhgcHhwaHhgcHh0huW1lZCcWWRqMpKioKSNPjgziheJyP1/omD7UPpcAP3FOCdA+jaLXa8vJyGNehcj2Py+HzeXw+TyDg83hcHpfDtm+CRgYGh4aGfjZBQ0PDRPfU6/VlZWVlZWUgEE2Qr4geqorHH10rilCwO3cuXrxQXIyMDhOUl5eXlZU5zJGz2SyhUCAU8EVCgUDAs2tfCD7FFwI+9sX+/oH+gaHBwaGBgcEBAg2k1Wrz8/MBAPn5+TDyTOVxCBeAW9MdKx6vbI9gGph+pxD1uVFZKU9OnrB6tQcGNaaAOaySkhKHWofDYYuEAqGALxDyBXw+m01pKrLZbJFQIBIKsC9aHbC+voG+/gG7H4QmCMZ+XnvttQCIPfuK6Pl2504nFE+AWRzgxL/oRmVl7Jw5sdnZjA5n7KDX6/fu3VtWVkZia9hstlgsgCaDz+fR9WihUCDE2KD+/sG+/oH+/oG+/oGREfyuY+h4qVSq/Pz8NWvWwC0YCBqpKijw5ilaPgC0QQ6lz7c7d0ZMn47OrKALnU4HTZB1v5UtHA5bIhaJhAKhkM/j0bZqwxARkIiAAoyMWPoHBvr6Bnr7BgYGBnFXWmM/ARD48Yk+PfX79jluxuOTPUwZwVGbjfPFxYPd3Z4ZSwCj1WoLCgoUCgWRdyUQ8BRyWWx0mDohKjJcGRwkpVHx2CIU8hVyWVRkqDohOjYmXBkSLBYJcQlcnU5XUlKiVqsLCgooRr8RVLhQXEy1lDDQrRALAId9fi4gE0QH1dXVubm5arV6z549dhWPUMhXhgTFxYSrE6LDwxQymZhGxYODzWaJRUJlSDB8XGR4SJBMzOHgFQIM/KjV6o0bN5KoNF/G+6Kntaqq/sMPya4IlPQ5Vaw7vAgYMhovFBd7bDiBR3V1dVZW1pQpU8rsFUgJBLzQkGBVfFRcTIQyJFgoFHi8zQpLKOAr5LLoqNBxquioCKVUIsKNoaysDEkfumg4cMCB08VQG2VfxeF072poqN+3zxNDCVDKy8vVanVWVpbdfRIioSAsVK5OiI6NDlfIgwQCvu01jMLhsKVScXhYiDohOj42QhkSjMuL6fX6PXv2qNXqbdu2+Z308bLo6bl16zz5+j12AjxYHP2TW0+daq2q8sxYAgmtVpuVlZWVlWVbu8PjcUMUQfFxkXExEXK5jMvleGOAeFgslkQiioxQqhOiIsJCRKJRpqesrGzKlCn+aHd8h66Ghm937iS7YmyaIOBA6jUePIiaNbsA9Ljy8/Nt3RWruxUTHRYcJLWNsngFPp+nkMtiosPGqaIjwkOkEpG1ikiv18PAs3+ZIC//Ws8XF7vYc3nMc+ntt1GEmTo6na6goGDKlCk4ucNms4KDpLHR4QlxkSGKID5j0WM3YbPZMpk4JipMnRAVqgwWPEy0+and8RFgE0KyK8as4gGOQ84o3uwUOp3OrsfF4bAVcll8bIRPuVu2sNlsmVQcGaFUJ0RHRijFYiF83WqCysvLvTtCinhT9NTv2+fgDL+xbHEAAKTJ9Z62NheaVo9B9Hr9tm3b1Go1LpklEgmiIpTjVDFhoXKh0NMBZJfhcDjyYFlcbERcTHhwkASmvax2Z+/evd4eoD/hYP/EmLc/5Lqnq6Gh4cABTw7HT4Eel1qtxskdiVgYHRWqTohWhgQzWi9ILywWSyoRRUeGqhOilCHBsMxIr9fDWh9nG5t5Hq+Jnp5btxyU8oCxVMdDAMtiITE69R9+2HPrlifH43dUVlaq1eqSkhLsi0IhPyY6LCYqTCIReWlcNCAQ8MNCFeqE6LBQhdXuFBUVZWVloZAPFTpqax2U8ox5+/MAUhOE4s3k7N2717Z8UCIWxsWER0WGikVCL42LBjgcDoxRRYaHwNizTqfLzc318Rpnr4keB6U8CIijjiCXUTkhAXq9Pjc3Nzc3F/v1Ewr50VGhsdHhuLo8/4XNZgUHSeJjIyLCQ6D0qa6u9gt/y+s4TmwhgAPlN2Q0ongzETCfVVRUhDVB4odyx/PlyQzBYrGkUnFcbER0ZCi0q3v27LEtJPAdvCN6bhw5QpbYIg1vjEFIfhc/HT3aUVvruaH4CTDAg134eTxuVIQyNjrcr10rIlgslkwqToiLjAgP4XG5dgUfAkv9vn0kXXksAIV5MJAmuRoqKlC82RYY4MEu/AIBPzY6LDqA5A4OsVgYEx0WFank8bhQ8PlmyMcLomewu/sS+XaJwGt46h4Ok1yeHIyPo9frCwoKsOs9h8MOD1PEx0b4dTKLIjKpOD4uIixUzuGwofKj8YTCgMFBbt1iQdYHD7FBHjIaUbwZi16vxwV4oMcVFxMuDJQAMwkSsSguJiJEEcRisfbs2ZOVleVrJsgLogceXEf4Norx2EKqAu9cvIiCPRCtVotLnwcHSRLiIoNkEn8/po06LBYrOEiaEBepkMsMBj1RO6KxjINFesxMFecgtsw/HT2Kgj0Q6GlgAzwhiqAx4nFZYbNZIYogaHhhlxCfyrZ7WvQ49LE8OBZ/AwV7SIFNa6zdL7gcTkxUWFioguLxWAEGm81WhgTHx0WKxcKCgoKCggJvj8hX6Kit/enoUcK3kQkigfiXg4I9AICNGzdiY8x8HjcuJhzGPLw7MK/A5XJgiL2/rzc3N3fbtm3eHtEDPL0eOPaxxuT8oAQK9hCDW9dlMnF8XASuld8YhMflRkeGhiqDoSL0wfy653HgdCH7QwSpcR7jwR5YRbdnzx7rKwq5LD4uMlDLd6jD5/NiY8IVcllJSYmPVBl6VPQgH8tdULDHBphBt2ZwWCxWRHhIRFjI2Azw2EUeLIuLCb96pR6V+DjYQoEUj0NQsMcGaIKsGRwOhx0dFaoMCfbuqHwKZUhwdFTosWN/94USH48uDCix5S4o2DMauEfAmkHn83nxsREyqdirg/JFBAJ+XGyEeXhwypQpPpVf9zDIBDHH2Az2aLVarC8hEgriYyMCcouom4hFwvjYiKbGH7yuezwnejpqax34WMjNogKxaR5rDTNg2TLW3MRGhzF3CrG/w2azI8JDwsMUBQUFXne2vMKNI0dItqkj+0MJ8u3rY6xBM6zStaZspBJRTHQYh+Oj50h4HQ6HEx0VxmaNeFf3eE70kDU/RT4WdYhNc+upU2PH07I1N9FRoSil5ZAgmUQk5M6Z4/0gs+dBYR6muXH06Nhp0IwzQfJgWUR4iHeH5BeEKIL4XFZubo636ns8tEj03LpFVs2DcIoxn1bHmRuZVBwRHjI2t0i4gEQsFAt5Xg8ye5iO2loU5qENAhM0dho040yQMiQ4VBmMTBBFgoIk/b3GzMxMr+geD4kessUY7Zigj5/GgKdlq3jCwxTI3DiFSCSQSvj5+Wt8YTOFZ0BhHtogLUVoGAOix1bxKOQy7w7J75BKxXc6bnlF93hC9KAwD82QptUD29OCGyVQjMd9hAJ+V2dHRkbGWNA9jgsKEU5B3CN+yGi8ceSIh4fjSXCKJ0QRhBSPa0jEwrt3bmVmZnr4uZ4QPSRhHp8+48Y//b+GiopADfbgFI9QwA8PU3h3SH4Nn8/r6mz3VpDZk4zZhg5MQRrsCeDfNuzHY/2+SMTCEEWQd4fk14hFwrsdt/Lz8z35UMZFz2B3d+upU0TvsrwlLCwUHmzzrbbYPfvTK/8E4mDPkNHYWlXl4eF4ho0bN1rLUDgcdmSkEsV43EQg4N9pb83NzfX2QBik59YtsjCPl7BvTCh8xGJrvbxigogf2tPWFpDtM6DTZe35zuNxUeWy+4jFwuOfVBYVFXnsiYyLntaqKsKTthiq5sF8Gy2A4Mvp0mrJAsDOp1isUQ/C/j+jEP8LGg8eZPzpHqeoqAh7hlRkuJKLtobSgUQiulz3bQA37yHZR830t9QC5Yk9a2DfmJDCsv4P9923a4KYhsUieUxAJtmxTheLBaIilGi7KC3Ig2V//N//gz2wjFEY/5uRLcA0Kh6LxWJ1fzC3ZdH7FGJ+ftDD/3fBk3MOYtPW1dAQYJ5WZWXl3r17rT8GB0nRERM0EqIIWvubXwdqkusGcUEhnZFmrAmy3h/KE6+YIEAtnu3mEwkIvPYZJSUlWKdLGRLM5/O8N5xAIyxU/uorGzzzLGZFT1dDQ1dDA+Hb7nwlcSaGxWL5WKrD1pN7EJemyxCRelpkXZH8Db1ejz1Xi8floBbvtCOVCIqKXvX2KOjnxpEjTEWacSLH90yQbTybZhMEyGx4IJkgrVaLPS9TKOAHB0m9OJ7Ag8VimYxdmza97oFnMSt6HASWXTAR1m+sD5oYRzyISz8cNSYJ56INIvnnB1JL+IKCAmwQIlQpZ7P96y/vB7BYrKovTngswuwxSMI8LioeTETZ3yzQKBNEmPqniUDau451ugAAqEcGE3A47P9XUWYtmWIOBkXPYHc3yU516lNm1PcygE6rwCThWMBlDyzQPa3q6mpsuQmfx5VIRF4cTwAjFPB/WZDv7VHQCV0lzDgTFBgGyDbvZnGhJIh0R0Vg7F0vKyvDtvGUiIUoscUQEolozZrVTD+FQdHj1rkTmMBxYJgYh/wcBKKpGjEwPC1sHh0AgDaIMkp3d1dJSYm3R0EbbpUwY5Pn9AzH12FZS4KcMkGBvqMCW00IkAliEhaLpf3uW5zNpx0GRY8TDQmt3y7rfwSKO+UKmGpExyHogN67rtPpysvLrT9yOGwU5mEUmVSMM/F+DVkJM+7nh3FWbJkgQ6PyA7AF0Q4FEOmOCrKaTn+guroaG+YRCHgCAd+L4wl4ZDLGTRBTR1L33LpFON1x9YPYHz1oaHTmYfgf7RZzv6OLVawHu6PlLJac7bmd0tgQtAVuNrH9FRH/0m5UVsZmZzM2OsbBSX6pRDSWxbAH4HK5/X29lZWVOTk53h6Lu5A0y7CMFj0WjJPlsenVb7G0j5gBAP0AtFvMDq/3lgnCCyDoZWG/hiyWhfj31nDgwMwdOxgfJGPgTJBMIvbSQMYKIqHg8uXLOp1OpVIx9AimRA9ZYJnFAhaLnQ2WDAAtC5Q17SPmPmCB/+H+nVVsDgBAAdhyNjuSxZGzWJEMWyJKAmg0cOOoJCaG0YExx9HRnrpUiiwO44jFwsAQPS3EYU7W6MWbUaGjHzHrLRasCdLRYX+EAECDE8niiFgsFYsjZN4EEQkg8r3rg93d/CB/TQnhTZAMmSDGkUpEe/bs2bNnD0P3Z0r0kHVhBkwJHavE6bJY2i3m9hHHIRyXgZZLB8xg5OcXFSx2MIsVyeJEstkKwFZxmPr14gQQIDbcNyorU9avZ2gYjKLT6bCBZS6HIxKi3jxOkJ4yfnnGE7/94E9OfUoiFpaXl+/Zs0culzM0MM9AYoKYc7egCdJZzPqRkdtghBb/yv6DsCYIAzRBajY3mMWKYnEYlEG2AsgeMMk+zj9bfmu1Wuy+UZFQgBqiOsXSWZrHEmL+8/8dd+pTErHw6NGjfiZ6uhoaetramLizLTrzcLvFrBsxt1tGuiwjjj/AJF2WkS4L0AHzA0M0BCLZHAVgRbI5KhYnks0RMmBnye/ov6IHt30aVfM4RdHzz6x6egYAYHnGE3+r+Yb6BwUCPpfDqays9PCBOPRC1p6HVvotFt2Iud1i/mlkmFEviyIPTBBGbEWyOVGAHclmR7I4TLlhpGat8eBBPxU9uDblErHQWyPxOwQ87tbVi+dNnwQA+FLbcOHqdeqfFYmEN3S66upqhs4iZeQ7wOhORf2I+SeL+abZzKgjRRftI+Z2AH4YeVA/pGCxVSxOJJutYnMZj0UDAADoaWtrraryx8oebJgHACCRIItDiXCFbFfhCxMSouCPryzLPlv/Y/t9A/U7iESC8vJyvxY9ZGEet2kfMd+2mG+azTqL2euOlkPaR8zt1oD00AMNlMDhMBsHwtDV0OCnSXbkd7lGXHjIrnUr1FFh8MeteYteKCnt6R+g+HE2myUU8svKyvxJ9NBucaA79dPIcOPIsO9bGRK6YDhqBAAwAABQsTlqNpe5IBDET8uZsaKHzWKh3BYVMjTJ/7ZmsUz8s3UWC/m/y19SuNuJ/gVCIb+6uprRWkJGIT/k2DXaR8y6kWFohbweznEHqIG+GxkCDwuDoAliLhcPAGg4cGDqv/wLc/dniLq6Out/8/k8Ho/BX1HAMOfxR3+Xv0SE2eMWrggqWvHM9gOfUL+JUCA4Sn33t5PQ/1fsqK2lJbdlFTo6i9n3IzquoRsxWwPRjwXLCmdquJ3G+z+2DvcP0vgUPy1nxlocsViI9m055I1fLFg2e6rt61OTVblPPX7kq28p3kcoFAAAtFqtn4oeujo16EfMDQEhdIjox5qgITArPHT1k5PN7fdpN0E3jh71O9Gj1+uxBT0ot0WFf141/7mMJ2xfX5o+5R+1V2sbfqJ4H6GQ397RqdVqNRoNrQMEgAnR42Yj4AbzcGALHbssz5i6YVm25GEwo/vWXWPr3Xs/tnZda+3roqE0oaWqasJqxjtd0ohOpxtVQihCFoeMpNiI7S8vT4hQEl3w2nPPnK5r6uw2UbmbgM9jsVhardZP93C5E+aBvlaDecgvUlc0UrBgVuHSLOuP3bfu3v+xtfNaKy0CCHZn9q/KHlx6HZ1wTM4kdfS/rlliTWnZUrx60XP/tn9oeJjK3YQCPgDAb0SPCxan32L5YWSo0TxsrX0ZO8SGK/69IHfSuFFhmKCYsKCYsJgnHwMA9N3vvv9j670fW69dahCPuNimubGiwu9ED/ZHsRhZHEJWz0vbsMxB+lIs5G9e+ewbv/8rxXvy+Tw/PYfLtdwWDOr8MDJMy35y/+LRhKiSgqW45QqaIFXmFPBQAN1rarl19SeXG/O1njrlX6IH63QBAFB6nQiRgLcuZ86KrGnkwfgopXztkoz/PkwpCsvlcthsNkPncNEseroaGqhvmhjLhgYAwOWwf/HMzF8vns3nkv0VRCFBMU8+FvPkY/Jnpq7dVhpv4SRwOGoWx6kGZT1tbR21tRHTp7s9ai/A43J4pL+iMUtUSPD2l5dPUlNKXM55/NEZj4278P0NKhfz+VyDwYnaZ9/BqdwWjCv7e6Wgywj5vMKcrBfnTCdfrqwCiNWo27bnkIrFUbO5KifLEP0uyY6N9IhEApRet8uTj47bumZxBLWjOVY9M+P4hcs32u5SuZjP5zLkd9G8llDZt9U+Yv7OPOQwgaxjYkQAACAASURBVLVl1QJ1dGjlV999/nU9fQP0FSYkRP1uzZLEmHDqH0mIUC5f8NQfjtXAIkS4EYy6ALpRWelHoger8V3LbSXFR7798nPV3zV8duHyj7fu0DYyn+H5rGmvLntawHfiK7x19eLl/7pvYMhxPJXP4+HC+/4ClTBPg3m4wTz0w8gQeaXOrvUv8Lmco199V/XtD3QNz3eYPkG9dc3iyJBg6h+Zmqx6fPrETy9cvmAeBADAThzUBZD/ts9wLcwzK2X8b1fM+7z2yqcXLrfe7aJ9VN4lWCL87Yvz50+fRP0jHDa7JH/p6h3/h8rFfB6PIb+LZtFDYnGccqoK5s9anjEVAPD4Iwn/vPLZz7+ur/zqu6bWDjrH6iVkIuH6ZXPsFpw65FeLZv/9rBZuP4YbwbACaAKHR2J9/Ks1Klb0CIVOx9RjwxQfvPaSXCp6ae7Ml+bO/On23aNntJ/X1t/v7qFzlF4iKT7yjZULcClRKoQrgn61KGPfEcexELhRRa/X+1eLQpLcFsyh3zSbHWodyL+tWTJ7chIAYMZjib39g19cunrsXF3dtRZax+sdwuSy366Ymz31MRc++9pzT3/53Q99A0Pg4UYw6gLIj0WP8wU9E1XR//ny8wI+91eLZv9q0WztteYTtVc+vXAZ/ur8neUZT6xdmhns/B7+CQlROU9NqfzqO4dX8nhchvwuOkWP3Z6E2t4eHZdN0dBAlmdMLcz5uaROKhI+lzntucxpP9xsO3z60smLV/103rBZrNzZj6/PnSN1oyy3aMUzb5TiKzOwAghan+jhkUfFEj7mLED/bY3qrJsVLpd9sPElufTnL6Q6Kqzo+Wc2LMuu0Tb86VSt/y5dyXERz2dNW5ymcTnYvurpJ/9ac7Hjfjf5ZVwuBwCg1WoZapXBELa5rV6z+XJ/n47HdqpecMuq+YvSUq0/ioX8JelTlqRPablz/6Oq2uPntX5qgnhc7ktzZ/zTgll8Hs+1OyhkkpcXZez92xe4120FUOSgeYpEgr3Gv5Ls2BVX6OQho4nRYf9d9AtsFFYzPl4zPn7j8898XnvlT1VfX7tFKcXjg0xURf/rmiXjogkLlh2yITf7ZO3V3gEH1fHQBDEBnaIHm9u6ZDR+0939jdEokksVcieiC0vSp2xZtcDuW48mRBfnRW98ft6nF+o+OXf5+5seavpMC6nj47asWjDemXyWXeZMeXRqUsKlpptEF0Dr09llCLaAbz/7rKO29s7Fix21tUMm042jR/1O9HA4bKfaY8ilot9vXhOttBOf4HLY2VMfy5762LVbdw59ceGTc3W21/gssWGKwqVZz0yb6OZ9eFzO5pXzN+37M/llftpu3xrm4UmlVa2tl4zGb4zGiPAQGceJI5PW585Zbm/bLQAgLjzkn1c+uz436+iZ7z4+dbGtU2/3Mt8kQ5P82xVzo+x9NZziF3NnHv7q25Y794kugCao/V7nVNX0P7/zDrQ/d775BvhVkt1ayCwU8J3yMVSRoaWb1tj1bPk8HlTP3zbe/Ev1Rf9Kmyqk4lefe3rhzFTHl5ISJBGtXZq1++MT5JdB0cNEX2Y6RU/rqVOxc+bEzpkTm539i+AHqWKFwAk3fWpSwtbVi8ivEQv5MPBz617XZxfqP/u6nuTr5wuoo8LWzEtbMHMyXTfc9OKzK//99+TXcDkcnU6nmDBBMWEC3LfV1dDQWlXlRxkuiLM+1u71K2NCFeTXjI8J/7c1S15Z9vTnX1/+x6Xvr9y45cYAGScqJPjXizOwgQc3mT05acr4+O+uNZNcw+GwATMWh1G6fvhBvXRpXHb2PaVyxZQp8EWRM+nR+dMnrXk2nfwaiVCw6ukZq56eceHq9S+++f6LS987dFu9yyR19G+WZj356Di6bvj6C/OK/vsj8ms4HI7BYIiYPj1i+nSY1eqore1qaKBrDB7DqfS6RMjfvf4Fh3mfx5MTHk9O6Ljf/dnXl09cvHrdt4sOpSLhi9nT8+bOFDlpjYl4MXv6X6svNpMu3Mz5XXSKnvl/+5vtgiqg/GsKV8jeXvs89cfFhCpguvSqru34+ctffHNFb+qj/nEPMGNi4qqnn5zxWCK9t02MCV+Srvn7WbJ8J1y0sEABRO9IPAD1+QMA+F3+EuqVLgqZeOXTM1Y+PeOuvvtE7dWT31xtuHnbpTEyhSoytGDhU/OmTWTTvXPk9ZXPvvQffyC5gMVicfwt2DPY3b30iwdpl2sP932wWSwu5a1/SXERxasXU3/ijImJMyYmbvnFgvNXr/3jm+9P1zX6VNqLw2ZlPf5o3tyZjyZE03vntEnjNY/Ea38k081cLhtXkwEFEL0j8QDUTRCLBd5ZuyI2PITi9REhQfnzZ+XPn9V65/6nX9f/4+LVmx2drg6TERIilC9kT188U+PUhgkqvPrc05s+/JjkAmh/mNi1Tue/xFbx8HhcNpuqvX5v/YsuFEYBACaqoieqov955bNfXf7xRG39yYtXXbgJjfC43CXpqS/Mma6KDGXoES8vziQXPWw2GzDW3MmTULc4i9M0roVew+RBsN659c79kxevfvZ1vddNz1MpjyyZpcnQMCVSk2Ijnn7isS+++Z7kGg7lb66PYDeESd1NFwv4u9e/yHf+qAEelzM7NXl2avLA4PDpusYTF6+ermt09ib0IhHyl2dMXZE1PZzaXmIXeHX50798+39JLoAmKAAQ8KnWP/1mcea0R9UuPCI2POTlxRkvL85ovHn75Dffn/zmisOqO6Z5YoLqF0/PTE8Zz9D9Z6cmP5YQTVKjApWDr4seW6hPlzXPpiXHRbr5uKcmP/LU5Efe+MWCqks/HD9fp/V4verkxNils6bMefxRCcOdrMIVshezp/+pqpboAhjpwfXX8kcEAkpTKCRI8tsVc918Vmx4yC8XPvXLhU81tXacrL1y6tsfPLzRNCk2Yv6MlAUzUhUyJ2pQXGNdzpyqb74naXbJ5rD9tD8hFuqiuej5uW5KBAGf+8y0ic9Mm9jTP3Dq2x/+cfEqxa5INDJ9gnphWmr24xNcLlWmyCR1zFMpj3xV/yPRBYEhelgsFp/aKjY+JuyXC59y83HJCVHJCVGvLM++fL3l5MWrX37XcFdPQ0d+6kSFBM+fMXlxeqrDIgH32bAse937ZGcC2uYraIFZ0UNxusilol8ucHe6WJGKhEtnTVk6a4qhp+/LbxvOXG668MONQQq9SVwmIiRoafqUhTMnu18kSJ2C+bNIRI+/Wxy43HI4bIqZ3XU5WRL6+sQnxUYkxUZsWJZ9/dads1eunb38I3kFjJtMVEVnTnk0e+qjsWGMGxorsWGKRWmaY+cI44X+PoUgFE3QIzHhOU9NoeuhEqFgcZpmcZqmb2Dw/NXrp+uavqprMvYxeH5XclzEvOkp859MUQZLmXsKjsLcOSSih8P2y7IwHNT99k0r59P43MmJcZMT4za9+OwPN9vO1l+rqWtsbG6n8f44RALeM1MnLkib/PgjCcw9BccTE1SPJyV8S7wph81mM+G3+4ToyV/wFF0VUliCJaKcp6ZAW9bU2vFjS/u1W3d+uHm7saW9p4/qMfdExIYrUsbFPv5IguaReJIzj5hDIZOseTat/PNzdt+F2w0YauPtMSh6q7HhiiXptK1YWBJjwhNjwlfPS+vu7fu28eZVXVvDzdsNzW2GHncXMGWQNH3S+OmPqadNUCtkEscfYIBfL55NJnoCogUtxXTVbzA9MmhEJODPefzROY8/CgC4cuNW/Y2Whpu3f2hu17Xfc//mqsjQJ5ISNEnxUx6JD3NmhyxdjI8JJ0mSBkYLYx61WpYnJqgYkguPJkQ/mhD9q0Wz73ebvm1qvqq79YPudkPzbfdr56UioWZ8rOaRBM34uMmJcbSM1lnW58z5p3f+SPQuPAGQ9ocyLHooWBy5VLT8KVc69TkF9N2tP97p6r52605TS3vrna62+/rbnd237pJVkiuDpAkRyrgIRVy4Uh0VNkkd7a2FCsuqp2ce+qLW7hFugSF6KFqcfEfbbdwnSCzKnDIhc8qDIpu2Tv2Ntrs/3b57s/1+6537uo57JG0PhXxekEQYJBaGBsuS4yMnqmKS4yM9GRQkIjIkmKQinsViYQ+691N4FHTz+Jgw2IeQUSaNi7FW2fcPDjU2t+va77Xc6dTd7rzZ0emwjCwiJCg+XJkQHhIbETIuKuwxdXSQ2JUKSHr59cLZgS16KPpdv1owm+mRhARJn37isaefeNBS8mZH583b96633bnZcb/5TmdLRye5JyYR8uMilPHhIarI0NhwRWJ0xCOx7vZPcZ+UxNgnJqi+adDZfZchv8v7kZ4VWdNprwx3SLgiKFwRlDZpVJVWT/9AT9+Asbff1DfAYbPFQp5YKBAL+b5gXOyikImfy5j6UdXXtm/5u8WBjYCpiGaFTMJQmIeEaKU8WimflfII9sXu3r7e/sG+/sHewaGh4eEgsTBYIvZkusEF8ufPIhE9/l4TxuVyqGykyJvHuGjGIeTzUsfHpY4f5V739g/2DQz2Dgz29g/2DgzyuByJgC8WCsRCnsxXTZA6OixDk1yjtVO4DS2Q3/W3xEHFBCXHRz6e7LmsECQhQpkQoZytSca+qDf19Q0M9PYP9g0MDY+YxUKBWMCXCPkSIZ/pGi+X+dWC2USih6FVjEG1QbGjIo2pdDeRCAUSoYC5/Q5M8NLcGX+t/mbIjD/FDNp6/120NBrN0aNHqZwzunSWr8yfILHIZ/UxEbFhimenT/q89ortW/6um8HDwzTIkYqE859M8cBgHCIW8sVCvhcy5e7xTwueIhA9/m2CIFwKU+j5TPutLD2PXCrCdqL3Cx5PTkgZF1t/o9X2LRYL1NTU0P5EBmsVqZSgzkp5JDRYxtwYAp4wedDidMJ92n56ZqQVDgXdnOszotlP+dWi2RaLnV1cUPP4dYaUiglaONMnFI//MiEhym4rMpa/tTywi8MpJOTznnnC3T7pY5x/ItjGxJDfxaDoobJi+U6Yx38haiDr1546XGsdWpypyQm+UBzj18RHKO2ejhIAZWFUtry6dvQvAkvBglm2L7KA388fQGEKzZs+kYldOGOKtJTxcnst+vxP9DhcscLlslnM1w8GPFFKudCevmSxgMFg8Px4aAHaSocW58U5/tfg1QdZmm6ng6Vfi2aIQxP0eFKCOsr1oxMRkCmPxLMBPlgYAKKZSoXGquwZHhhJwJNM7HfRnq9gRPTAPK7DEsIXs58MjG2xXidCbj9F6NfpLRaLRb7uhitkzPUsHlPEhin6CJo4+PWixXYkml9Aopkmghhux+oVHLaqmjI+Xu3GeeMIK8/OmDxE0EuP9rIwRkQPXGvJVywWAAvpO4NzjPNEsqqnl8HWZ17BoSBe8CSaP/QQH6Hs0uPb3sNCH78WPeQmSCoSPDX5EZILENThcziDg3bOHWOiENVjOAx2LkAFYTQRLBV1Gez3nvYP0QMhnzEzJo73hVY3AYPetlu5BQC/DvY4sjiL7SVlEC4QHxna2zcwYK/dmV/vviGfQM9Om8TcSc5jjac0yV14E0RyxokfcPPmTXILxOdxn3likqeGE+AES8RGY4959DZk6Hf5R3oLQj5jns/ylW1+AcCkxLi+/oH+0YsWNDn+u2iRz5/pE9RxlE8zRjgkSCLqMphsX/dj0QwczKEV2Si3RSdGU+/w8M+LlnVHoJ8GC3U6HYtUNi9OSxVTPs4WQU7K+DiLBejtmSDaYVD02NsG+4BopTx9ElPHt45BgqUiAIDB3ozxU4sDgANHcdXTqH6QTlIS40ymXrN5xNsDoQeH037GY4mqyFCPjGVMMCkxDgDQbbTTl9x/TZCF1Aa9NHemx0YyRjB0m2zbZ9B+7DEjogfOcrvNPyAvzZsZAHtDfIf4CCUAwIhftPy4JqOmpoZk/sSHh6SlINFMP4bun3Uz/PX76UkUDk3QShTmoRUSv8t/g80kfvvMieM9cA75mCJ9ctLIiMVo6rW+wlB+lJGOzNDijIzY9xoFPO6imYT99BAuEP/QZzV0m0IedpSG31g/FT0AADPB/AEAPJc5zeXb1l9rOXu56dNzWgCAwdRXf70FABAsFackxgIA4iOUC9I16ZOTgqVilx/hj8xKTTp7ucnQbVLIZQ8dEgvw2xWL3ATFhCpmTLTTT48KBlPvp+fqztY1Nnd0AgDO1DXB11MS44KlomCpOH1yUvrkpJTx3jnB0VsES8QAAPPIiNHUKxv93dFqtTk5OV4al4vA6ALR/AEAPJfpenuns3VNZy43na1rBAA0d3Q2t3cCjAlKSYxLT01akDZGCxb1BlPQ6GJf2v0uRkQPNJREofLF6VOE1E5fR1AnLkLZ0tE5etECwD9FjzWeaTaP2LbqEfC4S5wvYW5uv/dOxSfHz9UZMJ6EFYOp17p6HTp5HgAwKzVp5dy0ld6LYFNZXBekpcbTmqMxm0dMPX24Rau6utrvjk+C057IBK3IesKFSPNHJ8+XHq6CKtkW6+vHz2oBAPGRylmTk/45bxG9fyCnOFvX9Ok5LRyYdXGNj1TCwHBKYtyCNE16Kj2d0qwiT28wwfljzQ35owmCmG2O94FEK+VPOd9h7kxd4++PnDpT10Rugs7UNe0/XAUAWJiu+U3unFmpybYXe4bm9ntnL//46TktHLDVBM1KTQIAxEco01OT0yc/QtcMT0mMPXu5aXBwqL9/QAg7IFgY8bsYET2w+NHu6d8AgBWohJkB4iOULR2dtouWn6YnIEPDwxwOvlRwkZP1g1DuQClDnTN1TWfqmnZWHNuSt9iT0sdg6i09curTs1oqi+ub+z9OSYxbkK5ZmzvHzdBUemoSqAAAAMPDRcuKPwZ7YFtOu50/+DzuojTnIs0fnTy/s+IYFA0UaW7vPNR+/tDJ86vmzvSw9CFfXJvbH6gfuLgGS8WzUpNoWVyh3zUwMNg/MCgU8K2i0h9Fz8NIj8Wu3/Wck4dtnalrfKfiE6tooMjxs9rjZ7WzUpP+OW+RJ6UPNEEfnTxHNOFx/iFdJsj6cX13TyQUPQ89E3r9LkZED1xoBwftWJwZE1H9ICNAmQwAMHQ/WLRYLJbFYvHHFauyshL+x9DQsNCmxfuL2U9Sv9XOik92Hjjm8kia2zvXv1tWeriqomStB9atnRWflB6usrtWEVF/vaX+ekvp4aq1y7LdsTswPQEA6B8YHBgcEvB51liI36UndDod9LsG7YmexWmp1A8tr7/Wkrdtv1NyB8ehk+ePn6vbvvb5VfPSXL4JRVxYXA2mXroWV+h3AQAMBpMwPMTaMcAf/S7rpsXBoSERZ1TfRR6H7dTpSRveLXPW48Jypq7pTN3uWalJFSWFTOfcodzxlgmy+l0mU69ZGczhcKy6md5VjP5C5srKSjjEkZERW09r5RzXqzEQJFinWn//4MDoLmG0V78zjbWhWX8/vnPMJHVMQgSlg6gNpt68kv3uKB4r9ddbMgq3n6mzc5Q0XdRfa9HkvbnzwDGnzI0Vg6l354FjmrziQyfOuTYAbA0KrhzV7zx164QfGBi0rWV+6RmqcbtDJ84t2bzbHcUDMZh6N+wq3/BumZv3cfCId8uWbNrtbDjBypm6piWbdm94t8y1GQgAgCUp4MGOCrM1f6jX6/3O9bKaINvmVXMef1QqElK5SXP7vYy1b7mjeKycqWvKKHyr/pr96C8tHD+r1eQVu2+CXB6k1e8CABi6R20DpLdxBv2iB7vE4nrbS4T8mZNQC1RGwObm4aJlNTr+tWhZ3XQAQF8//myEl5dkULlJ/bWWjMK3YHUFLRhMvUs27Ya5dto5dOJcRuFbdC2uxfs/du3jcQ/VpNHUi60i9ztP3RopBDZTKCFCGRNGadPNhnfLNuwqd1kB2HLo5PmMtW/ReEMrze33lmzaTcvieujk+SWbdru2bmFd/G5jL7Y3pH91e7L67QCAXpvjWV5ekknlJvXXWjIKtxMlqV2gub0zo/Atl70acnZWfJJXst/9yWkw9WYUvlXqkp3E+l3d3T0A09/Yp0VPWVnZ3r17rT8aR/8S5z+JmnYzRTwm/mE09Y6MjFhnzLZt2woKCo4ePer7/pZer8/NzbX+ODg4hI1a8TmcGY853nRjMPW6mZIgonj/x7QbHbi40njD/Yerlmx6zwX7ZZ1CFovFaOyxHjyk1WqzsrL27t3rF+q5rKzs6NGj1h9xJiiPWnnWmx/+mRYNgaP+esuSTbvp1T1n6hrpXVzrr7cs2bzbBYdhlN/VbcKWim/cuBGaIHqGyCR6vb6goMD6Y29vP7YcPlQmodITtf5ay5LNNP+hIRt2ldPoy4EH7tx7tETErby5/2PX4pqTHgYLh81mU0+fdQrV1NTQaIJoEz06na6goAA7XQAAff0D/Q89rZERS9GKuXQ9DoEDW3FisVi6jb3WRUun05WVleXk5CgUioKCAp+VPuXl5VOmTMGJ+q6un8+EonJSEgzJMKF4IBt2ldOoe9zM9xNxpq4pr2S/s5+aNSpY2IM9MLi6urqoqEitVqvVap/Nlto1QUZjrzXJzgJgySzH1RiHTpwrPXKKkSECUH+9xYU/DeHdrrXklZTSvrjCkKGz8Z6UxJ899eFhMzbGptVqrSZo48aNvmmC9Ho9NEG44ekxZ0I9R2EXjsHUy5DigbjwpyG/m8spURIOnTzvgu7Buu6GbpPVBOn1eqsJysrKctME0SB6oDRWq9VlZWW2796592ACxSiD+VxG6qYRkPTJozJcdk+5LysrU6vV2GicL1BZWalWq/Pz822FvKmnr7evHwAwMjLy2xfnObxVXsl+il7vpMTY9MlJa3PnbMlbtCAtNZ3yHtTi0r/QYnR2HjjGhOKBnKlrctboTMIsWkPDw7YFVQAAnU6XlZWVm5vrU1EfGCAkMkF3Ox+YoCkUeuccP6ulGHgLkohg14AteYvW5s5Jn5wUR63a7Exd05sf/pnKleQwF04AD1dup+Z5sFQcJPm5QtxgMNqaIL1ev2fPHrVajU1B+gJ79+4lMkFdeiM8S3XEPPLLhbMd3op6MA+aoC15i7bkLYLtnah8Cv5pmtvvUbmYnA3vltEbN8Jy6OR5Z+c5Vjf39Q3YbTlRXV2dlZXljvfurgrRarXkFnBwcOjuva6wUMV//CqX6BoELVg3cAEAhoaHWWb7nUj0en1RUZFWq/3jH//owdHZR6/Xb9y40e5aZaXjTldsTNhkdWyYPIj8bodOnHPotcRFKLfkLZqVmmR3N9aZusaPTp7/iFSLGEy9xaUf/33X6+QPcjjUnRWfULkySCKCvXmgRTh08jzcI+P4ESfPB0lEO9a9QHFI1kJUiKmnj+jKysrK6urqL7/8UqPxfgu1yspKcgvY29vfpTcGB0t3Fq4gvxX8yzp84sq5M9fmZtttP9jcfu+jk+f3H67qJv7tAQBKj5xakK5xZ6sUDMZQX1yDJeKUxNhgqfhMXZOhp/fK9VYqj8jbtr9m/1bq+3FSEuOsJqi3b4CoGRIUqfn5+T5ignJzc8mDB+137sdEhy2Y7vh40Z0Hjjl0uqAJWpiuwf5itzz8j+NntaWHq6y/RrsYTL3FpX+pKCl0OB7yoVJ0uuIilPERStjhqf56C+zpSj7DIaVHTk1KjKO+b9G6gQtCYoLKysq0Wu2XX34pl8sp3tyKW6KnrKwMF0y2i6G758WnZ0weH+/OsxAOwXrqgLQHPwAA6gzvGh29Xp+VleWwSM1sNhu6uv99uwPRbDD1vnPQgYzYXriicFk2yQWzUpNnpSZvyVv0Usl+koXhTF3ToRPnXN6EDG2Ww8vsLq5bVi82mHrrr7d8elbrMAtTeuTU2mXZFDfb4y4jnz/wb+d13UPRBHXeN6ynsJm29HAVeWI0fXLSvs1rSH6f8ZGhW1YvXrssu/RwFbmoLd7/l5rSreTjIYHK4po+OWntsuxZqUm2iytshedwcW1u79x54Bh13Qz7elt/9AsTpFarHcYMBgeHzP2D//HycvLLmtvvkX8lgySiHYUryO3GwnTNwnTNmbrG9e+Wk7g3x89qz9Q1uqybm9vvOXS6giSiwmXZC9I0dvV9/bWW0iNV5P4hAKC49C84eUdCijNLGKw1dEH3uJ7e0mq1VMwNAGBSYuwbeYtcfhCCIrgZ45CysrKioiKGBuMQiooH8tZvnk9wtHKTr1hBElHN/q3kisdKfGTosV2vk/ckLC79i8uZBYf7QhekpWortu/bnG/X3ARLxbNSk3ese6Fm/9ZJo8MztjhVJU09xwce/gW9WJ9BUfEAACYlxha9+Cz5NQ5XrLW5c4699zoVBRksFW9ZvbiipBCb7sFRf73F5eIwKovrB5vWHHvvdaL1JlgqXpiuOfbe63/f9VuSQQIASo+cop5JmeS8CSopKXHqIzRCfQIHSUQVv1vr8LKdFZ+QfK8nJcYe2/U6RU9pVmry6dKt5N/H4v2OHSfCzzpyulbOnVl3cMeW1YuJDlRJGR+3b3O+tmL7AtJWn3ArO8VRBUvFFHPEEKh7nDVBLoqenp6erKwsKlfCv/RYO8nIK7hw3M/evXu9VZdaUlJCUfF8sGkNFUtBsgwESUTHdr3u1O8nWCretzmfRPfArm7Ub2jF4Yq1JW/RwW3rqCyuKePjTpf+6/bCFSTr1pm6JuodhlIcSSgcuK0unqSpqYm64jlGIRf50cnzJCvW2tw51AMekIXpGvLn/t7VcmlyITspMfZ06Vbqi2vdwR3k0pm6bnZ2/gAAtm3b5q36sNzcXIom6OC2QofWw2DqJQl7wEnorAk69t7rJH+a+ustrhUXnqlrJLddH2xas29zPpVVOz4y9OC2ddtJE8elR05RH6ezU0ir1Tqrm10UPRUVFVTkFaOKh8Xlc+VR/Kgk4bip/KgkrjyKiaf4F0556hCvLFrd3d1Uiqmhw0rFfJ+payRZsYjMDZxCwnFTheOmcuVRLC6++/O+zfkkv1J4aqmz1V000QAAIABJREFUkDex+GDTmi2rFzt1w8Jl2TvIjQ7lthnpzkfLKysrz5496+yn3IdiMX765CSKJujTc4TtiBakpRIpHq7igQnihSVwpHgnNWV83Aeb1hDdtv56iwvlqM3t90gK16DJdap7eLBUfGwX2eJ6pq6J4jjjI0PJ40Z28YoJam1tpeLvQRNEJYtEIiOCJKJ9m+xrCLZQCk2QIG6SXRN0bNfrJMGPj066Eix0aIKcTdwXLssmmecAgNIjVE2Qs/kKAMDevXsbG53oHOtiTc9XX31FfgGs1WKo8zpbKOVHJwvjU2ynyGBbY2/TecuwnY0nXoeriAIWMNJvHOk3Ob7aJWAK3/ojPGWQPG2v0+mCg4MZGg8Rt27dcnjNyrkzt1A+tOhTYouzcu5MW8XDC1OJk2eyhbKfXxo3FQAw0m/suVo93HXb+vKOwhUZhW/ZfyjxMkk21POEn1o5dybJV4YtlMIBD+tv495aNS/N0NNH1Jbw03N1BlMvlYU/JTF2y+hM9Jm6puaOTvLS6YqKCpJ3GeLbb78lvyAuQrlvM6XlCgDQ3H6PqEQmSCLatzkf9yKLy5dMzOSFqWyv77txaaC53mqCVs1L++jkeaLv4PFzdRRTrtiPEL0FI5okf2hogsymTpyFhLon9aU3iapTqY9zR+EK7Gxp7uisv95CXjddXV2dkJBA5eY08t133zm8ZkveorXLsik67SQuUOEyO2Xv/KgkcXKa7RJmNnb2XK02mx78DoOl4h2FK4jaHHx6vs7ZACQ8yZjo3e2kJUfQBFmGB63Ds7JqXtqV6y1EMWzyNQgLLrhuMPXWX291WDddVeVEO0T695DD6ifqc8VZiObKg3ejk3nh6p6r1UN3dUw83VlYXL4gPoUfpuLIflbrluFBs/Fe341L2MWVFmARHO5Fg6l3/btlJBP9p59+oncYDjEajSTvOiwXtYVESeCiICTLFQCALZTJpi7GSueU8XEr584kClw7W0tYf62FqPAIFjnavs5VRInGTeUqorEvmo2dg3d12MW1cFn2RyfPEa0ux89qqXggsA4X+wqsez104tyb+z8msjvXr193eGdP4oLHRaIkVs2diTNlgvgU0bipRCZING6qIDoJK523rF60ZNNuuxd/elbrrOj5E3EOZcvqxbZWl8Xli8ZN5YWrsBLfMjw43NXWd/0SbnElymT96eR5iuO0+2tvbr+3/t1ykpXP85VhPT09JO865XFBiAxskESE+06xhVLJxEzcN9oKR6YMmrF8oLm+78Yl+O1emK6ZlBhr96vd3N5Zf63FqawZSZgwLkJp96/MC1MJ4yfZmqCBtsaBlivWV7asXnzo5Hm7VoL6OG1NEGT/4SqSXvNOtWymWfQwXcHDC1NJJmaSX8Pi8qWpc3uuVg/epr/nklNwFVGSiZmjwgkAAJhVUUTLpkZ7Ji4VLBUf3LaOZNJ0d3fbfd0ruBBcBQAQKYlJibHY2cji8mVTF2MFqF340ckcWWj313+DPy5I0xCJnl/v+L+RSifiZO2dBqK3bFcsFpcvTprJj7YjqjgypUimxC+ueYsJPcJzlEQPEavmpaUkxr1Usp/ibnkvsnLuTNvAjEO6iXOjK+eO+r0J4lPESQ7aOkPpbLx0DP5pZqUmxz08jBPHpcafstZtpz5Os3nkyg37utbuigUNpq0+Y3H5vDAVL0yFjUutmpe2s+ITu+OEmTiXz9yNjww99t7rb374Z6JIgMFA+L3wMC7U/wEASHLrOC+UxeUHzXiOSDFbEcSnsEUyU91J+OPKuWlE1vuXb/1BKqZ0FhiEZLeHrdNFos84MqU4OU0QnWyNS8H6feJ4s9aFqlMrhcuyZ01OWrzpPSpb5cmhU/TERSgZVTzQR6d4sTg5zWzstI3CeQx+VJLD0fKjk7kh0d0X/uaBfFzhsuxPz2qphxm9gmuKh4SFaaMsjmjcVIeKB8KRKcVJM3ubzgMbs4Wl476h4z499nrh6E0QLC4/aMZyW8WMBS6uVn2/MF0TJBHZNQoGk7uWImV83Ja8RfSemEE76ZOTXFA8AACS7d9YS82RKh0qHivS1HmGM4ceOOtpqXbX+/6Bobofm50crH0W2myiEY2bKhw3lfxTonFT+WEqq74nGicAoLmj02XRA9mx7oXj5+p8XDe7oHgA6fxZMNoESVPnOVQ8EF6YShCfMtBcD0jLe6/fukN5mGQESUQ4Q8cWSh3qMxiXsur7hWmpRKLH/ZNSUsbHFS7LptjejAQ6z97akreI0V1attPFYDDUPATnKzilkGiHI1WKkykt3myhzGPj3LLapxsHxEUoXVM8JLuTsDWA0IjgLqirq4Pzx/ZYTUF8Clfhoer4SYmxuBXFbozQLuLkNGsJLVEZYMsdGlaaVfPSnNpQ6nlcnuFEohBXxi6ZlIm74ObNm1RMkAe2ry4YvWJxFVEOFQ8E6nu7N6GdLb7du2RBWqo70Qi7BEt/ruy2a1Ks88fWBInGTWULpQAAd/pYUsTWdEg1VPWZdWmOjwwlqoh33+8CAKxdlu1CpTwOOkUPQ2XLELZQipsu5eXlKpUq8yEqlaq8fJQbypEpbfdTeABo7OxOl5s3b9q+aHcxZoJZqcnuzxjmWEXtMEiniI/8eQIIokctYAaDISsrS6PRwPmj0WiysrJw65bgYWoJex8mCJbgq0bsVh3ZnT/Y+YYtY8dC12FkTPyN6CIuQsno2sBVROHsyd69e63zx64JIiodYxoWly9NtXNmi8FgsDuFrPMNNw+x1FNo4uwQRtcI98GlMqlD8fuFM0F1dXVqtdo6fzQaDW4jG4vLF9jLbjMBLpgkTpppd/UkMkHS1AcHaxJNIffTUgCAYKnYfRNEm+hhejXlyEb5wTdv3szPz8eWv+n1+vz8fJxYppjLoBeuIhr33KNHj6rVahaLpVKpWCzWtm3bcB8RxjtucE4LLmwI9BjpBAu2O2AtNW4K5efn4/aswjPtsK9Yv/bMnWBqF+FoEVxXV5eVlWWdP1lZWbbznKgukl6c7T7nSeIZjkLh5k9NTU1RURHOBBUVFeFWBY8FC7GCjx+djHO6tm3bplAo5HK5SqVSKBS2G/7hlCOJc5CUPTmFL/td2KiMU1B0inAywvaor7KyMtzq4LElzLZaH/sjzgTl5ubazPNo+K8j+h26n96yO04XoE30ML2ackf/7YlaLOBe53pF9Ix+aE1NTU5ODnZyl5SU4BQ9WyijGEh0E6YjFl6BxL+3WmoWlw8DxVbsTiHci9DiMHdgsl1sh4rTZ9XV1ZmZmXij45Ghurwq+DhE3wtsDRwVE6TX63HLGJRKzcwXsmCTvLihlpeXl5SUWPUZFGd2F1eSJnJBNGXofNnvYmJsVn/JVv7a3XNk1wRR7y/qMtgpihuqwWDIzMzEDqyysjIzMxMXF39oLe1HdBz2jqeI+34XbaKHlqIBEihqAtzWRxZPwMxwyMD53HbPEy4rK8MtWp5R9Ex7w76GdR+pa/MHfpC5g4itYGO/uJlQV1dnaxz1ej3ulFY464hyEHTV4nigtsArkHwvrDrAtSnE5vKBM31KXAa72OBMkN0DfXF9bFlcPkeqNPQQimYXui37HS5HI0jUEtGfnuIufRZXAGjKLZKDDWbjgppardZ2tDqdDm+CZEpAnMYiyZw6hft+F22ip7m9k1Evc9g4SlRlZGTYPWYsMzOT5FOegcUbZRyJmqzb9QiZxsNBC6c46+iAdBKIFnVr09uRfhNui1xOTo7t9bj5Az/lWudlp8A258XNBCLjiPMI4awj2s9Ml9h1oYOwxyD6t1OBStNbs40Jsnu9SqXC/jjU1XamrtED6dGzmGAALlJIBL7ymscnafI5FnC52DZYKiZK28HWoMBm/sjlcruH9eLmD/wUSXMmujh7ucm6OrC5lJYwnGniyEJJmnz6TpCYzi3rFBugucZwVxv2R5VK9f7772/cuBH7e8/Pz8dZIrPRCzZ6pM+Izd1mZmbaDfbgZrxnhuoBj8FlPj1X5+wJDFZIttoWl/6loqQQAGA2dmLDtu+//75Op8NKB7lc/rvf/Q77WbPx3pm6RqK2YxwOOz3FuTqk1rv3bxBsMf3o5Hn4z8fNBKjvbaUPTp+ZjZ3Hz2qJRC1daU1fnj8GU6+zjdqsEBWAA8xJ9UNdbULw836ozMzMP/7xj7g8dVFRUWrqqK3jZmPnO8SbbJPioyJDnOuHflrbYPd1bHPe4a7b2KmOW0et4Fqxm42dJE0+6Ur9MJ0TcIdPz2lJ+lOQszDdfjcvg6m39HDVltWLYSNj7NJw5MiRrKwsrKSA6xr248NdbYdOnCNSEgI+78nHEp0aZ2PzbaIuG9YVHBcswE1p7GhxQyU5fYyu+eOObwyhU/ScvdzEnOgZ6TeN9JuwHkx+fj7UE3A9gAXw2I9Yhgdpb3lMhaGu29hdG6+99lpZWRkuQ1FUVISzOJ4Zqi/36XGnAdrKuWlEouf4We3xs9qF6ZrBuzrsSiCXy7/88suysjJodORyeX5+Pi58eOfaFZKjjFdkP+lsV5j6ay1Eh1rAxTVYKradCe+//z5ucZXL5a+99hr2lWFjZ3EpYcdSXLMQl7lCUzUiQ3x08lzKeOe68kPgVluiftZQN5uNnZbhQWySC5oga5Df1gSZTZ0ffvwZSQ/cj7dvcHbCv/S7D+2q8Ob2zp0Hjll1M07fa7VanAnas2cP9seRftOHH39GscmnyxhMvR7eE+AUrh0sA0mfnES05O+s+GRBmiZlfNzw/Tas6FGpVD/99BPWBOE2UgAA7jY3vXOQUDQXLHzK2WMojp/VErUwfefgJ3AFx/ldGo0GhhiwL6pUqqVLl2Jfudd2k+QoZbpMkPvlcXSKHndmDBVM2hNBM5ZjX1GpVLazxErP1WpGx0PE8P023CvfffddWVkZ1GdyuTwnJyc/Px97gWeaKPpybgLiwlFEkJTxcURNbwEAG3aVx0coUwDgh6lwNXq4PwSW4a7bv9n8ryRpfheOdyUZp8HUu2FX+YOg1GiPMD8/X6PR7NmzBxpHjUZTVFSE02f/9eEfSJYTkkiGU5Cs376AC0cRWSFpenv8rHbDu2UfbM7vuVpt3ZoLUalUJIc8/3nfOyS9822bM1EhPTWZyNKWHjn1YHE1dmKLGeVy+Xfffbdnzx4YcoaLK06fXb+qJYlIubyXGwddW3gYwmDqhQ6SC59dmK4had25ZPPumv3FCdxLvHC17TYFok911J9d+KstJN9rF/4uJC1MrboZpvWx+r6oqEij0Vj1WWZmpq0J2rJjL1GkOS5CSVcDJPJz3KhAZ58eOGNovCEOs6mz/8YlihcPNNd76/gts6nT9gSM/Pz8ysrK6urqyspK21nec6XaAwPz5dwE5DM3qmdI+jcYTL1LNu8+flbbc/VLis2vu+7dyVmyiGQ+O2ylSPT9t+2ca+X4We3OA8eAvfkALU51dXV1dfWePXtwgeX/s+ftf9lbRnTbBWmpdDXHc6duxgM0t3e6vM9l1dyZJLupD508v+Hdsns/fU/9cJs/vL113VsfkFywJc9BMtfuFCKZP1A3G0y9g7ebbOOFRUVFcP7ArTfYt7ru3Vm+8iWysxSIH+oU7ucmmMblAr5gqXht7hyid6EJutxw3aQ9QfGG169+98yyVeROF+3J3J0Vnxw6cQ7YCxnAoCacQiUlJTjFs/W13xz67DTRbemaP4AO3Uyn6AEAkATYaaHvxiUqRmeguR4eIOAaBlNvXsn+9e+WuXyH3sZz1IM3vU3nPRPpOcv8vkeK8Pn2N8KcqWtyWTdvWb2YpBwV/k3/83/+1PLlnxyecn/q5GdTJqccP0N2jrfdw0Gt7D9clVH4lt3Q2lrSUNbOik+K939sNnVSn8C/K97y643/QnIB+ROp09x+z5cL4SEk4Qpy4MlBJBccOnl+yabdJ//8vw5NkF6vX/3ckt/8y3aSX1f65CSSiEJz+70lm94rPWzn7Oj4yNAFxEtI/fWWJZt2119rMdWdoKjvtVpt5qy0+h/tNJ2DLEhLdfMACuzwaLkPc3x08jzJvn1ytqxeTKKbm9s7Mwrf2nfgY1PdSYd/mv/9cO8TM5+qv0Z2RAm5Cdp54Jgm7027M5DcIGzYVV56uGrorg6egEGF19a9vP2//kByAV0miJaoCs2iB8bH6L0njp6r1aa6k0QVMGZTp/HSMXcUz/7DVZq84uNntR+dPO+y12gZHuy5Uu1wcQUADN5uoj633MFg6v3oHxc88CAqKBQKorfc0c37Nq8hv2DngWOTlxUWF+Z9/ckh23f1en15eXnGzCey5y24eZvsRBuSFQsuV8X7P25u7ywutVMPFB8ZSt6Mf//hqiWb3vux9kuHi2t1dfUUTeq/73iH5JoFaal07TN3/9QbD+CObi5clk2+t7/+esvijTuz5y/+0+6t99vtBL20Wu1r615Wx8dW/M2BGSRZsXYeOJZRuP1MXdPOik/s6mby1a7+esuSzbv3f/wZFd1TXl6elTH7cuN114bqFM3t94gSczwej5ZHUCcmJoboLZdNkEPdDAB4c//HE59dtXNjQVOtnfIXnU5X9r//VxUb/U/ri/RGB+fAE4V56q+1ZKx9a2fFJ83tnXZ186zU5JWkfY3f3P9xXsn+htPHHFaa6nS6zNmz/mv//5Bc4+x59ST8/oidf46zsCwWC/kVn3/++fz583EvTp069dIl+5mmYKlYW7HdA2fNcBVRPEU0WyRjC2Uj/cZhY6fZeM+dcmAYDMBWLaQkxtWUbnX5hiwuXzRuKtEREyP9pp6rX3qs1HrngWNEi5ZSqezsxIeaHE4M6rDZbNzdJkyY0NBgfxMKAGBL3iKXt3Gtf7eMZAcBlmCpePKE8SwuD3bC0N/vrPueksYlOYd5/+Gqdyo+wXpXf9/1W1vNYTD1pr70psO+7Kvmzlw8b86KdW/gigB0Ol1dXV1lZaXd/is4tBXbabE4BlOvOnej4+sesmnTpnfffdf95wIAnn/++b/+9a+4Fx955JEff/zR7vXxkcqa/VtdM0Eklea2PDU1hcXjs9hcwOZYzEOXrzbou41UPrg2d47d2qP6ay0bdpVjwyGzUpP+vut12ytJvs5W4iOVb+TnZOeuSpqOT7vodLqampqS3/2b7qaD407d+TLiIPluBgcH4/bPs9lss9lMy3MBACwWC/fKk08++fXXXxNd787Jx7PX/gfFupOEqPD42GgWh8PiCoBlRN/VRdEExUUoT5fan+G2E8OuBWhuvzd77VtUTFDeyhXzXlpn26Tq6NGjlUcOl5UfIL9DkERUd3AHLXrAqe8mAODu3buhoXZMn4uiZ8eOHW+++SbRRxama2A9ph9xpq4xr6TUNhi4vXCFa6W1VjhSJT9cxZEpObJQtlA63HXbbLxn7jcNtjV64HB1iMHUq8krJgq2P/bYY99//z3uRUZFz/Tp00UiUU1Njd3rg6Xiv7/7W5cL36gbHdeo2b/VdmywnMI2xhAfqdRW7LC9CckeCltmP/k4YHMUIUpDT7/dRmFEuD97rZCsshERER0dHbgXmRY9b7/99htvvEH0kVVzZ37g0nHrAIBDJ84xepj8yrkz7W76O3TiXHHpX2y/pBUlhbZhRYOpd/Gm96gurtHhCfFxLK5AERKiNxj19zu19VeofHBSYuyxXa/TsmI1t9/T5BUTvRsbG9vaOurfwrToefHFF8+fP2/3JCngnuvu1J/GBYicLlunHUKkm6nP82CpOHXSoyw2V65QGHr6Leahmq/OUhyt3dnrGiSiOSkpqakJ/w8nEj0uprcSEhLWrCFMJcDNDq7d2SvsPHBsyabddjUBznF3AbOps+/GJVPdScOZQ11f/AFm3waa6z2meAAAJB1cAABxcV5oDE+y5wUW/bn8az+263W6Wp7b8sGmNbbmpv5ay5JNu+1mVYgSvgvTNR9scpCMs3L6629Pn7949Pjn1dXV1BXPyrkz6VI8BlMvyWbUZcuW0fIUp8jIyCBqDwgAOHTyPKzHdIFV89K205TQsWVSYqxdxfPmh3+GNci2bxWXfmz7erBUfGzX6xTPsbrZduf0hUs1Z85V/v2T6poaioonSCI6WFJIV8zebp4FkpCQEBQURMtTnAK3aR+LwdRLtCI4JFgqPlhSyNARY0SK50xdoyav2O7mSqKE76p5aeRJLisGU+/pC5dqzn0NTRB1xfPBpjV0KZ7m9nskIfy0NCfCcq7X9JSUlOA6zWBxx+h4mPXvlpEEig2m3jeJN536BQZTL0mnhzVr1ng+oQ4AyMzMJNHNbhodhnSP3aD3mbrGJZt3k1Rolh45ZbcyY9W8NJLtHm5CFE5wjdLDVSR/C6csDo2Q6GYAwIZd5S6boMJl2eR1V66RPjnpmI3PbTD1Zqx9i0RTElVmOKV7nAUurnSVYjS33yMpKCTZs80oOTk5JLq5/noL9VgsjvjI0GO7Xqfr7BcrQRLRvs35torn0Ilz5NbSrm4GAOzbnE9R97jAyrkzaezbZ7c+EhIcHOwh0UPeIwe4Z3Q8g8HUu4FCCYg7Fc2+wIZd5SSdHrxlcYAj3Qz3obh2Z7ge0Ph9jotQ1uzfavsddmhuAAAGUy/RN3bHuheY0D0L0lLpKj4FAJypayTxCtasWRMZGUnXs5yCXDcDAIpL/+LOTpy/7/otjZJiS96iY+/hU0VQ3Dvc00RU0ZwyPo4J3UNSteYadisHrHjXBJG8e6auyeWURcr4uNOlW0n22TnLpMTY06VbbQMnVLJURLoZALBvcz6Ng7RCr9N16MQ5kt0J5DrEFrd2bxUVFSUkJJBcADe/ufMI5oDm5hCFote4CCVdh6V5nv2Hq0imS0ZGBq5jhydxqJvrr7dkrH3L5XjPvs35H2xa4/6SkD456XSpnToe6knxuPAQord2rHuBlkFa2ZK36OC2dXRlJQym3rySUpILyJcNpiHXzTBP6rLrNSs1+XTpVhdaUOIIkogqSgpty4EpKh4AwKTEWKJjoVLGx9Ud3EFjXBMurjQqng3vlpH8G9esWUN0SoYHcKibD508n1ey3/U817Z1tIQM1+bOsRt423+4yv36s4Pb1tGYzw2SiD7YtIZGxVN/rYU8zONR0SOXy+2eKoXlzf0f+2Z9z5v7P6ZibtbmzqHXBHiSM3WNJA1hAWlW2zOUlJQQHewCqb/eoskrdtlfX/X/2zv7sKiq7Y9vfElAdEZFIRVmFEUNccZulgIFimKlwmRd3wpneruJUkyJeROLQRFDUbBMKCsGKUwroBBLFBuNl14szjhagqAIppSijo7gS8Lvj51z+cHMPodzzszZA/vz3Oc+wZzZZzucWeu711p77ZkB+k+SVkbOZqcqAif4fp3yWscFOgCgRF/JxNx4eQz6OuU1dJvgRTMDeMnHwXvxtdcGgo5jCeuxAABSqRT9DMMCc9ab7b093Qs2Ld8aq2SXqujf12Vl5Gz9J0kWK5EZKp6VkbMPZ7yJMEEiN9fDGW/yEjJc8sS0wxlv8pXVAgDk7CtDLCxFIpHgJigtLQ1tggpLqfDYzazb2a9cPIfKXsc66gxNUNLS+R1NUM6+MrR5h4z3GX4ofTXaLETNDf065TXu+Tgvj0EFKct5zGoZTU2RCSjR2bExNC1c+/TI5fLMzEz0NTlF5azX6zYieUcBbVbL7K7ssP3eFtCu0ZVKpcVjfu2MTqdDGx2O63XYPANKH4bCon9fl8cDZFDuWGxyY6iuR3+2EKiYmbTJ8R/ldTjjTY7OleG9mLNq2y60VxY2zANRqVTtjontSPKOguiNWtYmCErnrbHKxwNkDNXzeJ/h66Lm6T9JWrl4jkUDwmTRxcRdmUlaOp+Lc10YNoXKXsf6EA+LoNfogJXH4h24dEfECwEMOUetY7308vZ0f2+Fispet+SJaQy/4F4egxaGTUGbINpFV/++Luui5qEVs5kg2Rj9J0nrouaxWx96eQzaGqvUf5LEb4AAXZvBIswDeDl7S6VS1dbWJiQkIK4x1NQHRyVujVXya5TZUVhK0a78FoZNSYqa56ByBzAoBMZhjQURi8VarTYkJKRdo462wPX68VNnWYdhofRZuXhOXcPFEn3VsZp6eCiH8XpTXUMjPAFY5Obi7+MFTy9Cj7YshcaDjvcZ/l6shZJDNItmBiyaGZCzr2xnUTnDo2HH+wxfGBawKGwK789qzr4yRHUtACA1NVXYMI8ZjUZTW1ublYXyATlF5YaasxY33zEE/nUAACX6ylJ9laGmHqacSo9WjfcZDjPgQTJfL49BswLl6D9Hem4x7aKLRYMc6FxXRs5Ozt5Toq+ydhRdW7w8BgXJfHlsH2fGfCaGtQskEgkLj2ULpFKpTqebOHEi4hqjqSk4KjEpah7r5sLenu5JS+cnLZ1f13CxsExf33ARmqC6PxuNpiZogrw9B4338QqiO18CrgPRtxvvM/wTTVRn/6xRc0MXhU3JKSrfWVTGcNd94ARffmuWzURv1KIbjWq1WhaimZ8DR5kYnbqGxkhNxum8VF7uyBqjqYm24SaXzlQ40LHFWUfYPS42Qi6X0xodAEB6brHfyOEc/zTenu6LuNn35B0FaHPAsbuJ2bkWllLHaurN21ChDIIlJgydK2vi0nenI6vxgoODMfFYEK1WS1GUXo8689hQUx+dksWl3SgkSDaGy+LNaGpCn5XRv69LUtQ81s85lD4AAEN1fcnRqmM19XCtDA1Cp5wrawzV9bRdJ/Lz87EyQZmZmc8++yz6slXpu8f7DOe4dPf2dOfYS2JVuuXdWGa4LNpFbq5Rc0Oj5oYaTU1wfQhNkPF607Gas+YStyCZ73gfryCZry1MkNHUFJe+G11xGxERoVAoWAzO2ynrTIyO0dRUoq8UNtiTkVuMCJdxNDc4UFhKoRdYgMPjYjsYGp29ZZSwf526hovo+AePMcJZgfJZgfKV3AfqDNZanLVFJBIxaQZtZ3Q6XUhICK3uqWvw+wf7AAAgAElEQVS4yHtUo1OgPRaPO6f8R3kJUozIpMA/Pj4eh9x6W1Qq1ZUrV159labt+N5SSlgXZqiuR4cJ+do5JXJzFcQE1TVcjNRkoBftEomEtQni8+wtiqLQlfAAgL22PIadCYj1KzQ3Dq14krP30O41kMlkGHosAIBKpfruu+/QyfW9ZXphi8PQHWuguXHcrChs9I5