72 lines
2.1 KiB
TeX
72 lines
2.1 KiB
TeX
\documentclass[a4paper,10pt]{article}
|
|
\usepackage{myXsim}
|
|
\usepackage{tikz}
|
|
\usepackage{pgfplots}
|
|
|
|
\author{Benjamin Bertrand}
|
|
\title{Nombre dérivé et tangente - Cours}
|
|
\date{novembre 2022}
|
|
|
|
\pagestyle{empty}
|
|
|
|
\begin{document}
|
|
|
|
\maketitle
|
|
|
|
\section{Taux d'accroissement}
|
|
|
|
\begin{definition}[Taux d'accroissement]
|
|
\begin{minipage}{0.5\linewidth}
|
|
Soit $f$ une fonction, $a$ et $b$ deux nombres.
|
|
|
|
\textbf{Le taux d'accroissement} de la fonction $f$ entre $a$ et $b$ se calcule par
|
|
\[
|
|
\frac{f(b) - f(a)}{b-a}
|
|
\]
|
|
|
|
\bigskip
|
|
|
|
On interprète ce nombre comme la pente de la droite qui relie les points de la droite d'abscisse $a$ et $b$. Cette droite est appelé \textbf{corde}.
|
|
\end{minipage}
|
|
\hfill
|
|
\begin{minipage}{0.45\linewidth}
|
|
\begin{tikzpicture}
|
|
\begin{axis}[
|
|
axis lines = center,
|
|
grid= both,
|
|
xlabel = {$x$},
|
|
xtick distance=1,
|
|
ylabel = {$f(x)$},
|
|
ytick distance=1,
|
|
]
|
|
\addplot[domain=0:5,samples=20, color=red, very thick]{0.1*x^3 - 1.5*x + 1};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{minipage}
|
|
\end{definition}
|
|
|
|
\paragraph{Exemples}
|
|
\begin{itemize}
|
|
\item Calcul du taux d'accroissement entre $x = 1$ et $x = 4$ sur le graphique ci-dessus.
|
|
|
|
\vspace{2cm}
|
|
|
|
\item Soit $f(t) = 3t^2 + 2$ le taux d'accroissement entre $t=3$ et $t = 10$ est calculé:
|
|
\vspace{2cm}
|
|
\end{itemize}
|
|
|
|
\afaire{Traiter les exemples}
|
|
|
|
|
|
\paragraph{Remarques}
|
|
\begin{itemize}
|
|
\item Le taux d'accroissement est parfois nommé \textbf{taux de variations}.
|
|
\item En économie, quand la fonction $f$ représente les coûts, le taux d'accroissement est appelé \textbf{coût marginal}. Il permet de savoir quel sera le coût si l'on décide d'ajouter une unité.
|
|
\item En physique, quand la fonction $f$ représente la position, le taux d'accroissement est appelé \textbf{vitesse moyenne}.
|
|
\[
|
|
v_{moyenne} = \frac{\Delta p}{\Delta t} = \frac{p(t_2) - p(t_1)}{t_2 - t_1}
|
|
\]
|
|
\end{itemize}
|
|
|
|
\end{document}
|