WPACAjse844BYLNbpdIjOK5BCK8c/2Qd0jzUYI3TQbROQ6I1aWsUjk8lwqAbriFqtpi1R3Vsu5PMDAMhAnj/F784p+1OirwyOWkdb7sYlU8HzgaNarTY1FZXAEvaJKSylEKeNWOz75CjABTrtaa9wjY5PVLkdISEhOp0O3QeBl4N2WYNwmYETfB3a3GTkFoev2IyIg0Li4+MFbKyCBuoe9NLrM2ZHs9kItORiUQeGD3UNF4OXJNI2AZHJZDqdzi4zYoNKpaqoqEAsveoaGllXNHPHaGpCiGYb1dbYjYzcYiY9aTMzM7l0WuFZ9AAA1Gp1Xl6etYdG2CdmZ5HVHUALw6bw1TDb/sBzbWjVgEgk0ul0uEWV2yGXyymKQuzn2lsmmOgxVNdbKw7t39eF9ox3nFm2UUtbKAAAUCqVeK7R26LVahHrdZjhsud82oIIda+MnO24iofhAh3zRReE1gQh/IitQRh5L49BPLYktT/BSxKZHH7AfdHFv+gBACgUCoRlFPCJsdbgC5by2HkyPFLILOmTlpaGueKBiMViiqKs6WYBM1wIm54UNU/YShEuoJePZpRKJZ6J0Y6oVKqYmBhrrwqY4bK2KW+8z3B+GyzZmZ1F5bTfSodYdEGkUimiBZ2A+QrEjjyH3m5sqK5n0rOKl0WXTUQPAABRJyvgE2PN4vj7eDnu4wIYROxFItF3332HbVbCIohHSKgMF8LieHvyfM6OPWHyeTqQ4oEgnnZhM1wW8eb7nCY7s5dORzqQ4oFIpVJrwR4B8xUIZRAk49o6XECYxO9jYmJ4MUG2Ej14PjHWELnZ5NA++0CrkaG5EfC4CXagdLNwGS5rwJ3ADgrt5+lwigcAIJfLrRWHCZXhQtzUoZ+fwlKKdvMERVEOpHggCN0sVL7CWrICAODQ6/ad+2nWIZmZmXw1lrOV6AFYPjHWumEeO8WoCxOeoD9MBzU3AACFQoFhhssawpZXc6Gu4SJimS4SiTIzMx1O8UBQwUIhMlyIBCjDXpR4ghbNwcHBOp0Ow+1+tGCYr/C33lPecU/FNlTXo9su5+Xl8ZimsKHoQTwxO/f/YLv7IrAWQ65raLS4ld1QXV+qryrVVyVn70nO3oPeriwUiK9ffHw8RVGOaG4guGW4xltfjm/4ZE/HZ6Ou4SJ8fjJyi+EjhKFhQrh/uNHGsbKibcEww2Wtx3+JvsriIw27P+8to+Dzw6T0ys6gC8JSU1N1Oh3mlcvWwDBfgQjnWOx42dEECVjFbw3EJvzg4GCKovjtKsdbc8KOwCfGYq8wo6mpsJSy/24pf5/h1lZUcem7v7m7Xqn7s9Ga8EzO3rNkbuiSJ6ZhEkss0Vdamyq2zTCYo1AorLX5FqRLISJrXtfQGByVCFW10dSMTr2/Hjkbh/NYIAj37yiV79aAGa4zZ850fEmoLoWzAuXWJEKkJn1WoBxKZ0PNWWvrq+TsgpWRc1ifscU7iOVHREQEVm27WaBSqay1K9xZVOY/is+jypjweIDc2hlKJfqq4CWJsFQDYYKSdxQsCpvyug0OHmENItKs1Wp5X7TbMNIDAEA88YKUZaCPTSnRV8H/IUJtRlNT8o4CfOI9iDWW4y7QzeCW4RK5uT4eYHUja11DI3x+0CVWJfoqfNbriIIwiUTicHVgHcEtw/V4AEpEFpZS8BFCPNt1DY1vbNuFjwn6zHo1Bm5t31mAW4bLf5QX4shSQ009ExOUU1SOjwlCFITJZDJbpClsK3qQtajC5NTNR4ewZmHYFIfQyF3A4gD8Mlxop8WQlZGzuQ/CC4iCsK7x/OCW4ZoVKGd4zjaCqLmhmESa4fG9Fl8SiURdYN2FYYZrEecgX/++LqyPTeUdhAmyUZjQtqJHLBZHRERYfAlmuGx6d4tw78eDj8fK2VdmTSNHREQ4bilPW3Dbw7VoZgBH3YyXaLa+Wu0CHgtguYeLownCymMhomVdQzQD/HbkrFw8h6Nuxkc0G01N9l+321b0APyclv8oryVPTGP9drw8lvUPsMtYHNwyXACA91YorZWjMgEf0VxYSiEKwhy6mqctqB0VAgV7EElSWvDxWAAZLesaohngl+ECAHBp/o6XaEYWhNmo/l1I0bOzqFyYldbS+azLAPHxWIJoZEFA/FsyrB8fazu8Pd0LUpaz0z2OIpq7jMcCyH9LRt5BO07kf7y3QjXe+t5jBFh5rC5fEAZBZ7hy9gkQ7AmSjdkay1L34CWarReE2c4E2Vz0IDJcQKCVFgDgvRUqFroHK4+F0MhKpdJB94haBCV68g4KEuzxH+XFTvfgI5pBNygIgyAyXEZTkyBOS+TmWpCynIXuwcpjdfmCMDMIB7zhE8t7qWzNopkBLHQPVqIZXRBmu0fI5qIHYOm0AADvrVBtje1cngIrj/W+9UVqF7M4iAyX0dREe6qzjfAf5XU4Y3Wn6nuwEs3doSDMDOIbIZTTErm5Hs54c2XkbOYmCCuPBZDJHUffqd4OxPNT19AoVGPSRTMDDqWv7pR0xko0C1UQZsM+PWYUCoVarTYajR1fMpqaMnKLhTppb9HMgFmB8mfi083Ne7w8BsFWK/4+w+HDEXi3NUtdQyM+HqtEX2ktsGxTjSwUarU6ISHB4kvv5xVHCeQJvD3dCzYtT88tjmtzODCUQSI3F3iwgJfHIHgsV11DI1aH43TtncbtUKvVW7ZssfgSzFDYv+cTZOXiOY8HyJelaI/V/NMUHmGCjKZmfDxWzr4yREFYFxPNUqlUqVRa6xn2fl6x/XvOQfxHeR3OeDN5R0Hb5j0IEyTUPC3yvvWehDYVzfYQPWKxGOG0MvIOCni8sMjNtWDTckN1vf8ourNv2Jce8o/F5puQrlSNYQbx/AjrtAAAUXNDZwXIRG6uNA4Jp+enRF9pLbAMuqLooXNaBwV8fmCqtK6hkd4E4QQiQtYlTZBGo7H2/JToq0r0lQK2G4XS2dtzkAOZIIRolkgkNt1FYY/0FgBArVajMhRCpNXb4ljmBu2xuqTFEYvFSqXVBLZQGQoz3p7u+CzBmYAQzV2sIMwMoju5oaZe2ONBRG6ujmWCEB4LdEXRDACQSqXBwcHWXkV8oeyD/ygvBzNB1o22rZ8fO4kesViMYS2Yg4L4gtlaIwsIwmkJmFZ3RLqhaAYASKVSxI4KwZ2WY4Gw2F2vIMwMwgSV6KswPNMKW9JzixGi2dYFYXYSPQD5LxFq458jgvZYjn7YFgKYobD2KiI9TGgHwsEHBwd3mZ3GHUGYIJihsOdkHBd0mKeLlTC3JSQkBBHssXYkFqEdRlMTOtJsa9FsP9FD57SEaZjhcKDDPF11mQ4hTos7OfvKuqdoBnROC5/TiDAHEebp2qIZIE2QUG3nHI6M3GLElm07mCD7iR6Ad1rdIei2YR6IXC5HOC1BGhU6HN3ZYwHkd4Q4LSagwzxd3gQpFAprPZ8AMUEMMJqaEB1B7RDmAXYWPSStzhHERySTybp2mAeCsKp7y/TEaaHp5h4LABASEoJwWiRDQQtCNCuVyi4vmgFaN+//Qai2c46C4GEeYGfRAwTKUFy5dt0Ww1okSfvVH39dssXI6DBPWlqaLW6KG+gMRVzG57a46aWrJlsMa5HvqUrb5Vm6eZgHIkiw5/JV+5mgtz74wkYWj4hmAIBKpUI0+E7eUWCLm9rThX158Cfdr7/bYmQcwjzA/qIH7bSiUyw3QmDNjVu3l2/59H7lahsJkXZsytmb8unewP+sscVmom5bf9oORECrsJTi/ZM/eOS3gBcSNud8w++wFvnjr0vKNRnLNmqfS/zA1HyD38GJx4IgnBawgQm6cu16pCZ9Zkzy1evN/I5skSVvf7z18/0BLyT8cKya98HRYZ6uummrI4ile0beQUO15baxrNlZVD7h6TfyD/3C77AWMVTXR6dkPfnfLavf//z233f4HRyHMA+wv+gBdHuPeVTKJ2rPBS9Zm7nn8JVrTU+teod3L9KO4iPHk7RfAwCuXm+O1KS/nJLVdOMWX4N382qetqCdVlzGbr4izLf/vhOX8fm/V73z1+Wr67RffWPjE5Wbb956atU7V641AQDyD/0S9J81P/9+isfxSZjHDHrvMY87SX84Vh3wQkJhKVV99s9ITfqdOy18jWyRD/IP7i7+EQDQcMk4e3lK4sf5f9/hzW8R0WxGpVJZazsHeNXNpuYbzyV+sGyj1tR8Myr5418ra/ka2SIXr1ybH/fuzdt/t7a2bvviQGh00sn6Br4GxyTMAwQRPbRpdV4izO/nHZy6dN3J+j/hj5VnzqvWfNDSYiuj89PxmsWa9NbWVvNvPt1X9vBLa45ZOSyiUxhNTYgvUnfzWMAuuvlkfUNodFL6lwfg37S1tfWFddt5X8OZab55a37cu5Vnzpt/U9fQ+Lh648ZPCnl5aNGNMbqVxwLI09wAAHEZn3PXzX/fuZP4cf7s5SkNl/45fud7qvKNbbs4Dosg97uf49L/l95taWndvPObsJeTeTGnRlMTInfcrcI84O4ZA9ZeNdTUp/NR0fzz76eC/rPGHOC5efvvBau3NjRaOM2JFxqNpvAVm82PKwDgWM3ZqUvX7dj7PS/jJ+8owCHMAwQRPYCuAIWjUm40mp7675Y3tu26efvvtr8/eOR4/PZcLiNbo0Rf+cTK1Oabt9v9/vS5C6HR69/dXdRWDLEgeUcB8VhtQQd7uEeYs/eWTF26znwcEqT55u35ce9evHKNy8gWab5564mVaR0jeXdaWtZnfT17+SaOyVlDdX3b08Ha0Q1FM9ppGU1Nq6x/XEyoa7gY9nLy5p3ftLT8vy/+h1/rsveWcBnZGrnf/fzi+o/udNDH1MkzD7+0dteBHziOH52ShYnHwgTEGQMAgA3clu4tLS0bPymc9erGdmYfRmKab/KWQDDTaDQ9/uqGE7Xn2v2+6cYtdeonkZp0jkVFJfpKTMI8QCjRo1AoENu4uESYK6pqA19MOPjLbxZffe+L/bx3QTxccWLeqnc7Kh7I7b/vxG//8siJ06zHRz8u3dBjQbRaLeJVLrpZteb9mNRsi6nJhkvG+XHv3rhl+W/NDlPzjbkr0346XmPtgh+OVa/5OI/LLdCfRjf0WAAAjUYjk1k9i2hnUTnrTRUHj/z28EtrqZNnLL4ak5rNe5Vozr6yF5I+tLayutZ047W0T/64cJn1+Om5xYhSue4W5oGIxWLEFwcdGEPTdOPWnNjN67O+/ttSMtRQU7/k7Y/ZjWyNC5evznp1ozkr0pHCUuq9Lw6wHh+dqQB2N0HCiB4AQFpami0izCOHDulzT2/EBerUbB67KaTnFv971TtoL/jW809MGjeS3fi4PS74EBISguh1ySXCPE46FPFqRdWZ8NjNfMV7TtY3hC5L+tG64gEAjBrusSnmada3SN5RYLCeY+22ohnYTDeP9vLo0QNlV59+6719PxxlN3g7/r5zJ377ly9v2oG+7MO4F4cNHsDuFnUNF9HNRLqtCVKr1YhNOaw3Vbg63+M1ZCDigoKSioVvvsdXvOfn309NW5ZUhazdecjP578cDgWPTslCZCpiYmLsLJoFEz1SqRStlNlFmEVurjlrlvbpbfX0+L/vtKxK3/38uu23/n/yq7Ncvd68YPXWuPTd6BL3iEf+pV7wKOu7oBNb3dljATrdzDrC/Hrk7Gn/ug9xwZHfTz3y0lru1Vr5h44EL0lELLAAAP1cnT9PesXNxZndLQzV9ejeM92k04FF5HJ5TEyMtVdZF4d5eQz6KO5FJycnaxc037y98M331mV+xTHr/cdfl8JeTqbNnr+68NHHprA/Xxud2LK/x8IKtG5mvaliy2uRY7zvRVyw74ejodHr6/+06hqY0NramvbZt7Ne3YiOAg4bPGDn2mU9e7KUCmjxJxKJ7C+aBRM9AAC1Wm2LCLPfyOFbXluMviZPd+TRmA3sisJaW1uzvyl58Nm3in40oK/09/HKWPksi1tACkspRGJLJBKhv3JdHrFYjPDZrCPMTk5OH61+0ctjEOKahkvGGS+/nac7wmJ8AEDN2T/nxb37XOJ2dIywRw+nTxKWSu51Z3cXQBeuiI+P76rH0zJEo9HYYlPFtAfuW77oMfQ1m3L2/nvVu9ebb7IY//bfd7bs+jbgxQRrSbQ2M/Fb/Sz7M6vTc4sRm0YlEkm3DfNApFJpfHy8tVdZ6+Y+9/T+dM1SN5c+iGtO1J57ZEliueEki/EBAFTVmdBl69d8lGcxiWbGpU/vz9e/Iu7Xl91daDMVWq1WLBazG5w1QooeYLMI87zpD708Lwx9DXXyzOTn45Oz93Sqf8aR308HRyXGbM7+6/JV9JVjpUNzk9XoXBsCJo9Ld15jQVQqlS0izCI31y/WvyJyc0Vcc/P238+v2/7vVe9UVNUyH/nq9eZV23YFvJhw4Kdj6Ct79ujxwX+ff1g+hvng7Vi1bRcisSWTybq5xwJ0uhlwMEFvKMNp4ysHjxyfpHrz/byDNztTJVZYSk1+Pj7hw7xrTTQ9OIJkvtmaJYiYExraxJYgHgs30LqZ9aaKkcOGfJKwtBcyvmI0Nc2J3fRi0oed2lje0Ghc8vbHodHraRWzS5/eu9a9PFaCSvejQYcJIyIiFAr2ipw1AoseG0WYAQAJLz45f/pk9DVXrzcn7yiQPbNqA530ab5564uDP82PezfslbfbbeqxiL+PV+Gm2EEit85Nug14Pi4YYqMI82gvz12J0bSXFf98PHTZ+gWrt9JKH6rqjGZ77v2L4zLyDjLp+rV91Qtzp05iONuOoOvfRSJRfn4+68G7ErSbKtgVhzk5OX26Zukj8rHoyxouGd/Ytuv+xatpT1y+cu169t6Sx9QbIjXpp89doJ3A1H+N27XuZZc+93Ri0v+fSE0GOrHVnXPrbbHR0v2RiWO3r3oBfU1LS+uX3/380HPx/1n/0ak//kJfXHa0KvadnH8p43YX/0ibWu3r3OeL9TFBMvaLLtrEllCZCqu1L3ZDo9Hk5+efOWNZdSZn7xnv4zUrkE0QPn3lsxeuXDt45Dj6MqOp6e0dBW/vKJCPltw/Vurv4zVhtNdYydBzFy7XNlysOfvnz7+d+qZcz7zT4ERfyZdvx7AOCQKMHxcMgRHmhIQEi6/WNTRGatK/TlnOYuQH/Xxy1ixd9NY22iuLfjQU/WgYOniAfLS33Fcy0VcycYy0paX19Lm/Tp27UHnm/FeHf2HiqMxka6LYPfMQJvXvJExoJi0tTafTGY2Wk90bsvcETfD1H+XFYuTshKg5y1OO0q31zzdeeWPbrjUf5Y738bp/jNTfx0s22ttnuEft+Qt1DY0n6xq+11fSJtPbEvaQ/2cMJDsCdP27TCbrztVg7YCbKrKyLH/jDDX10Ru1W1eoWIwc8ci/NkQvfH3rTtorvzj40xcHfxoxdLBstLd8tETuK5H7Sq7fuFl77kLNH3/9fvqPPN2Rtj140PRzdf5i/SuT7vNhMWdIXcNFDBNbEOFFD4wwP/HEE9YuiE7J8vYYxM7ofJoQ9fRb26ztYG8HdfIMbcSPlvvHSHOT1f37urAeAc88KM5oNBqtVmtNN5foq1Zt25W0dD6LkR+dItu5dtnihAwmsZlzFy6fu3B5bxmnxs19evfKWbtsKrKSmhba+ndEl5puCNxU8eqrr1p81WhqCl+xmcpeh053WqSfq3NusnruyjRa3QMAaL55++ffTv38G9c23LMDJ3785otcRqCtfyeLrnakpaXl5+db0805ReUBE3wXzQxgMfILESGtoPW/7+1iUvZ++tyF0+cucDywQtzP9asNr7FzuGZo698FzFQInN6CoCPMRlNTZEI6uyRFn3t6f7YumkuaoFM8Nyd4z+ZYjoonPHYz4h+rVCpJYqsjaCuckXeQdX+mmZMnfLE+pq8zqqiQL6T3uhe/t4qj4snZV0bq3zsLelMF7bcSwcD+boWbV3CpzWJOr5493lCGa9/6T6+ePVkPAu0t4gJS/94RJsVhrDs/vRgxdfsbz6Pre/hiwiivQ+mrOSqeVdt24Vz/joXoAXTbj+saGsNjN7MbuVfPntvfeP7FiKlsp8aIgf37fp70csori5zZVi5DolOyEFFliURCosoWQbftAfCDZdum+WH5mMLU2IH92ecrmfDMY4ElH8TfN2IYl0Fy9pWhw4RpaWkksWURtBY01KC6WqPp69Lni/Uxc4Imsns7Q7w8Bn27ZeWKZ2ahuwShgfIOESYk9e/WQG+qAABEajJYm6C5Uyd9lviySx9OzgVNjx5Ory187MDWN9AbV2lBL7oABpkKXEQPum0PuJsZZTe4k5NTcvSCba+r+rmy7HeCJnji2PIPNaGTxnMcJ3qjFr3bSPDHBWfQuhkAEL5iM+ve8BNGeR9KXz15/Ch2b0cDm0u989piV2f2ZacAHjeB3KUfERGBOKO+m4PeVAEAyCkqZ93xsnevntq3Xkp48cnevdjHYBDMC32odPtb94+RchwnUpOOWHSRMCEarVaLMEGwboH1sW7THriveOuq0V4ebGeHYqi7eO/mFaufU3CJEQIGiy4c6t9xET0AALVajV6sczE6AIAFM6Z8//6b8tFWtxeyYLSXR+ab/8nb8OrgAf05DrVq266conLEBTg8LjgjFot1Oh3iAqOpCb0hBc2wIQP3bFq+ShXOY5y5T+9eUXNDf81KfJRD+ziIobo+fAUqBUM8Fi1paWmIJBcAIC59N7smCAAAJyenl+eFFW99Y8TQwexGsMiEUV57U1dk/Pc51h0szURv1CKyEgAAjUZDElsIpFIpOhJvqKmP1KBSh2jGSoceynjzhfAQ1iN0pJ+r8xvK8J8y1z7ox75sGWKorkcrHkzChBiJHsDM6LDOjAIAvD3d97/73+ToBeJ+na5JbMewwQO2vBZZtl0T8ci/OA4FGIQEBc+DOgRyuTwzMxNxgaGG5muJpkePHrFPzzqc8eZDnA1Ezx49nnk08Jcdieui5g3gnDiDxbZoPUfChEzQ6XSItiuAW54UADDex6t0e/zKxXO4pyrGSO7dEb9Ex1MAMnqjFr3oIvXvTFCpVIh2heDuvgrW4zvf03vDywu/SV3h6+XJehDzUMuemkFlJ614ZhbHGDO4u+hCX4OJCcJL9MDFOjpJwSUzCgDo2bPHixFTf85c+8yjgezsTvjD9+9cu8yQ83bkY0Gsm3O3hTYkCLuq4PC44I9KpUInKQpLKdbNnyBjpUO/SXv9w1UvjBw2hMXbx/sM17wwV/9p0jvLFw91Z3kiUluYlNmS+neGiMXi/Px8dJKC9b4KiPM9vVdGzv7ho4Twh+9n8XY3lz6Lwqbkb3i1/EPNbJ7qhHL2laEVDwkTMkej0SD25QBu+yogD40f9cPHCSmvLBrqzsYpPOTnk6p+5rfPkte+9BT3FRcAoK7hIu2iKzMzE5MwofBb1tsBdU9ISIi17X8wM/p1ymssdpCaGSRye2f54g0vL9z/kyH/0C/f/fLblWs0Vix44th50yfPeXgi9zByW2hDggCA/Px8TB4XhyAtLY2iqEOHDlm7IDl7j5fHIHY7SM3MnTpp7tRJR6vrCr6v2PfjUdqWlUMHD3hy6qQF0yeP41aq3A6oeBB1GAAApVJJPBZz5HK5VqtFNNGA+yoOZazmchcvj0Hat166er352/KjubqfS/VV12/QHEnx6OQJ82dM5iW03BYmiy6dTkfq35mj1WpDQkL0eqvdK6JTsvx9vDhuknpuTvBzc4J/Ol7z1fe/HjxyvPLMefT1o708npz64Pzpk7mcbNMRJmUDSqUSn2pC7EQPAEAul6elpT37rNVTqww19eGxmznqHgCA8z295wTdPyfofgDAb6f/KDt6srbhwiWjqdFo6tmjx4hhQ7w9Bo0YOtjbY5DkXncuvU2twSQkmJmZSUp5Okt+fj6t0QEAcNQ9AIAJo7wnjPKOezbi6vXmH45V/3ri9F+XrzUar5mabwx1HyC5113i6S69193b091jICp+yZq49N1oxSOTyYji6SwKhSI1NdVa5x5wd1/Fuqh5HE1Q/74u86Y/NG/6QwAAqupMmeHk2T8bG6+aGo3X+zrfIx062NtjEPz/0ZzTGRYp0VfSLrp0Oh1ZdHUKGC+Uy+XWlu4AgPAVm7/eyLUdDgDgQT+fB/18APj3paum0qNVR0/W/3X56qWrpuabt4cPGTBi6GBvD3doiLicEGANR1x04Sh6AAAqlaq2ttZam13An+4xc9+IYRx3C3cWhiFBfASyAyEWi+FiC2F0+NI9kP59XcIe8g97yJ+X0RhCW4chk8nQxd0Ea6jVaoqirLXZBQDkFJUbas7yaIJgF11ehmKIobo+UpOBvgafrIRjIZVKdTrdxIlW84+wDm9rrJJL7/W2DOzvZl7D2w10jxUAQHBwMFaKB+BW09MWjUaD3sxlqKkPjkrkUt8jIIbq+uCodQ4UEnQ45HI57fFS0SlZHJPrAkKreCQSiU6nI6VgrNFqteh9FXDpxaW+R0BK9JVk0WVTaPdVGE1NkZp0BzVBRlNTeOwm9GZGmUyG4Rl/+IoewGAzV11DY/iKzQ6newpLKVpzg1tI0BEJCQlBGx0AQHRKFuumcwJCq3hI8Tsv0O6rcFDdk7OvjHbaMTExRPFwhHZfBXDMpRfMaqEbHMAwM4YmCGvRQ7uTAtwNEjqQ7snZVxapodn9gWFI0EFRqVToeCEAID23mHXfS/vzz+qQTvGQOgxeYLKf1FBTL4+McyATFJe+m7aOR6lUkubvvJCWlobezAUcTfcYquvlkXHorBTI88YAABIRSURBVBbc7oeh4gGYix5wNzOKvgbqHtZNw+xJ9EYtrbnBMyTouGi1WnR7eABATlG5Q+geQ3V9eCz9o56WlkYUD1/AfRXoaxxl6WU0NUVv1NK2eI2IiCCLLh6hzZMCAKJTshzCBDFJU2C+6MJd9AAGmVHgCMlRaG7QC3SAcUjQocnPz6c1OjlF5bQROGGB5ga9wAKkDsMGqFQqJiYIc90DUxJMTBBRPPwC44VMTBDmuodJmgJg32PFAUQPYGZ0AADRKVnJ2XvsMJ/OwtDc4BwSdGgYGp3CUio8lv35XDYlOXsPE3MTHx9PFI8tYK57MjgclWM7YIyQVjGTRZeNYK57sF16MUlTAEfoseIYogcw1j3JOwqClyRi5bcM1fXBUYm05gbzkKCjw9DoGGrqg6PWYeW3YBSTSRfp+Ph4claJ7WCoe1al78bNb8GNWkTxCAvzpZc8Mg6rag0mdYQQhwgzO4zoAQCoVKq8vDx0USHAzG8lZ+8Jjkqsa2hEXyaTySiKsqh4qqqq4uLinnrqKdtMsBvB0OhAvxUeuwkHvwUVMxMLmJmZSRSPrWG49MLHbxlNTXHpu5nsLyOKxw4wN0GRmvTojVocTFCJvpKJCRKJRNYUz6VLl7Zt2xYYGHj+PE3PaPvgSKIHAKBQKGg3UwA8/Jahuj54SSKTBTo0N+26vDc0NGzatGnixIljxoxJSkq6ceOGrSbanYBGh3YzBQCgRF8luN/KyC0OX7GZVjEjzA2Bd6DuYWKCBPdb0F3Rli0DACIiIojisQ8MdQ8AIKeoPDgqkcsB2xyBz3B4LCMTpNPp2pmgGzdu7Nq1a86cOZ6ensuWLSsvL/f0tElX8c7iYKIHACCXyxk+NEL5Lbi6YpLSAh0WWNeuXcvMzJw+ffqwYcNiY2Mp6p/JDxnC5mxLQkdgHwTafezg7ndekFRFib4yeEniqvTdtLe2aG4INkWlUjFZegHh/BZzdwUAUCqVpKWTPYG6h4kJgqe8CdJIbGdROUPv2a4wo6WlZf/+/SqVasiQIQsWLNizZ8/t27cBAAMHDnRycrLtpJnheKIH3NU9TNbr9vdbzFdXAAClUklRlFgsvn379ldffTVv3rwhQ4Y899xzxcXFLS0tba/08PCwzXy7KVqtlkmeAgBQWErZ02/BXX5Mak4BqQMTDuZLL/v7rU4l1+Lj48leLfsDz8mh7VsISc8tDl5iv7MH6houhsduWsYsSNm2MOOXX3557bXXhg8fHhYWlpWVde3atbZX4uPCHEb0REdHL1iwYO/evXfu3AF31+vx8fFM3gutQHL2HptKn06trgAAmZmZmZmZJSUlS5Ys8fT0VCgUn3/+ubU0Fon08A7DEjFw12+Fx26ytfTJyC2WR8YxKRgEAAQHB9fW1hLFIxTMdQ8AID23WB65ytYmCLorhms8kUiUl5dH6sDsxldffRUQEJCenn758mX4m7S0NIZLL3jmUvRGra336GTkFgdHrUO3WjajVCp1Op2Tk1NiYuK4ceMeeOCB1NRUa4U7+LgwTA8cbceNGzeysrJMJtOuXbs8PDyefvrpBQsWTJo0SaPRyOVylUqFOFcSYjQ1Je8oyMgtXhQ25aUnpnl7uvM4vbqGi+/nHcwpKmdo0UQiUVZW1o8//iiVSuvq6pi8BZNsaBcDloipVCrEeexmSvRVJfrNQTLf1yNnB8nG8DsTeNg1Q7kMAIiJiSENcwVHLBZTFKVWq7ds2UJ7cV1DIzRBS+aGLnliGl/HlN4d/OKG7D2FZXqGJgg24yGK2Z7s2LGjvLy8vLxcrVbPmjUrMjJy1qxZKpVKKpUqFApaFwYAyCkqzykqt4UJMpqa9pbpk7MLmJugxMTEAQMGzJo1q6yMUXs8Ino6R35+vslkgv/9559/bt68efPmzWPHjo2MjIyMjGTut4ympvTc4vTc4kVhU16PnM1d+pToK9/PO9ipsqF7773X3d1doVB06kbu7nyqNIIZuF5Xq9WI87TbAqWPv4/XkrmhC8OmcLw7tDUZucVMklkQ2Myps88PwXakpaWFhIQwWXqBNquvJXNDF86YzN0E7S2jMnKLGS7NIbDhMinisSdXrlwpKPhnU8utW7fy8vLy8vIGDBgwf/78yMjI2tpahUJx6NAhJkPxu/rq7IodAODi4iKXyxMSEmCxDkOI6OkcFh3SiRMn4uLi4uLiHnnkEaVSeeDAgb179zIcEEpm1tKHhS42c/78eRY79/BJiHY9YH49JCRErVYz8VsAAENN/bKN2uTsgpWRc9hJnxJ95WdF5QwzWWbgoWztNvoRBEehUFAUpVAomCy9wF3pk7yjgIsJ2llUnpFX3CkTJBKJNBqNWq3u7O0IHMnJyekoES5fvpyRkZGRkeHt7a1UKmUy2TvvvMNwQLP0WRgWwNoEdXbFDgDo0aNHc3NzeXnnDBfAyYU5gOj5888/v/32W8QFhw8fPnz4sLOz84MPPnjs2LGmJqaKFUoffx+vIJnv4wHyQJkv7VtK9VV7y6hO6WJewEcmd1VUKhVMlTL0WwCAuobGZRu1q9J3zwqQBcrGBE4YTeu92PkqQNwV9kilUoqiNBpNQkIC83eZTdDjgfLHp8j8R3mhrzeamo7VnN1ZVNZZuQzuHupHFLMg7NixA/FqXV3d2rVrAQB+fn7nz5+/dOkSw2FL9FUl+qrk7IKgCb6BsjGPB8ho06aG6vpjp86yW7EDANrtsGEOPhUamIqeGzdulJSUHDhw4MCBAxUVFQzf8tNPPwEAnJ2dO9XVxlBTb6ipT88tFrm5Bsl8Ayf4Ph4gM3uvuoaLpUdPHqupL9FXMc9B8IuTkxM+MrkLI5fLKYpKS0vTaDQMQz4AAKOpKeduzMaigC7VVxlq6kuPVhlq6tkZGhLgcRQ0Go1CoeiUdAZ3TVDyjgJogh4PkLcV0NBLleorDTVnWZsg0q3bzrS2th49evTAgQP79+///vvvGS7Fjx8/DgDo2bMn3K/DkLqGxpyG/5mgdgLaaGoqPVplqDlbqq/sVBqUXzCq0Gil45tvvun4rk8//ZT2jaxBx3Xsg7fnoCCZL7/Fhqxxd3e33afd2to6e/bsjjflcfyO7RkefPBBHsfnndOnT9MezE5LkMzX34dm4U6LSCRKTU0V+vOgYf/+/R1nHhsby9f4FtuRl5eX8zW+LUhNTWWyMRABFNBcRoAEBwdXVFQI/XnQcN9997Wbdo8ePXgcv+PHsmDBAh7H78jAgQO5/+24AAW0t+cgYadhpqyszHaf9gcffNDxjhcuXLB4MY5b1nHYU1DX0Fiir8KhCzgguS27I5VKdTpdXl6eRCJhPQj30CBs40RSWo6IWq2mKIpJAzprGGrqOa7LJRJJXl4e6eQkCN7e3sJOwGhqKtFXsQst2wJ8vBiOosfDw8PXl4clTpcBn8elW6FQKGprazMzM7lIH3YolcrTp0+TlJZDI5VKtVptRUUF96hhZxGJRPHx8XBPkJ1vTYBMnz5d6CngBT5eDEfRAwAIDQ0VegoYgc/j0g1RqVQURcXHx3PMVjCEyJ0uBuyJ8N1339lH+pjlDqngERbiwtrSu3fvfv36CT2LfyCixwEgVczCIhaLNRqNraM+RO50YUJCQqD04ZLwQiORSDIzM6HcIT14BGfq1Km9emG6T8j+DB06VOgp/A9MRc+0adOEngJGENGDA2KxWKVS1dbW8uu6ZDJZamoqkTvdgZCQEK1We/ny5fj4eB7Vc0RERF5eXm1trUqlInIHE/r06RMYGCj0LHABn/3qAFvRM2DAgPvvv1/oWeACET1YAV3X6dOnU1NTmZx6axGJRBITE1NRUQFLlYnc6T6YA4d5eXlKpZJ12lQmk2VmZl6+fDk/P5/U7mDI1KlThZ4CLgwePFjoKfwPfONv06dP//XXX4WeBRaQmh4MkUqlarVarVZfuXIlPz8/Pz9fp9Ohu/uIRCK5XB4SEqJQKMiGGoJCoYBihaIorVar0+lou/tIJBL4/ISEhJCgDubMmDGDVFZBsFq3Yy16NmzYIPQssICIHpyBaS+VSgUAoChKp9PB/z9z5oxEIpG3gYRzCBaRy+Xw+NgrV66Ynx94ElNwcLBUKpVKpSEhIfA/BJ4rgTEBAQF9+/a9fv260BMRHiJ6GDFjxgyhp4ALWMUGCQiguBF6FgRHRSwWm8M/hC5ASEhIYWGh0LMQHozaMWNb0wMJCQkRegpYgFUVGIFAIBCYQLr1QLByYViLHrJxHQDg6urat29foWdBIBAIhM5BXBgEqwoNInpwB6vHhUAgEAgM8ff3JwYcYFbTg7XomTRpEglykIIeAoFAcFBIkQYgNT3M6dWrF2l1gFU2lEAgEAjMITtyAGZeDGvRA0iGi0R6CAQCwWEhpwtgFeYBRPTgD1YamUAgEAjMGTlypO0O7HMIsCroAfiLHn9/f9x0op0hdXAEAoHguHTzDBduogff5oRmZsyYsXPnTlvfZdy4cWPHjh03bhwA4NixYxUVFfX19ba+KRNwe2IIBAKBwJzQ0NAPP/zQ1ncZNmyYn5+fn59f//79T506RVGUwWCw9U2ZgNu63QFEz7Rp0/gVPc7OzmPGjLnvLuPGjRs9enSvXu0/isuXL//6668Vd6mqqrpz5w6P02BINw90EQgEgkMzc+ZM3sf08vLy8/ODLgxqnX79+rW75ubNmwaDwezCjh492tTUxPtMaMGtLNUBRE9YWBiXt7u4uEBlAx8OKHGYvHHAgAGhoaHmoqLm5ma9Xg9lEEVRR44c4TIr5pBID4FAIDguAwYM8Pf35xJ38fb2hs4LCp3x48e7ubnRvqtPnz4PPPDAAw88YP7N8ePHKYqqqKjQ6/W//PLL5cuXWU+JObi5MAcQPd7e3iNHjjx16hSTi/v162cO4fj5+Y0dO3bEiBG8TMPFxWXy5MmTJ082/+bo0aMURVEU9euvv1IUhT5hmzW4xQYJBAKB0ClCQ0OZix6JRAKVDVyrjx8/nq9+dTAm9PTTT8Mfz5w5A9UPDAWdPXuWl7u0AzcX5gCiBwAQGhpqUfQMHDjwvv/PsGHD7DarCRMmTJgwYfHixfDH06dPV7Th3Llz3G/h5OSE2xNDIBAIhE4RGhqalpbW8fdOTk5SqRTGb8zpKldXV/vMSiKRSCSS8PBw+OOlS5fMFR0URVVWVra0tHC/C24uzDFEz4wZM7Zv3w4AkMlkY8aM8fPze/jhh8eNG4fVdu4RI0aMGDFi7ty58McLFy6YFXRFRUV1dTWLMQcPHuzk5MTrNAkEAoFgV6ZOndqrV6+WlpYRI0aY9Q3MWLm4uAg9u38YOHDg9OnTzYekNjU1HT161OzCDAbDzZs3WQxLRA8bHnvsscrKSl9fX6En0gkGDx786KOPPvroo/BHk8kEk6mQ48eP3759m8kgNp4mgUAgEGxL3759KYry8fFxdnYWei5McXV1bVfRodfr21Z0XL16lck4WMUmgKOIHjc3N8dSPB1xc3MLCgoKCgqCP966dev48eNmDaTX600mU8d34aaRCQQCgcACPz8/oafAFZlMJpPJlEol/PHUqVNtKzrOnz9v8V24Ld0dQ/R0Pe65556JEydOnDgR/tja2nry5Mm2D9CFCxcAET0EAoFAwJKRI0eOHDnyySefhD/+9ddfbZu81NTUtLa29u7dm8lGM3tCRA8WODk5+fr6+vr6zp8/H/7m7Nmzer2+d+/ewk6MQCAQCARahgwZ0rai49q1a6yLWW0KS9Gzdu3a999/n9+pECyybt06W9/i2LFjtr5FO37//ffg4GA735RgI+zT7aMdUVFR/fv3t/99CbagtrbWzncsLi4mJsg+ZGVl2foW1jJrFmEpek6cOHHixAl27yUQrl27dvjwYaFnQXBgKIoSegoEB+bChQuwhIDQ3cD9wFECgUAgEAgEXiCih0AgEAgEQreAiB4CgUAgEAjdAiJ6CAQCgUAgdAvoC5k9PT3JSQjdDX47o4vF4itXrvA4IAF/eOwm6u/v/+WXX/I1GsEhcHd353E0Z2dndkcoEBwXa0eYObW2ttp5KgQCgUAgEAj2h6S3CAQCgUAgdAuI6CEQCAQCgdAtIKKHQCAQCARCt4CIHgKBQCAQCN0CInoIBAKBQCB0C4joIRAIBAKB0C0goodAIBAIBEK3gIgeAoFAIBAI3QIieggEAoFAIHQL/g+lpBcJK8agyQAAAABJRU5ErkJggg=="}}},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]},{"metadata":{},"cell_type":"markdown","source":"6. Programmer un pierre-feuille-ciseau. \n\nDéroulé du programme:\n\n- L'utilisateur choisit un nombre entre 0 (pierre), 1(feuille), 2(ciseau).\n- L'ordinateur choisit au hasard un nombre en 0 et 2 (vous pourrez utiliser `randint(0, 2)` pour faire cela.\n- L'ordinateur détermine qui a gagné la partie"},{"metadata":{"trusted":true},"cell_type":"code","source":"","execution_count":null,"outputs":[]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"}},"nbformat":4,"nbformat_minor":2}